:: AFF_2 semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
definition
let AP be
AffinPlane;
attr AP is
satisfying_PPAP means :
Def1:
:: AFF_2:def 1
for
M,
N being
Subset of
AP for
a,
b,
c,
a',
b',
c' being
Element of
AP st
M is_line &
N is_line &
a in M &
b in M &
c in M &
a' in N &
b' in N &
c' in N &
a,
b' // b,
a' &
b,
c' // c,
b' holds
a,
c' // c,
a';
end;
:: deftheorem Def1 defines satisfying_PPAP AFF_2:def 1 :
for
AP being
AffinPlane holds
(
AP is
satisfying_PPAP iff for
M,
N being
Subset of
AP for
a,
b,
c,
a',
b',
c' being
Element of
AP st
M is_line &
N is_line &
a in M &
b in M &
c in M &
a' in N &
b' in N &
c' in N &
a,
b' // b,
a' &
b,
c' // c,
b' holds
a,
c' // c,
a' );
definition
let AP be
AffinSpace;
attr AP is
Pappian means :
Def2:
:: AFF_2:def 2
for
M,
N being
Subset of
AP for
o,
a,
b,
c,
a',
b',
c' being
Element of
AP st
M is_line &
N is_line &
M <> N &
o in M &
o in N &
o <> a &
o <> a' &
o <> b &
o <> b' &
o <> c &
o <> c' &
a in M &
b in M &
c in M &
a' in N &
b' in N &
c' in N &
a,
b' // b,
a' &
b,
c' // c,
b' holds
a,
c' // c,
a';
end;
:: deftheorem Def2 defines Pappian AFF_2:def 2 :
for
AP being
AffinSpace holds
(
AP is
Pappian iff for
M,
N being
Subset of
AP for
o,
a,
b,
c,
a',
b',
c' being
Element of
AP st
M is_line &
N is_line &
M <> N &
o in M &
o in N &
o <> a &
o <> a' &
o <> b &
o <> b' &
o <> c &
o <> c' &
a in M &
b in M &
c in M &
a' in N &
b' in N &
c' in N &
a,
b' // b,
a' &
b,
c' // c,
b' holds
a,
c' // c,
a' );
definition
let AP be
AffinPlane;
attr AP is
satisfying_PAP_1 means :
Def3:
:: AFF_2:def 3
for
M,
N being
Subset of
AP for
o,
a,
b,
c,
a',
b',
c' being
Element of
AP st
M is_line &
N is_line &
M <> N &
o in M &
o in N &
o <> a &
o <> a' &
o <> b &
o <> b' &
o <> c &
o <> c' &
a in M &
b in M &
c in M &
b' in N &
c' in N &
a,
b' // b,
a' &
b,
c' // c,
b' &
a,
c' // c,
a' &
b <> c holds
a' in N;
end;
:: deftheorem Def3 defines satisfying_PAP_1 AFF_2:def 3 :
for
AP being
AffinPlane holds
(
AP is
satisfying_PAP_1 iff for
M,
N being
Subset of
AP for
o,
a,
b,
c,
a',
b',
c' being
Element of
AP st
M is_line &
N is_line &
M <> N &
o in M &
o in N &
o <> a &
o <> a' &
o <> b &
o <> b' &
o <> c &
o <> c' &
a in M &
b in M &
c in M &
b' in N &
c' in N &
a,
b' // b,
a' &
b,
c' // c,
b' &
a,
c' // c,
a' &
b <> c holds
a' in N );
definition
let AP be
AffinSpace;
attr AP is
Desarguesian means :
Def4:
:: AFF_2:def 4
for
A,
P,
C being
Subset of
AP for
o,
a,
b,
c,
a',
b',
c' being
Element of
AP st
o in A &
o in P &
o in C &
o <> a &
o <> b &
o <> c &
a in A &
a' in A &
b in P &
b' in P &
c in C &
c' in C &
A is_line &
P is_line &
C is_line &
A <> P &
A <> C &
a,
b // a',
b' &
a,
c // a',
c' holds
b,
c // b',
c';
end;
:: deftheorem Def4 defines Desarguesian AFF_2:def 4 :
for
AP being
AffinSpace holds
(
AP is
Desarguesian iff for
A,
P,
C being
Subset of
AP for
o,
a,
b,
c,
a',
b',
c' being
Element of
AP st
o in A &
o in P &
o in C &
o <> a &
o <> b &
o <> c &
a in A &
a' in A &
b in P &
b' in P &
c in C &
c' in C &
A is_line &
P is_line &
C is_line &
A <> P &
A <> C &
a,
b // a',
b' &
a,
c // a',
c' holds
b,
c // b',
c' );
definition
let AP be
AffinPlane;
attr AP is
satisfying_DES_1 means :
Def5:
:: AFF_2:def 5
for
A,
P,
C being
Subset of
AP for
o,
a,
b,
c,
a',
b',
c' being
Element of
AP st
o in A &
o in P &
o <> a &
o <> b &
o <> c &
a in A &
a' in A &
b in P &
b' in P &
c in C &
c' in C &
A is_line &
P is_line &
C is_line &
A <> P &
A <> C &
a,
b // a',
b' &
a,
c // a',
c' &
b,
c // b',
c' & not
LIN a,
b,
c &
c <> c' holds
o in C;
end;
:: deftheorem Def5 defines satisfying_DES_1 AFF_2:def 5 :
for
AP being
AffinPlane holds
(
AP is
satisfying_DES_1 iff for
A,
P,
C being
Subset of
AP for
o,
a,
b,
c,
a',
b',
c' being
Element of
AP st
o in A &
o in P &
o <> a &
o <> b &
o <> c &
a in A &
a' in A &
b in P &
b' in P &
c in C &
c' in C &
A is_line &
P is_line &
C is_line &
A <> P &
A <> C &
a,
b // a',
b' &
a,
c // a',
c' &
b,
c // b',
c' & not
LIN a,
b,
c &
c <> c' holds
o in C );
definition
let AP be
AffinPlane;
attr AP is
satisfying_DES_2 means :: AFF_2:def 6
for
A,
P,
C being
Subset of
AP for
o,
a,
b,
c,
a',
b',
c' being
Element of
AP st
o in A &
o in P &
o in C &
o <> a &
o <> b &
o <> c &
a in A &
a' in A &
b in P &
b' in P &
c in C &
A is_line &
P is_line &
C is_line &
A <> P &
A <> C &
a,
b // a',
b' &
a,
c // a',
c' &
b,
c // b',
c' holds
c' in C;
end;
:: deftheorem defines satisfying_DES_2 AFF_2:def 6 :
for
AP being
AffinPlane holds
(
AP is
satisfying_DES_2 iff for
A,
P,
C being
Subset of
AP for
o,
a,
b,
c,
a',
b',
c' being
Element of
AP st
o in A &
o in P &
o in C &
o <> a &
o <> b &
o <> c &
a in A &
a' in A &
b in P &
b' in P &
c in C &
A is_line &
P is_line &
C is_line &
A <> P &
A <> C &
a,
b // a',
b' &
a,
c // a',
c' &
b,
c // b',
c' holds
c' in C );
definition
let AP be
AffinSpace;
attr AP is
Moufangian means :
Def7:
:: AFF_2:def 7
for
K being
Subset of
AP for
o,
a,
b,
c,
a',
b',
c' being
Element of
AP st
K is_line &
o in K &
c in K &
c' in K & not
a in K &
o <> c &
a <> b &
LIN o,
a,
a' &
LIN o,
b,
b' &
a,
b // a',
b' &
a,
c // a',
c' &
a,
b // K holds
b,
c // b',
c';
end;
:: deftheorem Def7 defines Moufangian AFF_2:def 7 :
for
AP being
AffinSpace holds
(
AP is
Moufangian iff for
K being
Subset of
AP for
o,
a,
b,
c,
a',
b',
c' being
Element of
AP st
K is_line &
o in K &
c in K &
c' in K & not
a in K &
o <> c &
a <> b &
LIN o,
a,
a' &
LIN o,
b,
b' &
a,
b // a',
b' &
a,
c // a',
c' &
a,
b // K holds
b,
c // b',
c' );
definition
let AP be
AffinPlane;
attr AP is
satisfying_TDES_1 means :
Def8:
:: AFF_2:def 8
for
K being
Subset of
AP for
o,
a,
b,
c,
a',
b',
c' being
Element of
AP st
K is_line &
o in K &
c in K &
c' in K & not
a in K &
o <> c &
a <> b &
LIN o,
a,
a' &
a,
b // a',
b' &
b,
c // b',
c' &
a,
c // a',
c' &
a,
b // K holds
LIN o,
b,
b';
end;
:: deftheorem Def8 defines satisfying_TDES_1 AFF_2:def 8 :
for
AP being
AffinPlane holds
(
AP is
satisfying_TDES_1 iff for
K being
Subset of
AP for
o,
a,
b,
c,
a',
b',
c' being
Element of
AP st
K is_line &
o in K &
c in K &
c' in K & not
a in K &
o <> c &
a <> b &
LIN o,
a,
a' &
a,
b // a',
b' &
b,
c // b',
c' &
a,
c // a',
c' &
a,
b // K holds
LIN o,
b,
b' );
definition
let AP be
AffinPlane;
attr AP is
satisfying_TDES_2 means :
Def9:
:: AFF_2:def 9
for
K being
Subset of
AP for
o,
a,
b,
c,
a',
b',
c' being
Element of
AP st
K is_line &
o in K &
c in K &
c' in K & not
a in K &
o <> c &
a <> b &
LIN o,
a,
a' &
LIN o,
b,
b' &
b,
c // b',
c' &
a,
c // a',
c' &
a,
b // K holds
a,
b // a',
b';
end;
:: deftheorem Def9 defines satisfying_TDES_2 AFF_2:def 9 :
for
AP being
AffinPlane holds
(
AP is
satisfying_TDES_2 iff for
K being
Subset of
AP for
o,
a,
b,
c,
a',
b',
c' being
Element of
AP st
K is_line &
o in K &
c in K &
c' in K & not
a in K &
o <> c &
a <> b &
LIN o,
a,
a' &
LIN o,
b,
b' &
b,
c // b',
c' &
a,
c // a',
c' &
a,
b // K holds
a,
b // a',
b' );
definition
let AP be
AffinPlane;
attr AP is
satisfying_TDES_3 means :
Def10:
:: AFF_2:def 10
for
K being
Subset of
AP for
o,
a,
b,
c,
a',
b',
c' being
Element of
AP st
K is_line &
o in K &
c in K & not
a in K &
o <> c &
a <> b &
LIN o,
a,
a' &
LIN o,
b,
b' &
a,
b // a',
b' &
a,
c // a',
c' &
b,
c // b',
c' &
a,
b // K holds
c' in K;
end;
:: deftheorem Def10 defines satisfying_TDES_3 AFF_2:def 10 :
for
AP being
AffinPlane holds
(
AP is
satisfying_TDES_3 iff for
K being
Subset of
AP for
o,
a,
b,
c,
a',
b',
c' being
Element of
AP st
K is_line &
o in K &
c in K & not
a in K &
o <> c &
a <> b &
LIN o,
a,
a' &
LIN o,
b,
b' &
a,
b // a',
b' &
a,
c // a',
c' &
b,
c // b',
c' &
a,
b // K holds
c' in K );
definition
let AP be
AffinSpace;
attr AP is
translational means :
Def11:
:: AFF_2:def 11
for
A,
P,
C being
Subset of
AP for
a,
b,
c,
a',
b',
c' being
Element of
AP st
A // P &
A // C &
a in A &
a' in A &
b in P &
b' in P &
c in C &
c' in C &
A is_line &
P is_line &
C is_line &
A <> P &
A <> C &
a,
b // a',
b' &
a,
c // a',
c' holds
b,
c // b',
c';
end;
:: deftheorem Def11 defines translational AFF_2:def 11 :
for
AP being
AffinSpace holds
(
AP is
translational iff for
A,
P,
C being
Subset of
AP for
a,
b,
c,
a',
b',
c' being
Element of
AP st
A // P &
A // C &
a in A &
a' in A &
b in P &
b' in P &
c in C &
c' in C &
A is_line &
P is_line &
C is_line &
A <> P &
A <> C &
a,
b // a',
b' &
a,
c // a',
c' holds
b,
c // b',
c' );
definition
let AP be
AffinPlane;
attr AP is
satisfying_des_1 means :
Def12:
:: AFF_2:def 12
for
A,
P,
C being
Subset of
AP for
a,
b,
c,
a',
b',
c' being
Element of
AP st
A // P &
a in A &
a' in A &
b in P &
b' in P &
c in C &
c' in C &
A is_line &
P is_line &
C is_line &
A <> P &
A <> C &
a,
b // a',
b' &
a,
c // a',
c' &
b,
c // b',
c' & not
LIN a,
b,
c &
c <> c' holds
A // C;
end;
:: deftheorem Def12 defines satisfying_des_1 AFF_2:def 12 :
for
AP being
AffinPlane holds
(
AP is
satisfying_des_1 iff for
A,
P,
C being
Subset of
AP for
a,
b,
c,
a',
b',
c' being
Element of
AP st
A // P &
a in A &
a' in A &
b in P &
b' in P &
c in C &
c' in C &
A is_line &
P is_line &
C is_line &
A <> P &
A <> C &
a,
b // a',
b' &
a,
c // a',
c' &
b,
c // b',
c' & not
LIN a,
b,
c &
c <> c' holds
A // C );
definition
let AP be
AffinSpace;
attr AP is
satisfying_pap means :
Def13:
:: AFF_2:def 13
for
M,
N being
Subset of
AP for
a,
b,
c,
a',
b',
c' being
Element of
AP st
M is_line &
N is_line &
a in M &
b in M &
c in M &
M // N &
M <> N &
a' in N &
b' in N &
c' in N &
a,
b' // b,
a' &
b,
c' // c,
b' holds
a,
c' // c,
a';
end;
:: deftheorem Def13 defines satisfying_pap AFF_2:def 13 :
for
AP being
AffinSpace holds
(
AP is
satisfying_pap iff for
M,
N being
Subset of
AP for
a,
b,
c,
a',
b',
c' being
Element of
AP st
M is_line &
N is_line &
a in M &
b in M &
c in M &
M // N &
M <> N &
a' in N &
b' in N &
c' in N &
a,
b' // b,
a' &
b,
c' // c,
b' holds
a,
c' // c,
a' );
definition
let AP be
AffinPlane;
attr AP is
satisfying_pap_1 means :
Def14:
:: AFF_2:def 14
for
M,
N being
Subset of
AP for
a,
b,
c,
a',
b',
c' being
Element of
AP st
M is_line &
N is_line &
a in M &
b in M &
c in M &
M // N &
M <> N &
a' in N &
b' in N &
a,
b' // b,
a' &
b,
c' // c,
b' &
a,
c' // c,
a' &
a' <> b' holds
c' in N;
end;
:: deftheorem Def14 defines satisfying_pap_1 AFF_2:def 14 :
for
AP being
AffinPlane holds
(
AP is
satisfying_pap_1 iff for
M,
N being
Subset of
AP for
a,
b,
c,
a',
b',
c' being
Element of
AP st
M is_line &
N is_line &
a in M &
b in M &
c in M &
M // N &
M <> N &
a' in N &
b' in N &
a,
b' // b,
a' &
b,
c' // c,
b' &
a,
c' // c,
a' &
a' <> b' holds
c' in N );
theorem :: AFF_2:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: AFF_2:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: AFF_2:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: AFF_2:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: AFF_2:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: AFF_2:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: AFF_2:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: AFF_2:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: AFF_2:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: AFF_2:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: AFF_2:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: AFF_2:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: AFF_2:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: AFF_2:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: AFF_2:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: AFF_2:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th17: :: AFF_2:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: AFF_2:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: AFF_2:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: AFF_2:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th21: :: AFF_2:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: AFF_2:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th23: :: AFF_2:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th24: :: AFF_2:24 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: AFF_2:25 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: AFF_2:26 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th27: :: AFF_2:27 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: AFF_2:28 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: AFF_2:29 :: Showing IDV graph ... (Click the Palm Tree again to close it)