:: PAPDESAF semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
theorem :: PAPDESAF:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th2: :: PAPDESAF:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th3: :: PAPDESAF:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th4: :: PAPDESAF:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th5: :: PAPDESAF:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
OAS being
OAffinSpace st
OAS = OASpace V holds
for
a,
b,
c,
d being
Element of
OAS for
u,
v,
w,
y being
VECTOR of
V st
a = u &
b = v &
c = w &
d = y holds
(
a,
b '||' c,
d iff
u,
v '||' w,
y )
theorem :: PAPDESAF:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
let AS be
AffinSpace;
canceled;canceled;canceled;canceled;redefine attr AS is
Fanoian means :
Def5:
:: PAPDESAF:def 5
for
a,
b,
c,
d being
Element of
AS st
a,
b // c,
d &
a,
c // b,
d &
a,
d // b,
c holds
a,
b // a,
c;
compatibility
( AS satisfies_Fano iff for a, b, c, d being Element of AS st a,b // c,d & a,c // b,d & a,d // b,c holds
a,b // a,c )
end;
:: deftheorem PAPDESAF:def 1 :
canceled;
:: deftheorem PAPDESAF:def 2 :
canceled;
:: deftheorem PAPDESAF:def 3 :
canceled;
:: deftheorem PAPDESAF:def 4 :
canceled;
:: deftheorem Def5 defines satisfies_Fano PAPDESAF:def 5 :
for
AS being
AffinSpace holds
(
AS satisfies_Fano iff for
a,
b,
c,
d being
Element of
AS st
a,
b // c,
d &
a,
c // b,
d &
a,
d // b,
c holds
a,
b // a,
c );
:: deftheorem PAPDESAF:def 6 :
canceled;
:: deftheorem PAPDESAF:def 7 :
canceled;
:: deftheorem PAPDESAF:def 8 :
canceled;
:: deftheorem PAPDESAF:def 9 :
canceled;
:: deftheorem PAPDESAF:def 10 :
canceled;
:: deftheorem Def11 defines Pappian PAPDESAF:def 11 :
:: deftheorem Def12 defines Desarguesian PAPDESAF:def 12 :
:: deftheorem Def13 defines Moufangian PAPDESAF:def 13 :
:: deftheorem Def14 defines translation PAPDESAF:def 14 :
definition
let OAS be
OAffinSpace;
attr OAS is
satisfying_DES means :
Def15:
:: PAPDESAF:def 15
for
o,
a,
b,
c,
a1,
b1,
c1 being
Element of
OAS st
o,
a // o,
a1 &
o,
b // o,
b1 &
o,
c // o,
c1 & not
LIN o,
a,
b & not
LIN o,
a,
c &
a,
b // a1,
b1 &
a,
c // a1,
c1 holds
b,
c // b1,
c1;
end;
:: deftheorem Def15 defines satisfying_DES PAPDESAF:def 15 :
for
OAS being
OAffinSpace holds
(
OAS is
satisfying_DES iff for
o,
a,
b,
c,
a1,
b1,
c1 being
Element of
OAS st
o,
a // o,
a1 &
o,
b // o,
b1 &
o,
c // o,
c1 & not
LIN o,
a,
b & not
LIN o,
a,
c &
a,
b // a1,
b1 &
a,
c // a1,
c1 holds
b,
c // b1,
c1 );
definition
let OAS be
OAffinSpace;
attr OAS is
satisfying_DES_1 means :
Def16:
:: PAPDESAF:def 16
for
o,
a,
b,
c,
a1,
b1,
c1 being
Element of
OAS st
a,
o // o,
a1 &
b,
o // o,
b1 &
c,
o // o,
c1 & not
LIN o,
a,
b & not
LIN o,
a,
c &
a,
b // b1,
a1 &
a,
c // c1,
a1 holds
b,
c // c1,
b1;
end;
:: deftheorem Def16 defines satisfying_DES_1 PAPDESAF:def 16 :
for
OAS being
OAffinSpace holds
(
OAS is
satisfying_DES_1 iff for
o,
a,
b,
c,
a1,
b1,
c1 being
Element of
OAS st
a,
o // o,
a1 &
b,
o // o,
b1 &
c,
o // o,
c1 & not
LIN o,
a,
b & not
LIN o,
a,
c &
a,
b // b1,
a1 &
a,
c // c1,
a1 holds
b,
c // c1,
b1 );
theorem :: PAPDESAF:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: PAPDESAF:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: PAPDESAF:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: PAPDESAF:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th11: :: PAPDESAF:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th12: :: PAPDESAF:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
o,
a,
b,
a',
b' being
Element of the
carrier of
OAS st not
LIN o,
a,
b &
a,
o // o,
a' &
LIN o,
b,
b' &
a,
b '||' a',
b' holds
(
b,
o // o,
b' &
a,
b // b',
a' )
theorem Th13: :: PAPDESAF:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
o,
a,
b,
a',
b' being
Element of the
carrier of
OAS st not
LIN o,
a,
b &
o,
a // o,
a' &
LIN o,
b,
b' &
a,
b '||' a',
b' holds
(
o,
b // o,
b' &
a,
b // a',
b' )
theorem Th14: :: PAPDESAF:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th15: :: PAPDESAF:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
o,
u,
v,
u1,
v1 being
VECTOR of
V for
r being
Real st
o - u = r * (u1 - o) &
r <> 0 &
o,
v '||' o,
v1 & not
o,
u '||' o,
v &
u,
v '||' u1,
v1 holds
(
v1 = u1 + (((- r) " ) * (v - u)) &
v1 = o + (((- r) " ) * (v - o)) &
v - u = (- r) * (v1 - u1) )
Lm1:
for V being RealLinearSpace
for u, v, w being VECTOR of V st u <> v & w <> v & u,v // v,w holds
ex r being Real st
( v - u = r * (w - v) & 0 < r )
theorem :: PAPDESAF:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th17: :: PAPDESAF:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th18: :: PAPDESAF:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm2:
for V being RealLinearSpace
for y, u, v being VECTOR of V st y,u '||' y,v & y <> u & y <> v holds
ex r being Real st
( u - y = r * (v - y) & r <> 0 )
Lm3:
for V being RealLinearSpace
for u, v, y being VECTOR of V holds (u - y) - (v - y) = u - v
theorem Th19: :: PAPDESAF:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th20: :: PAPDESAF:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th21: :: PAPDESAF:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th22: :: PAPDESAF:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th23: :: PAPDESAF:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th24: :: PAPDESAF:24 :: Showing IDV graph ... (Click the Palm Tree again to close it)