:: CSSPACE4 semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
Lm1:
for rseq being Real_Sequence
for K being real number st ( for n being Nat holds rseq . n <= K ) holds
sup (rng rseq) <= K
Lm2:
for rseq being Real_Sequence st rseq is bounded holds
for n being Nat holds rseq . n <= sup (rng rseq)
:: deftheorem Def1 defines the_set_of_BoundedComplexSequences CSSPACE4:def 1 :
Lm3:
for seq1, seq2 being Complex_Sequence st seq1 is bounded & seq2 is bounded holds
seq1 + seq2 is bounded
Lm4:
for c being Complex
for seq being Complex_Sequence st seq is bounded holds
c (#) seq is bounded
Lm5:
CLSStruct(# the_set_of_BoundedComplexSequences ,(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ) #) is Subspace of Linear_Space_of_ComplexSequences
by CSSPACE:13;
registration
cluster CLSStruct(#
the_set_of_BoundedComplexSequences ,
(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),
(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),
(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ) #)
-> Abelian add-associative right_zeroed right_complementable ComplexLinearSpace-like ;
coherence
( CLSStruct(# the_set_of_BoundedComplexSequences ,(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ) #) is Abelian & CLSStruct(# the_set_of_BoundedComplexSequences ,(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ) #) is add-associative & CLSStruct(# the_set_of_BoundedComplexSequences ,(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ) #) is right_zeroed & CLSStruct(# the_set_of_BoundedComplexSequences ,(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ) #) is right_complementable & CLSStruct(# the_set_of_BoundedComplexSequences ,(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ) #) is ComplexLinearSpace-like )
by CSSPACE:13;
end;
Lm6:
( CLSStruct(# the_set_of_BoundedComplexSequences ,(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ) #) is Abelian & CLSStruct(# the_set_of_BoundedComplexSequences ,(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ) #) is add-associative & CLSStruct(# the_set_of_BoundedComplexSequences ,(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ) #) is right_zeroed & CLSStruct(# the_set_of_BoundedComplexSequences ,(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ) #) is right_complementable & CLSStruct(# the_set_of_BoundedComplexSequences ,(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ) #) is ComplexLinearSpace-like )
;
Lm7:
ex NORM being Function of the_set_of_BoundedComplexSequences , REAL st
for x being set st x in the_set_of_BoundedComplexSequences holds
NORM . x = sup (rng |.(seq_id x).|)
:: deftheorem Def2 defines Complex_linfty_norm CSSPACE4:def 2 :
Lm8:
for seq being Complex_Sequence st ( for n being Nat holds seq . n = 0c ) holds
( seq is bounded & sup (rng |.seq.|) = 0 )
Lm9:
for seq being Complex_Sequence st seq is bounded holds
|.seq.| is bounded
Lm10:
for seq being Complex_Sequence st |.seq.| is bounded holds
seq is bounded
Lm11:
for seq being Complex_Sequence st seq is bounded & sup (rng |.seq.|) = 0 holds
for n being Nat holds seq . n = 0c
theorem :: CSSPACE4:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: CSSPACE4:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
registration
cluster CNORMSTR(#
the_set_of_BoundedComplexSequences ,
(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),
(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),
(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),
Complex_linfty_norm #)
-> Abelian add-associative right_zeroed right_complementable ComplexLinearSpace-like ;
coherence
( CNORMSTR(# the_set_of_BoundedComplexSequences ,(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),Complex_linfty_norm #) is Abelian & CNORMSTR(# the_set_of_BoundedComplexSequences ,(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),Complex_linfty_norm #) is add-associative & CNORMSTR(# the_set_of_BoundedComplexSequences ,(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),Complex_linfty_norm #) is right_zeroed & CNORMSTR(# the_set_of_BoundedComplexSequences ,(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),Complex_linfty_norm #) is right_complementable & CNORMSTR(# the_set_of_BoundedComplexSequences ,(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),Complex_linfty_norm #) is ComplexLinearSpace-like )
by Lm6, CSSPACE3:4;
end;
definition
func Complex_linfty_Space -> non
empty CNORMSTR equals :: CSSPACE4:def 3
CNORMSTR(#
the_set_of_BoundedComplexSequences ,
(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),
(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),
(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),
Complex_linfty_norm #);
coherence
CNORMSTR(# the_set_of_BoundedComplexSequences ,(Zero_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Add_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),(Mult_ the_set_of_BoundedComplexSequences ,Linear_Space_of_ComplexSequences ),Complex_linfty_norm #) is non empty CNORMSTR
;
end;
:: deftheorem defines Complex_linfty_Space CSSPACE4:def 3 :
theorem Th3: :: CSSPACE4:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th4: :: CSSPACE4:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm12:
for seq1, seq2, seq3 being Complex_Sequence holds
( seq1 = seq2 - seq3 iff for n being Nat holds seq1 . n = (seq2 . n) - (seq3 . n) )
theorem Th5: :: CSSPACE4:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE4:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def4 defines bounded CSSPACE4:def 4 :
theorem Th7: :: CSSPACE4:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def5 defines ComplexBoundedFunctions CSSPACE4:def 5 :
theorem Th8: :: CSSPACE4:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th9: :: CSSPACE4:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
X being non
empty set for
Y being
ComplexNormSpace holds
CLSStruct(#
(ComplexBoundedFunctions X,Y),
(Zero_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),
(Add_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),
(Mult_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)) #) is
Subspace of
ComplexVectSpace X,
Y
registration
let X be non
empty set ;
let Y be
ComplexNormSpace;
cluster CLSStruct(#
(ComplexBoundedFunctions X,Y),
(Zero_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),
(Add_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),
(Mult_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)) #)
-> Abelian add-associative right_zeroed right_complementable ComplexLinearSpace-like ;
coherence
( CLSStruct(# (ComplexBoundedFunctions X,Y),(Zero_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),(Add_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),(Mult_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)) #) is Abelian & CLSStruct(# (ComplexBoundedFunctions X,Y),(Zero_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),(Add_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),(Mult_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)) #) is add-associative & CLSStruct(# (ComplexBoundedFunctions X,Y),(Zero_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),(Add_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),(Mult_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)) #) is right_zeroed & CLSStruct(# (ComplexBoundedFunctions X,Y),(Zero_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),(Add_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),(Mult_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)) #) is right_complementable & CLSStruct(# (ComplexBoundedFunctions X,Y),(Zero_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),(Add_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),(Mult_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)) #) is ComplexLinearSpace-like )
by Th9;
end;
definition
let X be non
empty set ;
let Y be
ComplexNormSpace;
func C_VectorSpace_of_BoundedFunctions X,
Y -> ComplexLinearSpace equals :: CSSPACE4:def 6
CLSStruct(#
(ComplexBoundedFunctions X,Y),
(Zero_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),
(Add_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),
(Mult_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)) #);
coherence
CLSStruct(# (ComplexBoundedFunctions X,Y),(Zero_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),(Add_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),(Mult_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)) #) is ComplexLinearSpace
;
end;
:: deftheorem defines C_VectorSpace_of_BoundedFunctions CSSPACE4:def 6 :
for
X being non
empty set for
Y being
ComplexNormSpace holds
C_VectorSpace_of_BoundedFunctions X,
Y = CLSStruct(#
(ComplexBoundedFunctions X,Y),
(Zero_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),
(Add_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),
(Mult_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)) #);
theorem :: CSSPACE4:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th11: :: CSSPACE4:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th12: :: CSSPACE4:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th13: :: CSSPACE4:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def7 defines modetrans CSSPACE4:def 7 :
:: deftheorem defines PreNorms CSSPACE4:def 8 :
theorem Th14: :: CSSPACE4:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE4:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th16: :: CSSPACE4:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
let X be non
empty set ;
let Y be
ComplexNormSpace;
func ComplexBoundedFunctionsNorm X,
Y -> Function of
ComplexBoundedFunctions X,
Y,
REAL means :
Def9:
:: CSSPACE4:def 9
for
x being
set st
x in ComplexBoundedFunctions X,
Y holds
it . x = sup (PreNorms (modetrans x,X,Y));
existence
ex b1 being Function of ComplexBoundedFunctions X,Y, REAL st
for x being set st x in ComplexBoundedFunctions X,Y holds
b1 . x = sup (PreNorms (modetrans x,X,Y))
by Th16;
uniqueness
for b1, b2 being Function of ComplexBoundedFunctions X,Y, REAL st ( for x being set st x in ComplexBoundedFunctions X,Y holds
b1 . x = sup (PreNorms (modetrans x,X,Y)) ) & ( for x being set st x in ComplexBoundedFunctions X,Y holds
b2 . x = sup (PreNorms (modetrans x,X,Y)) ) holds
b1 = b2
end;
:: deftheorem Def9 defines ComplexBoundedFunctionsNorm CSSPACE4:def 9 :
theorem Th17: :: CSSPACE4:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th18: :: CSSPACE4:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
let X be non
empty set ;
let Y be
ComplexNormSpace;
func C_NormSpace_of_BoundedFunctions X,
Y -> non
empty CNORMSTR equals :: CSSPACE4:def 10
CNORMSTR(#
(ComplexBoundedFunctions X,Y),
(Zero_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),
(Add_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),
(Mult_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),
(ComplexBoundedFunctionsNorm X,Y) #);
coherence
CNORMSTR(# (ComplexBoundedFunctions X,Y),(Zero_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),(Add_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),(Mult_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),(ComplexBoundedFunctionsNorm X,Y) #) is non empty CNORMSTR
;
end;
:: deftheorem defines C_NormSpace_of_BoundedFunctions CSSPACE4:def 10 :
for
X being non
empty set for
Y being
ComplexNormSpace holds
C_NormSpace_of_BoundedFunctions X,
Y = CNORMSTR(#
(ComplexBoundedFunctions X,Y),
(Zero_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),
(Add_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),
(Mult_ (ComplexBoundedFunctions X,Y),(ComplexVectSpace X,Y)),
(ComplexBoundedFunctionsNorm X,Y) #);
theorem Th19: :: CSSPACE4:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th20: :: CSSPACE4:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE4:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th22: :: CSSPACE4:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th23: :: CSSPACE4:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th24: :: CSSPACE4:24 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th25: :: CSSPACE4:25 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th26: :: CSSPACE4:26 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th27: :: CSSPACE4:27 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th28: :: CSSPACE4:28 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm13:
for e being Real
for seq being Real_Sequence st seq is convergent & ex k being Nat st
for i being Nat st k <= i holds
seq . i <= e holds
lim seq <= e
theorem Th29: :: CSSPACE4:29 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th30: :: CSSPACE4:30 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE4:31 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE4:32 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE4:33 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CSSPACE4:34 :: Showing IDV graph ... (Click the Palm Tree again to close it)