:: CLOPBAN2 semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
theorem Th1: :: CLOPBAN2:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th2: :: CLOPBAN2:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
X,
Y,
Z being
ComplexNormSpace for
f being
bounded LinearOperator of
X,
Y for
g being
bounded LinearOperator of
Y,
Z holds
(
g * f is
bounded LinearOperator of
X,
Z & ( for
x being
VECTOR of
X holds
(
||.((g * f) . x).|| <= (((BoundedLinearOperatorsNorm Y,Z) . g) * ((BoundedLinearOperatorsNorm X,Y) . f)) * ||.x.|| &
(BoundedLinearOperatorsNorm X,Z) . (g * f) <= ((BoundedLinearOperatorsNorm Y,Z) . g) * ((BoundedLinearOperatorsNorm X,Y) . f) ) ) )
definition
let X be
ComplexNormSpace;
let f,
g be
Element of
BoundedLinearOperators X,
X;
func f + g -> Element of
BoundedLinearOperators X,
X equals :: CLOPBAN2:def 1
(Add_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)) . f,
g;
correctness
coherence
(Add_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)) . f,g is Element of BoundedLinearOperators X,X;
;
end;
:: deftheorem defines + CLOPBAN2:def 1 :
definition
let X be
ComplexNormSpace;
let f,
g be
Element of
BoundedLinearOperators X,
X;
func g * f -> Element of
BoundedLinearOperators X,
X equals :: CLOPBAN2:def 2
(modetrans g,X,X) * (modetrans f,X,X);
correctness
coherence
(modetrans g,X,X) * (modetrans f,X,X) is Element of BoundedLinearOperators X,X;
by CLOPBAN1:def 8;
end;
:: deftheorem defines * CLOPBAN2:def 2 :
definition
let X be
ComplexNormSpace;
let f be
Element of
BoundedLinearOperators X,
X;
let z be
Complex;
func z * f -> Element of
BoundedLinearOperators X,
X equals :: CLOPBAN2:def 3
(Mult_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)) . z,
f;
correctness
coherence
(Mult_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)) . z,f is Element of BoundedLinearOperators X,X;
;
end;
:: deftheorem defines * CLOPBAN2:def 3 :
definition
let X be
ComplexNormSpace;
func FuncMult X -> BinOp of
BoundedLinearOperators X,
X means :
Def4:
:: CLOPBAN2:def 4
for
f,
g being
Element of
BoundedLinearOperators X,
X holds
it . f,
g = f * g;
existence
ex b1 being BinOp of BoundedLinearOperators X,X st
for f, g being Element of BoundedLinearOperators X,X holds b1 . f,g = f * g
uniqueness
for b1, b2 being BinOp of BoundedLinearOperators X,X st ( for f, g being Element of BoundedLinearOperators X,X holds b1 . f,g = f * g ) & ( for f, g being Element of BoundedLinearOperators X,X holds b2 . f,g = f * g ) holds
b1 = b2
end;
:: deftheorem Def4 defines FuncMult CLOPBAN2:def 4 :
theorem Th3: :: CLOPBAN2:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem defines FuncUnit CLOPBAN2:def 5 :
theorem Th4: :: CLOPBAN2:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th5: :: CLOPBAN2:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th6: :: CLOPBAN2:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th7: :: CLOPBAN2:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th8: :: CLOPBAN2:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th9: :: CLOPBAN2:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th10: :: CLOPBAN2:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th11: :: CLOPBAN2:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th12: :: CLOPBAN2:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
let X be
ComplexNormSpace;
func Ring_of_BoundedLinearOperators X -> doubleLoopStr equals :: CLOPBAN2:def 6
doubleLoopStr(#
(BoundedLinearOperators X,X),
(Add_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)),
(FuncMult X),
(FuncUnit X),
(Zero_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)) #);
correctness
coherence
doubleLoopStr(# (BoundedLinearOperators X,X),(Add_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)),(FuncMult X),(FuncUnit X),(Zero_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)) #) is doubleLoopStr ;
;
end;
:: deftheorem defines Ring_of_BoundedLinearOperators CLOPBAN2:def 6 :
for
X being
ComplexNormSpace holds
Ring_of_BoundedLinearOperators X = doubleLoopStr(#
(BoundedLinearOperators X,X),
(Add_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)),
(FuncMult X),
(FuncUnit X),
(Zero_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)) #);
theorem Th13: :: CLOPBAN2:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th14: :: CLOPBAN2:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
let X be
ComplexNormSpace;
func C_Algebra_of_BoundedLinearOperators X -> ComplexAlgebraStr equals :: CLOPBAN2:def 7
ComplexAlgebraStr(#
(BoundedLinearOperators X,X),
(FuncMult X),
(Add_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)),
(Mult_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)),
(FuncUnit X),
(Zero_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)) #);
correctness
coherence
ComplexAlgebraStr(# (BoundedLinearOperators X,X),(FuncMult X),(Add_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)),(Mult_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)),(FuncUnit X),(Zero_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)) #) is ComplexAlgebraStr ;
;
end;
:: deftheorem defines C_Algebra_of_BoundedLinearOperators CLOPBAN2:def 7 :
for
X being
ComplexNormSpace holds
C_Algebra_of_BoundedLinearOperators X = ComplexAlgebraStr(#
(BoundedLinearOperators X,X),
(FuncMult X),
(Add_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)),
(Mult_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)),
(FuncUnit X),
(Zero_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)) #);
theorem Th15: :: CLOPBAN2:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CLOPBAN2:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th17: :: CLOPBAN2:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th18: :: CLOPBAN2:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
let X be
ComplexNormSpace;
func C_Normed_Algebra_of_BoundedLinearOperators X -> Normed_Complex_AlgebraStr equals :: CLOPBAN2:def 8
Normed_Complex_AlgebraStr(#
(BoundedLinearOperators X,X),
(FuncMult X),
(Add_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)),
(Mult_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)),
(FuncUnit X),
(Zero_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)),
(BoundedLinearOperatorsNorm X,X) #);
correctness
coherence
Normed_Complex_AlgebraStr(# (BoundedLinearOperators X,X),(FuncMult X),(Add_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)),(Mult_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)),(FuncUnit X),(Zero_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)),(BoundedLinearOperatorsNorm X,X) #) is Normed_Complex_AlgebraStr ;
;
end;
:: deftheorem defines C_Normed_Algebra_of_BoundedLinearOperators CLOPBAN2:def 8 :
for
X being
ComplexNormSpace holds
C_Normed_Algebra_of_BoundedLinearOperators X = Normed_Complex_AlgebraStr(#
(BoundedLinearOperators X,X),
(FuncMult X),
(Add_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)),
(Mult_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)),
(FuncUnit X),
(Zero_ (BoundedLinearOperators X,X),(C_VectorSpace_of_LinearOperators X,X)),
(BoundedLinearOperatorsNorm X,X) #);
theorem Th19: :: CLOPBAN2:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th20: :: CLOPBAN2:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem defines Banach_Algebra-like_1 CLOPBAN2:def 9 :
:: deftheorem defines Banach_Algebra-like_2 CLOPBAN2:def 10 :
:: deftheorem defines Banach_Algebra-like_3 CLOPBAN2:def 11 :
:: deftheorem Def12 defines Banach_Algebra-like CLOPBAN2:def 12 :
theorem :: CLOPBAN2:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CLOPBAN2:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CLOPBAN2:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)