:: CSSPACE semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
:: deftheorem Def1 defines the_set_of_ComplexSequences CSSPACE:def 1 :
:: deftheorem Def2 defines seq_id CSSPACE:def 2 :
:: deftheorem Def3 defines C_id CSSPACE:def 3 :
theorem Th1: :: CSSPACE:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th2: :: CSSPACE:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def4 defines l_add CSSPACE:def 4 :
definition
func l_mult -> Function of
[:COMPLEX ,the_set_of_ComplexSequences :],
the_set_of_ComplexSequences means :
Def5:
:: CSSPACE:def 5
for
z,
x being
set st
z in COMPLEX &
x in the_set_of_ComplexSequences holds
it . [z,x] = (C_id z) (#) (seq_id x);
existence
ex b1 being Function of [:COMPLEX ,the_set_of_ComplexSequences :], the_set_of_ComplexSequences st
for z, x being set st z in COMPLEX & x in the_set_of_ComplexSequences holds
b1 . [z,x] = (C_id z) (#) (seq_id x)
by Th2;
uniqueness
for b1, b2 being Function of [:COMPLEX ,the_set_of_ComplexSequences :], the_set_of_ComplexSequences st ( for z, x being set st z in COMPLEX & x in the_set_of_ComplexSequences holds
b1 . [z,x] = (C_id z) (#) (seq_id x) ) & ( for z, x being set st z in COMPLEX & x in the_set_of_ComplexSequences holds
b2 . [z,x] = (C_id z) (#) (seq_id x) ) holds
b1 = b2
end;
:: deftheorem Def5 defines l_mult CSSPACE:def 5 :
:: deftheorem Def6 defines CZeroseq CSSPACE:def 6 :
theorem Th3: :: CSSPACE:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th4: :: CSSPACE:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th5: :: CSSPACE:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm1:
for u, v being VECTOR of CLSStruct(# the_set_of_ComplexSequences ,CZeroseq ,l_add ,l_mult #) holds u + v = v + u
;
theorem Th6: :: CSSPACE:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th7: :: CSSPACE:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th8: :: CSSPACE:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th9: :: CSSPACE:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th10: :: CSSPACE:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th11: :: CSSPACE:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th12: :: CSSPACE:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
func Linear_Space_of_ComplexSequences -> ComplexLinearSpace equals :: CSSPACE:def 7
CLSStruct(#
the_set_of_ComplexSequences ,
CZeroseq ,
l_add ,
l_mult #);
correctness
coherence
CLSStruct(# the_set_of_ComplexSequences ,CZeroseq ,l_add ,l_mult #) is ComplexLinearSpace;
by Lm1, Th6, Th7, Th8, Th9, Th10, Th11, Th12, CLVECT_1:1;
end;
:: deftheorem defines Linear_Space_of_ComplexSequences CSSPACE:def 7 :
:: deftheorem Def8 defines Add_ CSSPACE:def 8 :
:: deftheorem Def9 defines Mult_ CSSPACE:def 9 :
:: deftheorem Def10 defines Zero_ CSSPACE:def 10 :
theorem Th13: :: CSSPACE:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def11 defines the_set_of_l2ComplexSequences CSSPACE:def 11 :
theorem Th14: :: CSSPACE:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th16: :: CSSPACE:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
registration
let D be non
empty set ;
let Z be
Element of
D;
let a be
BinOp of
D;
let m be
Function of
[:COMPLEX ,D:],
D;
let s be
Function of
[:D,D:],
COMPLEX ;
cluster CUNITSTR(#
D,
Z,
a,
m,
s #)
-> non
empty ;
coherence
not CUNITSTR(# D,Z,a,m,s #) is empty
end;
deffunc H1( CUNITSTR ) -> Element of the carrier of $1 = 0. $1;
:: deftheorem defines .|. CSSPACE:def 12 :
consider V0 being ComplexLinearSpace;
Lm2:
the carrier of ((0). V0) = {(0. V0)}
by CLVECT_1:def 5;
reconsider nilfunc = [:the carrier of ((0). V0),the carrier of ((0). V0):] --> 0c as Function of [:the carrier of ((0). V0),the carrier of ((0). V0):], COMPLEX by FUNCOP_1:57;
Lm3:
for x, y being VECTOR of ((0). V0) holds nilfunc . [x,y] = 0c
by FUNCOP_1:13;
0. V0 in the carrier of ((0). V0)
by Lm2, TARSKI:def 1;
then Lm4:
nilfunc . [(0. V0),(0. V0)] = 0c
by Lm3;
Lm5:
for u being VECTOR of ((0). V0) holds
( 0 <= Re (nilfunc . [u,u]) & Im (nilfunc . [u,u]) = 0 )
Lm6:
for u, v being VECTOR of ((0). V0) holds nilfunc . [u,v] = (nilfunc . [v,u]) *'
Lm7:
for u, v, w being VECTOR of ((0). V0) holds nilfunc . [(u + v),w] = (nilfunc . [u,w]) + (nilfunc . [v,w])
Lm8:
for u, v being VECTOR of ((0). V0)
for a being Complex holds nilfunc . [(a * u),v] = a * (nilfunc . [u,v])
set X0 = CUNITSTR(# the carrier of ((0). V0),the Zero of ((0). V0),the add of ((0). V0),the Mult of ((0). V0),nilfunc #);
Lm9:
now
let x,
y,
z be
Point of
CUNITSTR(# the
carrier of
((0). V0),the
Zero of
((0). V0),the
add of
((0). V0),the
Mult of
((0). V0),
nilfunc #);
:: thesis: for a being Complex holds
( ( x .|. x = 0c implies x = H1( CUNITSTR(# the carrier of ((0). V0),the Zero of ((0). V0),the add of ((0). V0),the Mult of ((0). V0),nilfunc #)) ) & ( x = H1( CUNITSTR(# the carrier of ((0). V0),the Zero of ((0). V0),the add of ((0). V0),the Mult of ((0). V0),nilfunc #)) implies x .|. x = 0c ) & 0 <= Re (x .|. x) & 0 = Im (x .|. x) & x .|. y = (y .|. x) *' & (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) )let a be
Complex;
:: thesis: ( ( x .|. x = 0c implies x = H1( CUNITSTR(# the carrier of ((0). V0),the Zero of ((0). V0),the add of ((0). V0),the Mult of ((0). V0),nilfunc #)) ) & ( x = H1( CUNITSTR(# the carrier of ((0). V0),the Zero of ((0). V0),the add of ((0). V0),the Mult of ((0). V0),nilfunc #)) implies x .|. x = 0c ) & 0 <= Re (x .|. x) & 0 = Im (x .|. x) & x .|. y = (y .|. x) *' & (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) )thus
(
x .|. x = 0c iff
x = H1(
CUNITSTR(# the
carrier of
((0). V0),the
Zero of
((0). V0),the
add of
((0). V0),the
Mult of
((0). V0),
nilfunc #)) )
:: thesis: ( 0 <= Re (x .|. x) & 0 = Im (x .|. x) & x .|. y = (y .|. x) *' & (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) )
proof
H1(
CUNITSTR(# the
carrier of
((0). V0),the
Zero of
((0). V0),the
add of
((0). V0),the
Mult of
((0). V0),
nilfunc #)) =
the
Zero of
CUNITSTR(# the
carrier of
((0). V0),the
Zero of
((0). V0),the
add of
((0). V0),the
Mult of
((0). V0),
nilfunc #)
.=
0. ((0). V0)
.=
0. V0
by CLVECT_1:31
;
hence
(
x .|. x = 0c iff
x = H1(
CUNITSTR(# the
carrier of
((0). V0),the
Zero of
((0). V0),the
add of
((0). V0),the
Mult of
((0). V0),
nilfunc #)) )
by Lm2, Lm4, TARSKI:def 1;
:: thesis: verum
end;
thus
( 0
<= Re (x .|. x) & 0
= Im (x .|. x) )
by Lm5;
:: thesis: ( x .|. y = (y .|. x) *' & (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) )thus
x .|. y = (y .|. x) *'
by Lm6;
:: thesis: ( (x + y) .|. z = (x .|. z) + (y .|. z) & (a * x) .|. y = a * (x .|. y) )thus
(x + y) .|. z = (x .|. z) + (y .|. z)
:: thesis: (a * x) .|. y = a * (x .|. y)
thus
(a * x) .|. y = a * (x .|. y)
:: thesis: verum
end;
:: deftheorem Def13 defines ComplexUnitarySpace-like CSSPACE:def 13 :
theorem :: CSSPACE:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th19: :: CSSPACE:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th20: :: CSSPACE:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th21: :: CSSPACE:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th22: :: CSSPACE:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th23: :: CSSPACE:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th24: :: CSSPACE:24 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th25: :: CSSPACE:25 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th26: :: CSSPACE:26 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th27: :: CSSPACE:27 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th28: :: CSSPACE:28 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th29: :: CSSPACE:29 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:30 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th31: :: CSSPACE:31 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th32: :: CSSPACE:32 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th33: :: CSSPACE:33 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:34 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th35: :: CSSPACE:35 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm10:
for X being ComplexUnitarySpace
for p, q being Complex
for x, y being Point of X holds ((p * x) + (q * y)) .|. ((p * x) + (q * y)) = ((((p * (p *' )) * (x .|. x)) + ((p * (q *' )) * (x .|. y))) + (((p *' ) * q) * (y .|. x))) + ((q * (q *' )) * (y .|. y))
theorem Th36: :: CSSPACE:36 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th37: :: CSSPACE:37 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def14 defines are_orthogonal CSSPACE:def 14 :
theorem :: CSSPACE:38 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:39 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:40 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:41 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:42 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:43 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem defines ||. CSSPACE:def 15 :
theorem Th44: :: CSSPACE:44 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th45: :: CSSPACE:45 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th46: :: CSSPACE:46 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th47: :: CSSPACE:47 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th48: :: CSSPACE:48 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th49: :: CSSPACE:49 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th50: :: CSSPACE:50 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:51 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem defines dist CSSPACE:def 16 :
theorem Th52: :: CSSPACE:52 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th53: :: CSSPACE:53 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:54 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th55: :: CSSPACE:55 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th56: :: CSSPACE:56 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:57 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:58 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:59 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:60 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:61 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:62 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def17 defines - CSSPACE:def 17 :
:: deftheorem Def18 defines + CSSPACE:def 18 :
theorem Th63: :: CSSPACE:63 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:64 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:65 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:66 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:67 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th68: :: CSSPACE:68 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th69: :: CSSPACE:69 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:70 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:71 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:72 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:73 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:74 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:75 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:76 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:77 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:78 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:79 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:80 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:81 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:82 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:83 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:84 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:85 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th86: :: CSSPACE:86 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
func cl_scalar -> Function of
[:the_set_of_l2ComplexSequences ,the_set_of_l2ComplexSequences :],
COMPLEX means :: CSSPACE:def 19
for
x,
y being
set st
x in the_set_of_l2ComplexSequences &
y in the_set_of_l2ComplexSequences holds
it . [x,y] = Sum ((seq_id x) (#) ((seq_id y) *' ));
existence
ex b1 being Function of [:the_set_of_l2ComplexSequences ,the_set_of_l2ComplexSequences :], COMPLEX st
for x, y being set st x in the_set_of_l2ComplexSequences & y in the_set_of_l2ComplexSequences holds
b1 . [x,y] = Sum ((seq_id x) (#) ((seq_id y) *' ))
by Th86;
uniqueness
for b1, b2 being Function of [:the_set_of_l2ComplexSequences ,the_set_of_l2ComplexSequences :], COMPLEX st ( for x, y being set st x in the_set_of_l2ComplexSequences & y in the_set_of_l2ComplexSequences holds
b1 . [x,y] = Sum ((seq_id x) (#) ((seq_id y) *' )) ) & ( for x, y being set st x in the_set_of_l2ComplexSequences & y in the_set_of_l2ComplexSequences holds
b2 . [x,y] = Sum ((seq_id x) (#) ((seq_id y) *' )) ) holds
b1 = b2
end;
:: deftheorem defines cl_scalar CSSPACE:def 19 :
registration
cluster CUNITSTR(#
the_set_of_l2ComplexSequences ,
(Zero_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),
(Add_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),
(Mult_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),
cl_scalar #)
-> non
empty ;
coherence
not CUNITSTR(# the_set_of_l2ComplexSequences ,(Zero_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),cl_scalar #) is empty
end;
definition
func Complex_l2_Space -> non
empty CUNITSTR equals :: CSSPACE:def 20
CUNITSTR(#
the_set_of_l2ComplexSequences ,
(Zero_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),
(Add_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),
(Mult_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),
cl_scalar #);
correctness
coherence
CUNITSTR(# the_set_of_l2ComplexSequences ,(Zero_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_l2ComplexSequences ,Linear_Space_of_ComplexSequences ),cl_scalar #) is non empty CUNITSTR ;
;
end;
:: deftheorem defines Complex_l2_Space CSSPACE:def 20 :
theorem Th87: :: CSSPACE:87 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE:88 :: Showing IDV graph ... (Click the Palm Tree again to close it)