:: FUNCSDOM semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
:: deftheorem defines @ FUNCSDOM:def 1 :
definition
let A be non
empty set ;
func RealFuncAdd A -> BinOp of
Funcs A,
REAL means :
Def2:
:: FUNCSDOM:def 2
for
f,
g being
Element of
Funcs A,
REAL holds
it . f,
g = addreal .: f,
g;
existence
ex b1 being BinOp of Funcs A,REAL st
for f, g being Element of Funcs A,REAL holds b1 . f,g = addreal .: f,g
uniqueness
for b1, b2 being BinOp of Funcs A,REAL st ( for f, g being Element of Funcs A,REAL holds b1 . f,g = addreal .: f,g ) & ( for f, g being Element of Funcs A,REAL holds b2 . f,g = addreal .: f,g ) holds
b1 = b2
end;
:: deftheorem Def2 defines RealFuncAdd FUNCSDOM:def 2 :
definition
let A be non
empty set ;
func RealFuncMult A -> BinOp of
Funcs A,
REAL means :
Def3:
:: FUNCSDOM:def 3
for
f,
g being
Element of
Funcs A,
REAL holds
it . f,
g = multreal .: f,
g;
existence
ex b1 being BinOp of Funcs A,REAL st
for f, g being Element of Funcs A,REAL holds b1 . f,g = multreal .: f,g
uniqueness
for b1, b2 being BinOp of Funcs A,REAL st ( for f, g being Element of Funcs A,REAL holds b1 . f,g = multreal .: f,g ) & ( for f, g being Element of Funcs A,REAL holds b2 . f,g = multreal .: f,g ) holds
b1 = b2
end;
:: deftheorem Def3 defines RealFuncMult FUNCSDOM:def 3 :
definition
let A be non
empty set ;
func RealFuncExtMult A -> Function of
[:REAL ,(Funcs A,REAL ):],
Funcs A,
REAL means :
Def4:
:: FUNCSDOM:def 4
for
a being
Real for
f being
Element of
Funcs A,
REAL for
x being
Element of
A holds
(it . [a,f]) . x = a * (f . x);
existence
ex b1 being Function of [:REAL ,(Funcs A,REAL ):], Funcs A,REAL st
for a being Real
for f being Element of Funcs A,REAL
for x being Element of A holds (b1 . [a,f]) . x = a * (f . x)
uniqueness
for b1, b2 being Function of [:REAL ,(Funcs A,REAL ):], Funcs A,REAL st ( for a being Real
for f being Element of Funcs A,REAL
for x being Element of A holds (b1 . [a,f]) . x = a * (f . x) ) & ( for a being Real
for f being Element of Funcs A,REAL
for x being Element of A holds (b2 . [a,f]) . x = a * (f . x) ) holds
b1 = b2
end;
:: deftheorem Def4 defines RealFuncExtMult FUNCSDOM:def 4 :
:: deftheorem defines RealFuncZero FUNCSDOM:def 5 :
:: deftheorem defines RealFuncUnit FUNCSDOM:def 6 :
Lm1:
for A, B being non empty set
for x being Element of A
for f being Function of A,B holds x in dom f
theorem :: FUNCSDOM:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: FUNCSDOM:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: FUNCSDOM:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: FUNCSDOM:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: FUNCSDOM:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: FUNCSDOM:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: FUNCSDOM:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: FUNCSDOM:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: FUNCSDOM:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th10: :: FUNCSDOM:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th11: :: FUNCSDOM:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th12: :: FUNCSDOM:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th13: :: FUNCSDOM:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: FUNCSDOM:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th15: :: FUNCSDOM:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th16: :: FUNCSDOM:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th17: :: FUNCSDOM:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th18: :: FUNCSDOM:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th19: :: FUNCSDOM:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th20: :: FUNCSDOM:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th21: :: FUNCSDOM:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th22: :: FUNCSDOM:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th23: :: FUNCSDOM:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th24: :: FUNCSDOM:24 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th25: :: FUNCSDOM:25 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm2:
for A being non empty set
for f, g being Element of Funcs A,REAL
for a being Real holds (RealFuncAdd A) . ((RealFuncExtMult A) . [a,f]),((RealFuncExtMult A) . [a,g]) = (RealFuncExtMult A) . [a,((RealFuncAdd A) . f,g)]
theorem Th26: :: FUNCSDOM:26 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th27: :: FUNCSDOM:27 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th28: :: FUNCSDOM:28 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
x1 being
set for
A being non
empty set ex
f,
g being
Element of
Funcs A,
REAL st
( ( for
z being
set st
z in A holds
( (
z = x1 implies
f . z = 1 ) & (
z <> x1 implies
f . z = 0 ) ) ) & ( for
z being
set st
z in A holds
( (
z = x1 implies
g . z = 0 ) & (
z <> x1 implies
g . z = 1 ) ) ) )
theorem Th29: :: FUNCSDOM:29 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: FUNCSDOM:30 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th31: :: FUNCSDOM:31 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: FUNCSDOM:32 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th33: :: FUNCSDOM:33 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
x1,
x2 being
set for
A being non
empty set st
A = {x1,x2} &
x1 <> x2 holds
ex
f,
g being
Element of
Funcs A,
REAL st
( ( for
a,
b being
Real st
(RealFuncAdd A) . ((RealFuncExtMult A) . [a,f]),
((RealFuncExtMult A) . [b,g]) = RealFuncZero A holds
(
a = 0 &
b = 0 ) ) & ( for
h being
Element of
Funcs A,
REAL ex
a,
b being
Real st
h = (RealFuncAdd A) . ((RealFuncExtMult A) . [a,f]),
((RealFuncExtMult A) . [b,g]) ) )
theorem Th34: :: FUNCSDOM:34 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem defines RealVectSpace FUNCSDOM:def 7 :
Lm3:
ex A being non empty set ex x1, x2 being set st
( A = {x1,x2} & x1 <> x2 )
theorem :: FUNCSDOM:35 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: FUNCSDOM:36 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: FUNCSDOM:37 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
let A be non
empty set ;
canceled;canceled;canceled;canceled;func RRing A -> strict doubleLoopStr equals :: FUNCSDOM:def 12
doubleLoopStr(#
(Funcs A,REAL ),
(RealFuncAdd A),
(RealFuncMult A),
(RealFuncUnit A),
(RealFuncZero A) #);
correctness
coherence
doubleLoopStr(# (Funcs A,REAL ),(RealFuncAdd A),(RealFuncMult A),(RealFuncUnit A),(RealFuncZero A) #) is strict doubleLoopStr ;
;
end;
:: deftheorem FUNCSDOM:def 8 :
canceled;
:: deftheorem FUNCSDOM:def 9 :
canceled;
:: deftheorem FUNCSDOM:def 10 :
canceled;
:: deftheorem FUNCSDOM:def 11 :
canceled;
:: deftheorem defines RRing FUNCSDOM:def 12 :
theorem :: FUNCSDOM:38 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: FUNCSDOM:39 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: FUNCSDOM:40 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th41: :: FUNCSDOM:41 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th42: :: FUNCSDOM:42 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: FUNCSDOM:43 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
let A be non
empty set ;
canceled;canceled;canceled;canceled;canceled;canceled;func RAlgebra A -> strict AlgebraStr equals :: FUNCSDOM:def 19
AlgebraStr(#
(Funcs A,REAL ),
(RealFuncMult A),
(RealFuncAdd A),
(RealFuncExtMult A),
(RealFuncUnit A),
(RealFuncZero A) #);
correctness
coherence
AlgebraStr(# (Funcs A,REAL ),(RealFuncMult A),(RealFuncAdd A),(RealFuncExtMult A),(RealFuncUnit A),(RealFuncZero A) #) is strict AlgebraStr ;
;
end;
:: deftheorem FUNCSDOM:def 13 :
canceled;
:: deftheorem FUNCSDOM:def 14 :
canceled;
:: deftheorem FUNCSDOM:def 15 :
canceled;
:: deftheorem FUNCSDOM:def 16 :
canceled;
:: deftheorem FUNCSDOM:def 17 :
canceled;
:: deftheorem FUNCSDOM:def 18 :
canceled;
:: deftheorem defines RAlgebra FUNCSDOM:def 19 :
theorem Th44: :: FUNCSDOM:44 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: FUNCSDOM:45 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: FUNCSDOM:46 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: FUNCSDOM:47 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: FUNCSDOM:48 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th49: :: FUNCSDOM:49 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def20 defines Algebra-like FUNCSDOM:def 20 :
theorem :: FUNCSDOM:50 :: Showing IDV graph ... (Click the Palm Tree again to close it)