:: TRANSLAC semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
definition
let AS be
AffinSpace;
attr AS is
Fanoian means :
Def1:
:: TRANSLAC:def 1
for
a,
b,
c,
d being
Element of
AS st
a,
b // c,
d &
a,
c // b,
d &
a,
d // b,
c holds
LIN a,
b,
c;
end;
:: deftheorem Def1 defines Fanoian TRANSLAC:def 1 :
for
AS being
AffinSpace holds
(
AS is
Fanoian iff for
a,
b,
c,
d being
Element of
AS st
a,
b // c,
d &
a,
c // b,
d &
a,
d // b,
c holds
LIN a,
b,
c );
Lm1:
for AS being AffinSpace
for a, b, c, p being Element of AS st LIN a,b,c & a <> b & a <> c & b <> c & not LIN a,b,p holds
ex x being Element of AS st
( LIN p,a,x & p <> x & a <> x )
Lm2:
for AS being AffinSpace
for a, b, c, p, q being Element of AS st LIN a,b,c & a <> b & a <> c & b <> c & not LIN a,b,p & LIN a,b,q holds
ex x being Element of AS st
( LIN p,q,x & p <> x & q <> x )
Lm3:
for AS being AffinSpace
for a, b, c, p, q being Element of AS st LIN a,b,c & a <> b & a <> c & b <> c & not LIN a,b,p & p <> q & p,q // a,b holds
ex x being Element of AS st
( LIN p,q,x & p <> x & q <> x )
theorem :: TRANSLAC:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th2: :: TRANSLAC:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: TRANSLAC:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th4: :: TRANSLAC:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
AFP being
AffinPlane for
a,
b,
c,
d being
Element of
AFP st
AFP satisfies_Fano &
a,
b // c,
d &
a,
c // b,
d & not
LIN a,
b,
c holds
ex
p being
Element of
AFP st
(
LIN b,
c,
p &
LIN a,
d,
p )
Lm4:
for AFP being AffinPlane
for a, b, x, y being Element of AFP st not LIN a,b,x & a,b // x,y & x <> y holds
( not LIN x,y,a & not LIN b,a,y & not LIN y,x,b )
Lm5:
for AFP being AffinPlane
for a, b, x, y being Element of AFP st not LIN a,b,x & a,b // x,y & a,x // b,y holds
( not LIN x,y,a & not LIN b,a,y & not LIN y,x,b )
theorem Th5: :: TRANSLAC:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th6: :: TRANSLAC:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
AFP being
AffinPlane holds
(
AFP satisfies_des iff for
a,
a',
b,
c,
b',
c' being
Element of
AFP st not
LIN a,
a',
b & not
LIN a,
a',
c &
a,
a' // b,
b' &
a,
a' // c,
c' &
a,
b // a',
b' &
a,
c // a',
c' holds
b,
c // b',
c' )
theorem Th7: :: TRANSLAC:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm6:
for AFP being AffinPlane
for a, b, x being Element of AFP st a <> b holds
ex y being Element of AFP st
( ( not LIN a,b,x & a,b // x,y & a,x // b,y ) or ( LIN a,b,x & ex p, q being Element of AFP st
( not LIN a,b,p & a,b // p,q & a,p // b,q & p,q // x,y & p,x // q,y ) ) )
Lm7:
for AFP being AffinPlane
for a, b, y being Element of AFP st a <> b holds
ex x being Element of AFP st
( ( not LIN a,b,x & a,b // x,y & a,x // b,y ) or ( LIN a,b,x & ex p, q being Element of AFP st
( not LIN a,b,p & a,b // p,q & a,p // b,q & p,q // x,y & p,x // q,y ) ) )
Lm8:
for AFP being AffinPlane
for a, b, x, p, q, p', q', y, y' being Element of AFP st AFP satisfies_des & a <> b & LIN a,b,x & a,b // p,q & a,b // p',q' & a,p // b,q & a,p' // b,q' & p,q // x,y & p',q' // x,y' & p,x // q,y & p',x // q',y' & not LIN a,b,p & not LIN a,b,p' & not LIN p,q,p' holds
y = y'
theorem Th8: :: TRANSLAC:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
AFP being
AffinPlane for
a,
b,
p,
q being
Element of
AFP st ( for
p,
q,
r being
Element of
AFP st
p <> q &
LIN p,
q,
r & not
r = p holds
r = q ) &
a,
b // p,
q &
a,
p // b,
q & not
LIN a,
b,
p holds
a,
q // b,
p
Lm9:
for AFP being AffinPlane
for a, b, x, p, q, p', q', y, y' being Element of AFP st AFP satisfies_des & a <> b & LIN a,b,x & a,b // p,q & a,b // p',q' & a,p // b,q & a,p' // b,q' & p,q // x,y & p',q' // x,y' & p,x // q,y & p',x // q',y' & not LIN a,b,p & not LIN a,b,p' holds
y = y'
Lm10:
for AFP being AffinPlane
for a, b, x, p, q, y being Element of AFP st a <> b & LIN a,b,x & a,b // p,q & a,p // b,q & p,q // x,y & not LIN a,b,p holds
( p <> q & LIN a,b,y )
Lm11:
for AFP being AffinPlane
for a, b, x, p, q, p', q', y, x' being Element of AFP st AFP satisfies_des & a <> b & LIN a,b,x & a,b // p,q & a,b // p',q' & a,p // b,q & a,p' // b,q' & p,q // x,y & p,x // q,y & p',q' // x',y & p',x' // q',y & not LIN a,b,p & not LIN a,b,p' holds
x = x'
Lm12:
for AFP being AffinPlane
for a, b being Element of AFP st AFP satisfies_des & a <> b holds
ex f being Permutation of the carrier of AFP st
( f is_Tr & f . a = b )
theorem Th9: :: TRANSLAC:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: TRANSLAC:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th11: :: TRANSLAC:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th12: :: TRANSLAC:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th13: :: TRANSLAC:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: TRANSLAC:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th15: :: TRANSLAC:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: TRANSLAC:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)