:: GEOMTRAP semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
:: deftheorem Def1 defines '||' GEOMTRAP:def 1 :
theorem Th1: :: GEOMTRAP:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th2: :: GEOMTRAP:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
u,
v,
u1,
v1 being
VECTOR of
V for
p,
q,
p1,
q1 being
Element of
(OASpace V) st
p = u &
q = v &
p1 = u1 &
q1 = v1 holds
(
p,
q // p1,
q1 iff
u,
v // u1,
v1 )
theorem Th3: :: GEOMTRAP:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y,
u,
v,
u1,
v1 being
VECTOR of
V st
Gen w,
y holds
for
p,
q,
p1,
q1 being
Element of the
carrier of
(Lambda (OASpace V)) st
p = u &
q = v &
p1 = u1 &
q1 = v1 holds
(
p,
q // p1,
q1 iff
u,
v '||' u1,
v1 )
theorem Th4: :: GEOMTRAP:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y,
u,
v,
u1,
v1 being
VECTOR of
V for
p,
q,
p1,
q1 being
Element of the
carrier of
(AMSpace V,w,y) st
p = u &
q = v &
p1 = u1 &
q1 = v1 holds
(
p,
q // p1,
q1 iff
u,
v '||' u1,
v1 )
:: deftheorem Def2 defines # GEOMTRAP:def 2 :
theorem :: GEOMTRAP:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: GEOMTRAP:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th7: :: GEOMTRAP:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th8: :: GEOMTRAP:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th9: :: GEOMTRAP:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th10: :: GEOMTRAP:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: GEOMTRAP:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th12: :: GEOMTRAP:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th13: :: GEOMTRAP:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th14: :: GEOMTRAP:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm1:
for V being RealLinearSpace
for u, y, v being VECTOR of V st u,y // y,v holds
( v,y // y,u & u,y // u,v & y,v // u,v )
theorem Th15: :: GEOMTRAP:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th16: :: GEOMTRAP:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm2:
for V being RealLinearSpace
for u, v, u1, v1 being VECTOR of V st u,v // u1,v1 holds
u,v '||' u # v1,v # u1
Lm3:
for V being RealLinearSpace
for u1, u2, v1, v2 being VECTOR of V st u1 # u2 = v1 # v2 holds
v1 - u1 = - (v2 - u2)
Lm4:
for V being RealLinearSpace
for w, y, u, v, u1, v1 being VECTOR of V st Gen w,y & u,v,u1,v1 are_Ort_wrt w,y holds
( u1,v1,u,v are_Ort_wrt w,y & u,v,v1,u1 are_Ort_wrt w,y )
Lm5:
for V being RealLinearSpace
for w, y, u, v, u1 being VECTOR of V st Gen w,y holds
u,v,u1,u1 are_Ort_wrt w,y
Lm6:
for V being RealLinearSpace
for w, y, u, v, w1, v1, v2 being VECTOR of V st Gen w,y & u,v,w1,v1 are_Ort_wrt w,y & u,v,w1,v2 are_Ort_wrt w,y holds
u,v,v1,v2 are_Ort_wrt w,y
Lm7:
for V being RealLinearSpace
for w, y, u, v being VECTOR of V st Gen w,y & u,v,u,v are_Ort_wrt w,y holds
u = v
Lm8:
for V being RealLinearSpace
for w, y, u, v, u1 being VECTOR of V st Gen w,y holds
( u,v,u1,u1 are_Ort_wrt w,y & u1,u1,u,v are_Ort_wrt w,y )
Lm9:
for V being RealLinearSpace
for w, y, u1, v1, u, v, u2, v2 being VECTOR of V st Gen w,y & ( u1,v1 '||' u,v or u,v '||' u1,v1 ) & ( u2,v2,u,v are_Ort_wrt w,y or u,v,u2,v2 are_Ort_wrt w,y ) & u <> v holds
( u1,v1,u2,v2 are_Ort_wrt w,y & u2,v2,u1,v1 are_Ort_wrt w,y )
definition
let V be
RealLinearSpace;
let w,
y,
u,
u1,
v,
v1 be
VECTOR of
V;
pred u,
u1,
v,
v1 are_DTr_wrt w,
y means :
Def3:
:: GEOMTRAP:def 3
(
u,
u1 // v,
v1 &
u,
u1,
u # u1,
v # v1 are_Ort_wrt w,
y &
v,
v1,
u # u1,
v # v1 are_Ort_wrt w,
y );
end;
:: deftheorem Def3 defines are_DTr_wrt GEOMTRAP:def 3 :
for
V being
RealLinearSpace for
w,
y,
u,
u1,
v,
v1 being
VECTOR of
V holds
(
u,
u1,
v,
v1 are_DTr_wrt w,
y iff (
u,
u1 // v,
v1 &
u,
u1,
u # u1,
v # v1 are_Ort_wrt w,
y &
v,
v1,
u # u1,
v # v1 are_Ort_wrt w,
y ) );
theorem :: GEOMTRAP:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: GEOMTRAP:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th19: :: GEOMTRAP:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th20: :: GEOMTRAP:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th21: :: GEOMTRAP:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y,
u,
v,
u1,
v1,
u2,
v2 being
VECTOR of
V st
Gen w,
y &
u,
v,
u1,
v1 are_DTr_wrt w,
y &
u,
v,
u2,
v2 are_DTr_wrt w,
y &
u <> v holds
u1,
v1,
u2,
v2 are_DTr_wrt w,
y
theorem Th22: :: GEOMTRAP:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y,
u,
v,
u1 being
VECTOR of
V st
Gen w,
y holds
ex
t being
VECTOR of
V st
(
u,
v,
u1,
t are_DTr_wrt w,
y or
u,
v,
t,
u1 are_DTr_wrt w,
y )
theorem Th23: :: GEOMTRAP:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y,
u,
v,
u1,
v1 being
VECTOR of
V st
Gen w,
y &
u,
v,
u1,
v1 are_DTr_wrt w,
y holds
u1,
v1,
u,
v are_DTr_wrt w,
y
theorem Th24: :: GEOMTRAP:24 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y,
u,
v,
u1,
v1 being
VECTOR of
V st
Gen w,
y &
u,
v,
u1,
v1 are_DTr_wrt w,
y holds
v,
u,
v1,
u1 are_DTr_wrt w,
y
Lm10:
for V being RealLinearSpace
for w, y, u, v, u1, v1, u2, v2 being VECTOR of V st Gen w,y & u <> v & u,v '||' u,u1 & u,v '||' u,v1 & u,v '||' u,u2 & u,v '||' u,v2 holds
u1,v1 '||' u2,v2
theorem Th25: :: GEOMTRAP:25 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th26: :: GEOMTRAP:26 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y,
u,
v,
u1,
v1,
v2 being
VECTOR of
V st
Gen w,
y &
u,
v,
u1,
v1 are_DTr_wrt w,
y &
u,
v,
u1,
v2 are_DTr_wrt w,
y & not
u = v holds
v1 = v2
theorem Th27: :: GEOMTRAP:27 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y,
u,
u1,
v,
v1,
v2 being
VECTOR of
V st
Gen w,
y &
u <> u1 &
u,
u1,
v,
v1 are_DTr_wrt w,
y & (
u,
u1,
v,
v2 are_DTr_wrt w,
y or
u,
u1,
v2,
v are_DTr_wrt w,
y ) holds
v1 = v2
theorem Th28: :: GEOMTRAP:28 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y,
u,
v,
u1,
v1 being
VECTOR of
V st
Gen w,
y &
u,
v,
u1,
v1 are_DTr_wrt w,
y holds
u,
v,
u # u1,
v # v1 are_DTr_wrt w,
y
theorem Th29: :: GEOMTRAP:29 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y,
u,
v,
u1,
v1 being
VECTOR of
V st
Gen w,
y &
u,
v,
u1,
v1 are_DTr_wrt w,
y & not
u,
v,
u # v1,
v # u1 are_DTr_wrt w,
y holds
u,
v,
v # u1,
u # v1 are_DTr_wrt w,
y
theorem Th30: :: GEOMTRAP:30 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y,
u,
u1,
u2,
v1,
v2,
t1,
t2,
w1,
w2 being
VECTOR of
V st
Gen w,
y &
u = u1 # t1 &
u = u2 # t2 &
u = v1 # w1 &
u = v2 # w2 &
u1,
u2,
v1,
v2 are_DTr_wrt w,
y holds
t1,
t2,
w1,
w2 are_DTr_wrt w,
y
Lm11:
for V being RealLinearSpace
for v1, w, y, v2 being VECTOR of V
for b1, b2, c1, c2 being Real st v1 = (b1 * w) + (b2 * y) & v2 = (c1 * w) + (c2 * y) holds
( v1 + v2 = ((b1 + c1) * w) + ((b2 + c2) * y) & v1 - v2 = ((b1 - c1) * w) + ((b2 - c2) * y) )
Lm12:
for V being RealLinearSpace
for v, w, y being VECTOR of V
for b1, b2, a being Real st v = (b1 * w) + (b2 * y) holds
a * v = ((a * b1) * w) + ((a * b2) * y)
Lm13:
for V being RealLinearSpace
for w, y being VECTOR of V
for a1, a2, b1, b2 being Real st Gen w,y & (a1 * w) + (a2 * y) = (b1 * w) + (b2 * y) holds
( a1 = b1 & a2 = b2 )
:: deftheorem Def4 defines pr1 GEOMTRAP:def 4 :
:: deftheorem Def5 defines pr2 GEOMTRAP:def 5 :
Lm14:
for V being RealLinearSpace
for w, y, u being VECTOR of V st Gen w,y holds
u = ((pr1 w,y,u) * w) + ((pr2 w,y,u) * y)
Lm15:
for V being RealLinearSpace
for w, y, u being VECTOR of V
for a, b being Real st Gen w,y & u = (a * w) + (b * y) holds
( a = pr1 w,y,u & b = pr2 w,y,u )
Lm16:
for V being RealLinearSpace
for w, y, u, v being VECTOR of V
for a being Real st Gen w,y holds
( pr1 w,y,(u + v) = (pr1 w,y,u) + (pr1 w,y,v) & pr2 w,y,(u + v) = (pr2 w,y,u) + (pr2 w,y,v) & pr1 w,y,(u - v) = (pr1 w,y,u) - (pr1 w,y,v) & pr2 w,y,(u - v) = (pr2 w,y,u) - (pr2 w,y,v) & pr1 w,y,(a * u) = a * (pr1 w,y,u) & pr2 w,y,(a * u) = a * (pr2 w,y,u) )
Lm17:
for V being RealLinearSpace
for w, y, u, v being VECTOR of V st Gen w,y holds
( 2 * (pr1 w,y,(u # v)) = (pr1 w,y,u) + (pr1 w,y,v) & 2 * (pr2 w,y,(u # v)) = (pr2 w,y,u) + (pr2 w,y,v) )
Lm18:
for V being RealLinearSpace
for u, v being VECTOR of V holds (- u) + (- v) = - (u + v)
Lm19:
for V being RealLinearSpace
for u2, v, u1 being VECTOR of V
for a2, a1 being Real holds (u2 + (a2 * v)) - (u1 + (a1 * v)) = (u2 - u1) + ((a2 - a1) * v)
definition
let V be
RealLinearSpace;
let w,
y,
u,
v be
VECTOR of
V;
func PProJ w,
y,
u,
v -> Real equals :: GEOMTRAP:def 6
((pr1 w,y,u) * (pr1 w,y,v)) + ((pr2 w,y,u) * (pr2 w,y,v));
correctness
coherence
((pr1 w,y,u) * (pr1 w,y,v)) + ((pr2 w,y,u) * (pr2 w,y,v)) is Real;
;
end;
:: deftheorem defines PProJ GEOMTRAP:def 6 :
for
V being
RealLinearSpace for
w,
y,
u,
v being
VECTOR of
V holds
PProJ w,
y,
u,
v = ((pr1 w,y,u) * (pr1 w,y,v)) + ((pr2 w,y,u) * (pr2 w,y,v));
theorem :: GEOMTRAP:31 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th32: :: GEOMTRAP:32 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y being
VECTOR of
V st
Gen w,
y holds
for
u,
v,
v1 being
VECTOR of
V holds
(
PProJ w,
y,
u,
(v + v1) = (PProJ w,y,u,v) + (PProJ w,y,u,v1) &
PProJ w,
y,
u,
(v - v1) = (PProJ w,y,u,v) - (PProJ w,y,u,v1) &
PProJ w,
y,
(v - v1),
u = (PProJ w,y,v,u) - (PProJ w,y,v1,u) &
PProJ w,
y,
(v + v1),
u = (PProJ w,y,v,u) + (PProJ w,y,v1,u) )
theorem Th33: :: GEOMTRAP:33 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y being
VECTOR of
V st
Gen w,
y holds
for
u,
v being
VECTOR of
V for
a being
Real holds
(
PProJ w,
y,
(a * u),
v = a * (PProJ w,y,u,v) &
PProJ w,
y,
u,
(a * v) = a * (PProJ w,y,u,v) &
PProJ w,
y,
(a * u),
v = (PProJ w,y,u,v) * a &
PProJ w,
y,
u,
(a * v) = (PProJ w,y,u,v) * a )
theorem Th34: :: GEOMTRAP:34 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th35: :: GEOMTRAP:35 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y being
VECTOR of
V st
Gen w,
y holds
for
u,
v,
u1,
v1 being
VECTOR of
V holds
(
u,
v,
u1,
v1 are_Ort_wrt w,
y iff
PProJ w,
y,
(v - u),
(v1 - u1) = 0 )
theorem Th36: :: GEOMTRAP:36 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y being
VECTOR of
V st
Gen w,
y holds
for
u,
v,
v1 being
VECTOR of
V holds 2
* (PProJ w,y,u,(v # v1)) = (PProJ w,y,u,v) + (PProJ w,y,u,v1)
theorem Th37: :: GEOMTRAP:37 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th38: :: GEOMTRAP:38 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y being
VECTOR of
V st
Gen w,
y holds
for
p,
q,
u,
v,
v' being
VECTOR of
V for
A being
Real st
p,
q,
u,
v are_DTr_wrt w,
y &
p <> q &
A = ((PProJ w,y,(p - q),(p + q)) - (2 * (PProJ w,y,(p - q),u))) * ((PProJ w,y,(p - q),(p - q)) " ) &
v' = u + (A * (p - q)) holds
v = v'
Lm20:
for V being RealLinearSpace
for w, y being VECTOR of V st Gen w,y holds
for u, u', u1, u2, t1, t2 being VECTOR of V
for A1, A2 being Real st u <> u' & A1 = ((PProJ w,y,(u - u'),(u + u')) - (2 * (PProJ w,y,(u - u'),u1))) * ((PProJ w,y,(u - u'),(u - u')) " ) & A2 = ((PProJ w,y,(u - u'),(u + u')) - (2 * (PProJ w,y,(u - u'),u2))) * ((PProJ w,y,(u - u'),(u - u')) " ) & t1 = u1 + (A1 * (u - u')) & t2 = u2 + (A2 * (u - u')) holds
( t2 - t1 = (u2 - u1) + ((A2 - A1) * (u - u')) & A2 - A1 = ((- 2) * (PProJ w,y,(u - u'),(u2 - u1))) * ((PProJ w,y,(u - u'),(u - u')) " ) )
theorem Th39: :: GEOMTRAP:39 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y being
VECTOR of
V st
Gen w,
y holds
for
u,
u',
u1,
u2,
v1,
v2,
t1,
t2,
w1,
w2 being
VECTOR of
V st
u <> u' &
u,
u',
u1,
t1 are_DTr_wrt w,
y &
u,
u',
u2,
t2 are_DTr_wrt w,
y &
u,
u',
v1,
w1 are_DTr_wrt w,
y &
u,
u',
v2,
w2 are_DTr_wrt w,
y &
u1,
u2 // v1,
v2 holds
t1,
t2 // w1,
w2
theorem :: GEOMTRAP:40 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y being
VECTOR of
V st
Gen w,
y holds
for
u,
u',
u1,
u2,
v1,
t1,
t2,
w1 being
VECTOR of
V st
u <> u' &
u,
u',
u1,
t1 are_DTr_wrt w,
y &
u,
u',
u2,
t2 are_DTr_wrt w,
y &
u,
u',
v1,
w1 are_DTr_wrt w,
y &
v1 = u1 # u2 holds
w1 = t1 # t2
theorem Th41: :: GEOMTRAP:41 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y being
VECTOR of
V st
Gen w,
y holds
for
u,
u',
u1,
u2,
t1,
t2 being
VECTOR of
V st
u <> u' &
u,
u',
u1,
t1 are_DTr_wrt w,
y &
u,
u',
u2,
t2 are_DTr_wrt w,
y holds
u,
u',
u1 # u2,
t1 # t2 are_DTr_wrt w,
y
theorem Th42: :: GEOMTRAP:42 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y being
VECTOR of
V st
Gen w,
y holds
for
u,
u',
u1,
u2,
v1,
v2,
t1,
t2,
w1,
w2 being
VECTOR of
V st
u <> u' &
u,
u',
u1,
t1 are_DTr_wrt w,
y &
u,
u',
u2,
t2 are_DTr_wrt w,
y &
u,
u',
v1,
w1 are_DTr_wrt w,
y &
u,
u',
v2,
w2 are_DTr_wrt w,
y &
u1,
u2,
v1,
v2 are_Ort_wrt w,
y holds
t1,
t2,
w1,
w2 are_Ort_wrt w,
y
theorem Th43: :: GEOMTRAP:43 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y,
u,
u',
u1,
u2,
v1,
v2,
t1,
t2,
w1,
w2 being
VECTOR of
V st
Gen w,
y &
u <> u' &
u,
u',
u1,
t1 are_DTr_wrt w,
y &
u,
u',
u2,
t2 are_DTr_wrt w,
y &
u,
u',
v1,
w1 are_DTr_wrt w,
y &
u,
u',
v2,
w2 are_DTr_wrt w,
y &
u1,
u2,
v1,
v2 are_DTr_wrt w,
y holds
t1,
t2,
w1,
w2 are_DTr_wrt w,
y
definition
let V be
RealLinearSpace;
let w,
y be
VECTOR of
V;
func DTrapezium V,
w,
y -> Relation of
[:the carrier of V,the carrier of V:] means :
Def7:
:: GEOMTRAP:def 7
for
x,
z being
set holds
(
[x,z] in it iff ex
u,
u1,
v,
v1 being
VECTOR of
V st
(
x = [u,u1] &
z = [v,v1] &
u,
u1,
v,
v1 are_DTr_wrt w,
y ) );
existence
ex b1 being Relation of [:the carrier of V,the carrier of V:] st
for x, z being set holds
( [x,z] in b1 iff ex u, u1, v, v1 being VECTOR of V st
( x = [u,u1] & z = [v,v1] & u,u1,v,v1 are_DTr_wrt w,y ) )
uniqueness
for b1, b2 being Relation of [:the carrier of V,the carrier of V:] st ( for x, z being set holds
( [x,z] in b1 iff ex u, u1, v, v1 being VECTOR of V st
( x = [u,u1] & z = [v,v1] & u,u1,v,v1 are_DTr_wrt w,y ) ) ) & ( for x, z being set holds
( [x,z] in b2 iff ex u, u1, v, v1 being VECTOR of V st
( x = [u,u1] & z = [v,v1] & u,u1,v,v1 are_DTr_wrt w,y ) ) ) holds
b1 = b2
end;
:: deftheorem Def7 defines DTrapezium GEOMTRAP:def 7 :
for
V being
RealLinearSpace for
w,
y being
VECTOR of
V for
b4 being
Relation of
[:the carrier of V,the carrier of V:] holds
(
b4 = DTrapezium V,
w,
y iff for
x,
z being
set holds
(
[x,z] in b4 iff ex
u,
u1,
v,
v1 being
VECTOR of
V st
(
x = [u,u1] &
z = [v,v1] &
u,
u1,
v,
v1 are_DTr_wrt w,
y ) ) );
theorem Th44: :: GEOMTRAP:44 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
u,
v,
u1,
v1,
w,
y being
VECTOR of
V holds
(
[[u,v],[u1,v1]] in DTrapezium V,
w,
y iff
u,
v,
u1,
v1 are_DTr_wrt w,
y )
:: deftheorem Def8 defines MidPoint GEOMTRAP:def 8 :
definition
let V be
RealLinearSpace;
let w,
y be
VECTOR of
V;
func DTrSpace V,
w,
y -> strict AfMidStruct equals :: GEOMTRAP:def 9
AfMidStruct(# the
carrier of
V,
(MidPoint V),
(DTrapezium V,w,y) #);
correctness
coherence
AfMidStruct(# the carrier of V,(MidPoint V),(DTrapezium V,w,y) #) is strict AfMidStruct ;
;
end;
:: deftheorem defines DTrSpace GEOMTRAP:def 9 :
:: deftheorem defines Af GEOMTRAP:def 10 :
:: deftheorem GEOMTRAP:def 11 :
canceled;
:: deftheorem defines # GEOMTRAP:def 12 :
theorem :: GEOMTRAP:45 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: GEOMTRAP:46 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th47: :: GEOMTRAP:47 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
w,
y,
u,
v,
u1,
v1 being
VECTOR of
V for
a,
b,
a1,
b1 being
Element of
(DTrSpace V,w,y) st
Gen w,
y &
u = a &
v = b &
u1 = a1 &
v1 = b1 holds
(
a,
b // a1,
b1 iff
u,
v,
u1,
v1 are_DTr_wrt w,
y )
theorem Th48: :: GEOMTRAP:48 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm21:
for V being RealLinearSpace
for w, y being VECTOR of V
for a, b, c being Element of (DTrSpace V,w,y) st Gen w,y & a,b // b,c holds
( a = b & b = c )
Lm22:
for V being RealLinearSpace
for w, y being VECTOR of V
for a, b, a1, b1, c1, d1 being Element of (DTrSpace V,w,y) st Gen w,y & a,b // a1,b1 & a,b // c1,d1 & a <> b holds
a1,b1 // c1,d1
Lm23:
for V being RealLinearSpace
for w, y being VECTOR of V
for a, b, c, d being Element of (DTrSpace V,w,y) st Gen w,y & a,b // c,d holds
( c,d // a,b & b,a // d,c )
Lm24:
for V being RealLinearSpace
for w, y being VECTOR of V
for a, b, c being Element of (DTrSpace V,w,y) st Gen w,y holds
ex d being Element of (DTrSpace V,w,y) st
( a,b // c,d or a,b // d,c )
Lm25:
for V being RealLinearSpace
for w, y being VECTOR of V
for a, b, c, d1, d2 being Element of (DTrSpace V,w,y) st Gen w,y & a,b // c,d1 & a,b // c,d2 & not a = b holds
d1 = d2
Lm26:
for V being RealLinearSpace
for w, y being VECTOR of V
for a, b being Element of (DTrSpace V,w,y) st Gen w,y holds
a # b = b # a
Lm27:
for V being RealLinearSpace
for w, y being VECTOR of V
for a being Element of (DTrSpace V,w,y) st Gen w,y holds
a # a = a
Lm28:
for V being RealLinearSpace
for w, y being VECTOR of V
for a, b, c, d being Element of (DTrSpace V,w,y) st Gen w,y holds
(a # b) # (c # d) = (a # c) # (b # d)
Lm29:
for V being RealLinearSpace
for w, y being VECTOR of V
for a, b being Element of (DTrSpace V,w,y) st Gen w,y holds
ex p being Element of (DTrSpace V,w,y) st p # a = b
Lm30:
for V being RealLinearSpace
for w, y being VECTOR of V
for a, a1, a2 being Element of (DTrSpace V,w,y) st Gen w,y & a # a1 = a # a2 holds
a1 = a2
Lm31:
for V being RealLinearSpace
for w, y being VECTOR of V
for a, b, c, d being Element of (DTrSpace V,w,y) st Gen w,y & a,b // c,d holds
a,b // a # c,b # d
Lm32:
for V being RealLinearSpace
for w, y being VECTOR of V
for a, b, c, d being Element of (DTrSpace V,w,y) st Gen w,y & a,b // c,d & not a,b // a # d,b # c holds
a,b // b # c,a # d
Lm33:
for V being RealLinearSpace
for w, y being VECTOR of V
for a, b, c, d, a1, p, b1, c1, d1 being Element of (DTrSpace V,w,y) st Gen w,y & a,b // c,d & a # a1 = p & b # b1 = p & c # c1 = p & d # d1 = p holds
a1,b1 // c1,d1
Lm34:
for V being RealLinearSpace
for w, y being VECTOR of V
for p, q, a, a1, b, b1, c, c1, d, d1 being Element of (DTrSpace V,w,y) st Gen w,y & p <> q & p,q // a,a1 & p,q // b,b1 & p,q // c,c1 & p,q // d,d1 & a,b // c,d holds
a1,b1 // c1,d1
definition
let IT be non
empty AfMidStruct ;
attr IT is
MidOrdTrapSpace-like means :
Def13:
:: GEOMTRAP:def 13
for
a,
b,
c,
d,
a1,
b1,
c1,
d1,
p,
q being
Element of
IT holds
(
a # b = b # a &
a # a = a &
(a # b) # (c # d) = (a # c) # (b # d) & ex
p being
Element of
IT st
p # a = b & (
a # b = a # c implies
b = c ) & (
a,
b // c,
d implies
a,
b // a # c,
b # d ) & ( not
a,
b // c,
d or
a,
b // a # d,
b # c or
a,
b // b # c,
a # d ) & (
a,
b // c,
d &
a # a1 = p &
b # b1 = p &
c # c1 = p &
d # d1 = p implies
a1,
b1 // c1,
d1 ) & (
p <> q &
p,
q // a,
a1 &
p,
q // b,
b1 &
p,
q // c,
c1 &
p,
q // d,
d1 &
a,
b // c,
d implies
a1,
b1 // c1,
d1 ) & (
a,
b // b,
c implies (
a = b &
b = c ) ) & (
a,
b // a1,
b1 &
a,
b // c1,
d1 &
a <> b implies
a1,
b1 // c1,
d1 ) & (
a,
b // c,
d implies (
c,
d // a,
b &
b,
a // d,
c ) ) & ex
d being
Element of
IT st
(
a,
b // c,
d or
a,
b // d,
c ) & (
a,
b // c,
p &
a,
b // c,
q & not
a = b implies
p = q ) );
end;
:: deftheorem Def13 defines MidOrdTrapSpace-like GEOMTRAP:def 13 :
for
IT being non
empty AfMidStruct holds
(
IT is
MidOrdTrapSpace-like iff for
a,
b,
c,
d,
a1,
b1,
c1,
d1,
p,
q being
Element of
IT holds
(
a # b = b # a &
a # a = a &
(a # b) # (c # d) = (a # c) # (b # d) & ex
p being
Element of
IT st
p # a = b & (
a # b = a # c implies
b = c ) & (
a,
b // c,
d implies
a,
b // a # c,
b # d ) & ( not
a,
b // c,
d or
a,
b // a # d,
b # c or
a,
b // b # c,
a # d ) & (
a,
b // c,
d &
a # a1 = p &
b # b1 = p &
c # c1 = p &
d # d1 = p implies
a1,
b1 // c1,
d1 ) & (
p <> q &
p,
q // a,
a1 &
p,
q // b,
b1 &
p,
q // c,
c1 &
p,
q // d,
d1 &
a,
b // c,
d implies
a1,
b1 // c1,
d1 ) & (
a,
b // b,
c implies (
a = b &
b = c ) ) & (
a,
b // a1,
b1 &
a,
b // c1,
d1 &
a <> b implies
a1,
b1 // c1,
d1 ) & (
a,
b // c,
d implies (
c,
d // a,
b &
b,
a // d,
c ) ) & ex
d being
Element of
IT st
(
a,
b // c,
d or
a,
b // d,
c ) & (
a,
b // c,
p &
a,
b // c,
q & not
a = b implies
p = q ) ) );
theorem :: GEOMTRAP:49 :: Showing IDV graph ... (Click the Palm Tree again to close it)
consider MOS being MidOrdTrapSpace;
set X = Af MOS;
Lm35:
now
let a,
b,
c,
d,
a1,
b1,
c1,
d1,
p,
q be
Element of
(Af MOS);
:: thesis: ( ( a,b // b,c implies ( a = b & b = c ) ) & ( a,b // a1,b1 & a,b // c1,d1 & a <> b implies a1,b1 // c1,d1 ) & ( a,b // c,d implies ( c,d // a,b & b,a // d,c ) ) & ex d being Element of (Af MOS) st
( a,b // c,d or a,b // d,c ) & ( a,b // c,p & a,b // c,q & not a = b implies p = q ) )
A1:
now
let a,
b,
c,
d be
Element of
(Af MOS);
:: thesis: for a', b', c', d' being Element of the carrier of MOS st a = a' & b = b' & c = c' & d = d' holds
( a,b // c,d iff a',b' // c',d' )let a',
b',
c',
d' be
Element of the
carrier of
MOS;
:: thesis: ( a = a' & b = b' & c = c' & d = d' implies ( a,b // c,d iff a',b' // c',d' ) )assume A2:
(
a = a' &
b = b' &
c = c' &
d = d' )
;
:: thesis: ( a,b // c,d iff a',b' // c',d' )
A3:
now
assume
a,
b // c,
d
;
:: thesis: a',b' // c',d'then
[[a,b],[c,d]] in the
CONGR of
MOS
by ANALOAF:def 2;
hence
a',
b' // c',
d'
by A2, ANALOAF:def 2;
:: thesis: verum
end;
now
assume
a',
b' // c',
d'
;
:: thesis: a,b // c,dthen
[[a,b],[c,d]] in the
CONGR of
MOS
by A2, ANALOAF:def 2;
hence
a,
b // c,
d
by ANALOAF:def 2;
:: thesis: verum
end;
hence
(
a,
b // c,
d iff
a',
b' // c',
d' )
by A3;
:: thesis: verum
end;
reconsider a' =
a,
b' =
b,
c' =
c,
d' =
d,
a1' =
a1,
b1' =
b1,
c1' =
c1,
d1' =
d1,
p' =
p,
q' =
q as
Element of
MOS ;
A5:
now
assume
(
a,
b // a1,
b1 &
a,
b // c1,
d1 &
a <> b )
;
:: thesis: a1,b1 // c1,d1then
(
a',
b' // a1',
b1' &
a',
b' // c1',
d1' &
a' <> b' )
by A1;
then
a1',
b1' // c1',
d1'
by Def13;
hence
a1,
b1 // c1,
d1
by A1;
:: thesis: verum
end;
A6:
now
assume
a,
b // c,
d
;
:: thesis: ( c,d // a,b & b,a // d,c )then
a',
b' // c',
d'
by A1;
then
(
c',
d' // a',
b' &
b',
a' // d',
c' )
by Def13;
hence
(
c,
d // a,
b &
b,
a // d,
c )
by A1;
:: thesis: verum
end;
A7:
ex
d being
Element of
(Af MOS) st
(
a,
b // c,
d or
a,
b // d,
c )
proof
consider x' being
Element of
MOS such that A8:
(
a',
b' // c',
x' or
a',
b' // x',
c' )
by Def13;
reconsider x =
x' as
Element of
(Af MOS) ;
take
x
;
:: thesis: ( a,b // c,x or a,b // x,c )
thus
(
a,
b // c,
x or
a,
b // x,
c )
by A1, A8;
:: thesis: verum
end;
hence
( (
a,
b // b,
c implies (
a = b &
b = c ) ) & (
a,
b // a1,
b1 &
a,
b // c1,
d1 &
a <> b implies
a1,
b1 // c1,
d1 ) & (
a,
b // c,
d implies (
c,
d // a,
b &
b,
a // d,
c ) ) & ex
d being
Element of
(Af MOS) st
(
a,
b // c,
d or
a,
b // d,
c ) & (
a,
b // c,
p &
a,
b // c,
q & not
a = b implies
p = q ) )
by A4, A5, A6, A7;
:: thesis: verum
end;
definition
let IT be non
empty AffinStruct ;
attr IT is
OrdTrapSpace-like means :
Def14:
:: GEOMTRAP:def 14
for
a,
b,
c,
d,
a1,
b1,
c1,
d1,
p,
q being
Element of
IT holds
( (
a,
b // b,
c implies (
a = b &
b = c ) ) & (
a,
b // a1,
b1 &
a,
b // c1,
d1 &
a <> b implies
a1,
b1 // c1,
d1 ) & (
a,
b // c,
d implies (
c,
d // a,
b &
b,
a // d,
c ) ) & ex
d being
Element of
IT st
(
a,
b // c,
d or
a,
b // d,
c ) & (
a,
b // c,
p &
a,
b // c,
q & not
a = b implies
p = q ) );
end;
:: deftheorem Def14 defines OrdTrapSpace-like GEOMTRAP:def 14 :
for
IT being non
empty AffinStruct holds
(
IT is
OrdTrapSpace-like iff for
a,
b,
c,
d,
a1,
b1,
c1,
d1,
p,
q being
Element of
IT holds
( (
a,
b // b,
c implies (
a = b &
b = c ) ) & (
a,
b // a1,
b1 &
a,
b // c1,
d1 &
a <> b implies
a1,
b1 // c1,
d1 ) & (
a,
b // c,
d implies (
c,
d // a,
b &
b,
a // d,
c ) ) & ex
d being
Element of
IT st
(
a,
b // c,
d or
a,
b // d,
c ) & (
a,
b // c,
p &
a,
b // c,
q & not
a = b implies
p = q ) ) );
theorem Th50: :: GEOMTRAP:50 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th51: :: GEOMTRAP:51 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OTS being
OrdTrapSpace for
a,
b,
c,
d being
Element of
OTS for
a',
b',
c',
d' being
Element of
(Lambda OTS) st
a = a' &
b = b' &
c = c' &
d = d' holds
(
a',
b' // c',
d' iff (
a,
b // c,
d or
a,
b // d,
c ) )
Lm36:
for OTS being OrdTrapSpace
for a', b', c' being Element of (Lambda OTS) ex d' being Element of (Lambda OTS) st a',b' // c',d'
Lm37:
for OTS being OrdTrapSpace
for a', b', c', d' being Element of (Lambda OTS) st a',b' // c',d' holds
c',d' // a',b'
Lm38:
for OTS being OrdTrapSpace
for a1', b1', a', b', c', d' being Element of (Lambda OTS) st a1' <> b1' & a1',b1' // a',b' & a1',b1' // c',d' holds
a',b' // c',d'
Lm39:
for OTS being OrdTrapSpace
for a', b', c', d', d1' being Element of (Lambda OTS) st a',b' // c',d' & a',b' // c',d1' & not a' = b' holds
d' = d1'
Lm40:
for OTS being OrdTrapSpace
for a, b being Element of OTS holds a,b // a,b
Lm41:
for OTS being OrdTrapSpace
for a', b' being Element of (Lambda OTS) holds a',b' // b',a'
definition
let IT be non
empty AffinStruct ;
attr IT is
TrapSpace-like means :
Def15:
:: GEOMTRAP:def 15
for
a',
b',
c',
d',
p',
q' being
Element of
IT holds
(
a',
b' // b',
a' & (
a',
b' // c',
d' &
a',
b' // c',
q' & not
a' = b' implies
d' = q' ) & (
p' <> q' &
p',
q' // a',
b' &
p',
q' // c',
d' implies
a',
b' // c',
d' ) & (
a',
b' // c',
d' implies
c',
d' // a',
b' ) & ex
x' being
Element of
IT st
a',
b' // c',
x' );
end;
:: deftheorem Def15 defines TrapSpace-like GEOMTRAP:def 15 :
for
IT being non
empty AffinStruct holds
(
IT is
TrapSpace-like iff for
a',
b',
c',
d',
p',
q' being
Element of
IT holds
(
a',
b' // b',
a' & (
a',
b' // c',
d' &
a',
b' // c',
q' & not
a' = b' implies
d' = q' ) & (
p' <> q' &
p',
q' // a',
b' &
p',
q' // c',
d' implies
a',
b' // c',
d' ) & (
a',
b' // c',
d' implies
c',
d' // a',
b' ) & ex
x' being
Element of
IT st
a',
b' // c',
x' ) );
definition
let IT be non
empty AffinStruct ;
attr IT is
Regular means :
Def16:
:: GEOMTRAP:def 16
for
p,
q,
a,
a1,
b,
b1,
c,
c1,
d,
d1 being
Element of
IT st
p <> q &
p,
q // a,
a1 &
p,
q // b,
b1 &
p,
q // c,
c1 &
p,
q // d,
d1 &
a,
b // c,
d holds
a1,
b1 // c1,
d1;
end;
:: deftheorem Def16 defines Regular GEOMTRAP:def 16 :
for
IT being non
empty AffinStruct holds
(
IT is
Regular iff for
p,
q,
a,
a1,
b,
b1,
c,
c1,
d,
d1 being
Element of
IT st
p <> q &
p,
q // a,
a1 &
p,
q // b,
b1 &
p,
q // c,
c1 &
p,
q // d,
d1 &
a,
b // c,
d holds
a1,
b1 // c1,
d1 );