:: TRANSLAC semantic presentation  Show TPTP formulae Show IDV graph for whole article:: Showing IDV graph ... (Click the Palm Trees again to close it)

definition
let AS be AffinSpace;
attr AS is Fanoian means :Def1: :: TRANSLAC:def 1
for a, b, c, d being Element of AS st a,b // c,d & a,c // b,d & a,d // b,c holds
LIN a,b,c;
end;

:: deftheorem Def1 defines Fanoian TRANSLAC:def 1 :
for AS being AffinSpace holds
( AS is Fanoian iff for a, b, c, d being Element of AS st a,b // c,d & a,c // b,d & a,d // b,c holds
LIN a,b,c );

notation
let AS be AffinSpace;
synonym AS satisfies_Fano for Fanoian AS;
end;

Lm1: for AS being AffinSpace
for a, b, c, p being Element of AS st LIN a,b,c & a <> b & a <> c & b <> c & not LIN a,b,p holds
ex x being Element of AS st
( LIN p,a,x & p <> x & a <> x )
proof end;

Lm2: for AS being AffinSpace
for a, b, c, p, q being Element of AS st LIN a,b,c & a <> b & a <> c & b <> c & not LIN a,b,p & LIN a,b,q holds
ex x being Element of AS st
( LIN p,q,x & p <> x & q <> x )
proof end;

Lm3: for AS being AffinSpace
for a, b, c, p, q being Element of AS st LIN a,b,c & a <> b & a <> c & b <> c & not LIN a,b,p & p <> q & p,q // a,b holds
ex x being Element of AS st
( LIN p,q,x & p <> x & q <> x )
proof end;

theorem :: TRANSLAC:1  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
canceled;

theorem Th2: :: TRANSLAC:2  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for AS being AffinSpace st ex a, b, c being Element of AS st
( LIN a,b,c & a <> b & a <> c & b <> c ) holds
for p, q being Element of AS st p <> q holds
ex r being Element of AS st
( LIN p,q,r & p <> r & q <> r )
proof end;

theorem :: TRANSLAC:3  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
canceled;

theorem Th4: :: TRANSLAC:4  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for AFP being AffinPlane
for a, b, c, d being Element of AFP st AFP satisfies_Fano & a,b // c,d & a,c // b,d & not LIN a,b,c holds
ex p being Element of AFP st
( LIN b,c,p & LIN a,d,p )
proof end;

Lm4: for AFP being AffinPlane
for a, b, x, y being Element of AFP st not LIN a,b,x & a,b // x,y & x <> y holds
( not LIN x,y,a & not LIN b,a,y & not LIN y,x,b )
proof end;

Lm5: for AFP being AffinPlane
for a, b, x, y being Element of AFP st not LIN a,b,x & a,b // x,y & a,x // b,y holds
( not LIN x,y,a & not LIN b,a,y & not LIN y,x,b )
proof end;

theorem Th5: :: TRANSLAC:5  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for AFP being AffinPlane
for a, x, y being Element of AFP
for f being Permutation of the carrier of AFP st f is_Tr & not LIN a,f . a,x & a,f . a // x,y & a,x // f . a,y holds
y = f . x
proof end;

theorem Th6: :: TRANSLAC:6  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for AFP being AffinPlane holds
( AFP satisfies_des iff for a, a', b, c, b', c' being Element of AFP st not LIN a,a',b & not LIN a,a',c & a,a' // b,b' & a,a' // c,c' & a,b // a',b' & a,c // a',c' holds
b,c // b',c' )
proof end;

theorem Th7: :: TRANSLAC:7  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for AFP being AffinPlane
for a being Element of AFP ex f being Permutation of the carrier of AFP st
( f is_Tr & f . a = a )
proof end;

Lm6: for AFP being AffinPlane
for a, b, x being Element of AFP st a <> b holds
ex y being Element of AFP st
( ( not LIN a,b,x & a,b // x,y & a,x // b,y ) or ( LIN a,b,x & ex p, q being Element of AFP st
( not LIN a,b,p & a,b // p,q & a,p // b,q & p,q // x,y & p,x // q,y ) ) )
proof end;

Lm7: for AFP being AffinPlane
for a, b, y being Element of AFP st a <> b holds
ex x being Element of AFP st
( ( not LIN a,b,x & a,b // x,y & a,x // b,y ) or ( LIN a,b,x & ex p, q being Element of AFP st
( not LIN a,b,p & a,b // p,q & a,p // b,q & p,q // x,y & p,x // q,y ) ) )
proof end;

Lm8: for AFP being AffinPlane
for a, b, x, p, q, p', q', y, y' being Element of AFP st AFP satisfies_des & a <> b & LIN a,b,x & a,b // p,q & a,b // p',q' & a,p // b,q & a,p' // b,q' & p,q // x,y & p',q' // x,y' & p,x // q,y & p',x // q',y' & not LIN a,b,p & not LIN a,b,p' & not LIN p,q,p' holds
y = y'
proof end;

theorem Th8: :: TRANSLAC:8  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for AFP being AffinPlane
for a, b, p, q being Element of AFP st ( for p, q, r being Element of AFP st p <> q & LIN p,q,r & not r = p holds
r = q ) & a,b // p,q & a,p // b,q & not LIN a,b,p holds
a,q // b,p
proof end;

Lm9: for AFP being AffinPlane
for a, b, x, p, q, p', q', y, y' being Element of AFP st AFP satisfies_des & a <> b & LIN a,b,x & a,b // p,q & a,b // p',q' & a,p // b,q & a,p' // b,q' & p,q // x,y & p',q' // x,y' & p,x // q,y & p',x // q',y' & not LIN a,b,p & not LIN a,b,p' holds
y = y'
proof end;

Lm10: for AFP being AffinPlane
for a, b, x, p, q, y being Element of AFP st a <> b & LIN a,b,x & a,b // p,q & a,p // b,q & p,q // x,y & not LIN a,b,p holds
( p <> q & LIN a,b,y )
proof end;

Lm11: for AFP being AffinPlane
for a, b, x, p, q, p', q', y, x' being Element of AFP st AFP satisfies_des & a <> b & LIN a,b,x & a,b // p,q & a,b // p',q' & a,p // b,q & a,p' // b,q' & p,q // x,y & p,x // q,y & p',q' // x',y & p',x' // q',y & not LIN a,b,p & not LIN a,b,p' holds
x = x'
proof end;

Lm12: for AFP being AffinPlane
for a, b being Element of AFP st AFP satisfies_des & a <> b holds
ex f being Permutation of the carrier of AFP st
( f is_Tr & f . a = b )
proof end;

theorem Th9: :: TRANSLAC:9  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for AFP being AffinPlane
for a, b being Element of AFP st AFP satisfies_des holds
ex f being Permutation of the carrier of AFP st
( f is_Tr & f . a = b )
proof end;

theorem :: TRANSLAC:10  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for AFP being AffinPlane st ( for a, b being Element of AFP ex f being Permutation of the carrier of AFP st
( f is_Tr & f . a = b ) ) holds
AFP satisfies_des
proof end;

theorem Th11: :: TRANSLAC:11  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for AFP being AffinPlane
for a being Element of AFP
for f, g being Permutation of the carrier of AFP st f is_Tr & g is_Tr & not LIN a,f . a,g . a holds
f * g = g * f
proof end;

theorem Th12: :: TRANSLAC:12  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for AFP being AffinPlane
for f, g being Permutation of the carrier of AFP st AFP satisfies_des & f is_Tr & g is_Tr holds
f * g = g * f
proof end;

theorem Th13: :: TRANSLAC:13  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for AFP being AffinPlane
for p being Element of AFP
for f, g being Permutation of the carrier of AFP st f is_Tr & g is_Tr & p,f . p // p,g . p holds
p,f . p // p,(f * g) . p
proof end;

theorem :: TRANSLAC:14  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for AFP being AffinPlane
for f being Permutation of the carrier of AFP st AFP satisfies_Fano & AFP satisfies_des & f is_Tr holds
ex g being Permutation of the carrier of AFP st
( g is_Tr & g * g = f )
proof end;

theorem Th15: :: TRANSLAC:15  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for AFP being AffinPlane
for f being Permutation of the carrier of AFP st AFP satisfies_Fano & f is_Tr & f * f = id the carrier of AFP holds
f = id the carrier of AFP
proof end;

theorem :: TRANSLAC:16  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for AFP being AffinPlane
for g, f1, f2 being Permutation of the carrier of AFP st AFP satisfies_des & AFP satisfies_Fano & g is_Tr & f1 is_Tr & f2 is_Tr & g = f1 * f1 & g = f2 * f2 holds
f1 = f2
proof end;