:: TOPALG_1 semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
theorem :: TOPALG_1:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th2: :: TOPALG_1:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th3: :: TOPALG_1:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th4: :: TOPALG_1:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th5: :: TOPALG_1:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th6: :: TOPALG_1:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th7: :: TOPALG_1:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th8: :: TOPALG_1:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th9: :: TOPALG_1:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th10: :: TOPALG_1:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: TOPALG_1:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: TOPALG_1:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
x,
y being
real number for
n being
Nat for
e1,
e2,
e3,
e4,
e5,
e6 being
Point of
(Euclid n) for
p1,
p2,
p3,
p4 being
Point of
(TOP-REAL n) st
e1 = p1 &
e2 = p2 &
e3 = p3 &
e4 = p4 &
e5 = p1 + p3 &
e6 = p2 + p4 &
dist e1,
e2 < x &
dist e3,
e4 < y holds
dist e5,
e6 < x + y
theorem Th13: :: TOPALG_1:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th14: :: TOPALG_1:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
x,
y,
p,
q being
real number for
n being
Nat for
e1,
e2,
e3,
e4,
e5,
e6 being
Point of
(Euclid n) for
p1,
p2,
p3,
p4 being
Point of
(TOP-REAL n) st
e1 = p1 &
e2 = p2 &
e3 = p3 &
e4 = p4 &
e5 = (x * p1) + (y * p3) &
e6 = (x * p2) + (y * p4) &
dist e1,
e2 < p &
dist e3,
e4 < q &
x <> 0 &
y <> 0 holds
dist e5,
e6 < ((abs x) * p) + ((abs y) * q)
Lm1:
for n being Nat
for X being non empty TopSpace
for f1, f2, g being Function of X,(TOP-REAL n) st f1 is continuous & f2 is continuous & ( for p being Point of X holds g . p = (f1 . p) + (f2 . p) ) holds
g is continuous
theorem :: TOPALG_1:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th16: :: TOPALG_1:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: TOPALG_1:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th18: :: TOPALG_1:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th19: :: TOPALG_1:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th20: :: TOPALG_1:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: TOPALG_1:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th22: :: TOPALG_1:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: TOPALG_1:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th24: :: TOPALG_1:24 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: TOPALG_1:25 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th26: :: TOPALG_1:26 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: TOPALG_1:27 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th28: :: TOPALG_1:28 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: TOPALG_1:29 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th30: :: TOPALG_1:30 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: TOPALG_1:31 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th32: :: TOPALG_1:32 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
X being non
empty TopSpace for
a,
b,
c,
d,
e being
Point of
X st
a,
b are_connected &
b,
c are_connected &
c,
d are_connected &
d,
e are_connected holds
for
A being
Path of
a,
b for
B being
Path of
b,
c for
C being
Path of
c,
d for
D being
Path of
d,
e holds
((A + B) + C) + D,
(A + (B + C)) + D are_homotopic
theorem :: TOPALG_1:33 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th34: :: TOPALG_1:34 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
X being non
empty TopSpace for
a,
b,
c,
d,
e being
Point of
X st
a,
b are_connected &
b,
c are_connected &
c,
d are_connected &
d,
e are_connected holds
for
A being
Path of
a,
b for
B being
Path of
b,
c for
C being
Path of
c,
d for
D being
Path of
d,
e holds
((A + B) + C) + D,
A + ((B + C) + D) are_homotopic
theorem :: TOPALG_1:35 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th36: :: TOPALG_1:36 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
X being non
empty TopSpace for
a,
b,
c,
d,
e being
Point of
X st
a,
b are_connected &
b,
c are_connected &
c,
d are_connected &
d,
e are_connected holds
for
A being
Path of
a,
b for
B being
Path of
b,
c for
C being
Path of
c,
d for
D being
Path of
d,
e holds
(A + (B + C)) + D,
(A + B) + (C + D) are_homotopic
theorem :: TOPALG_1:37 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th38: :: TOPALG_1:38 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
X being non
empty TopSpace for
a,
b,
c,
d being
Point of
X st
a,
b are_connected &
b,
c are_connected &
b,
d are_connected holds
for
A being
Path of
a,
b for
B being
Path of
d,
b for
C being
Path of
b,
c holds
((A + (- B)) + B) + C,
A + C are_homotopic
theorem :: TOPALG_1:39 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th40: :: TOPALG_1:40 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
X being non
empty TopSpace for
a,
b,
c,
d being
Point of
X st
a,
b are_connected &
a,
c are_connected &
c,
d are_connected holds
for
A being
Path of
a,
b for
B being
Path of
c,
d for
C being
Path of
a,
c holds
(((A + (- A)) + C) + B) + (- B),
C are_homotopic
theorem :: TOPALG_1:41 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th42: :: TOPALG_1:42 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
X being non
empty TopSpace for
a,
b,
c,
d being
Point of
X st
a,
b are_connected &
a,
c are_connected &
d,
c are_connected holds
for
A being
Path of
a,
b for
B being
Path of
c,
d for
C being
Path of
a,
c holds
(A + (((- A) + C) + B)) + (- B),
C are_homotopic
theorem :: TOPALG_1:43 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th44: :: TOPALG_1:44 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
X being non
empty TopSpace for
a,
b,
c,
d,
e,
f being
Point of
X st
a,
b are_connected &
b,
c are_connected &
c,
d are_connected &
d,
e are_connected &
a,
f are_connected holds
for
A being
Path of
a,
b for
B being
Path of
b,
c for
C being
Path of
c,
d for
D being
Path of
d,
e for
E being
Path of
f,
c holds
(A + (B + C)) + D,
((A + B) + (- E)) + ((E + C) + D) are_homotopic
theorem :: TOPALG_1:45 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
T being non
empty arcwise_connected TopSpace for
a1,
b1,
c1,
d1,
e1,
f1 being
Point of
T for
A being
Path of
a1,
b1 for
B being
Path of
b1,
c1 for
C being
Path of
c1,
d1 for
D being
Path of
d1,
e1 for
E being
Path of
f1,
c1 holds
(A + (B + C)) + D,
((A + B) + (- E)) + ((E + C) + D) are_homotopic
:: deftheorem Def1 defines Loops TOPALG_1:def 1 :
Lm2:
for X being non empty TopSpace
for a being Point of X ex E being Equivalence_Relation of Loops a st
for x, y being set holds
( [x,y] in E iff ( x in Loops a & y in Loops a & ex P, Q being Loop of a st
( P = x & Q = y & P,Q are_homotopic ) ) )
definition
let X be non
empty TopSpace;
let a be
Point of
X;
func EqRel X,
a -> Relation of
Loops a means :
Def2:
:: TOPALG_1:def 2
for
P,
Q being
Loop of
a holds
(
[P,Q] in it iff
P,
Q are_homotopic );
existence
ex b1 being Relation of Loops a st
for P, Q being Loop of a holds
( [P,Q] in b1 iff P,Q are_homotopic )
uniqueness
for b1, b2 being Relation of Loops a st ( for P, Q being Loop of a holds
( [P,Q] in b1 iff P,Q are_homotopic ) ) & ( for P, Q being Loop of a holds
( [P,Q] in b2 iff P,Q are_homotopic ) ) holds
b1 = b2
end;
:: deftheorem Def2 defines EqRel TOPALG_1:def 2 :
theorem Th46: :: TOPALG_1:46 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th47: :: TOPALG_1:47 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
let X be non
empty TopSpace;
let a be
Point of
X;
func FundamentalGroup X,
a -> strict HGrStr means :
Def3:
:: TOPALG_1:def 3
( the
carrier of
it = Class (EqRel X,a) & ( for
x,
y being
Element of
it ex
P,
Q being
Loop of
a st
(
x = Class (EqRel X,a),
P &
y = Class (EqRel X,a),
Q & the
mult of
it . x,
y = Class (EqRel X,a),
(P + Q) ) ) );
existence
ex b1 being strict HGrStr st
( the carrier of b1 = Class (EqRel X,a) & ( for x, y being Element of b1 ex P, Q being Loop of a st
( x = Class (EqRel X,a),P & y = Class (EqRel X,a),Q & the mult of b1 . x,y = Class (EqRel X,a),(P + Q) ) ) )
uniqueness
for b1, b2 being strict HGrStr st the carrier of b1 = Class (EqRel X,a) & ( for x, y being Element of b1 ex P, Q being Loop of a st
( x = Class (EqRel X,a),P & y = Class (EqRel X,a),Q & the mult of b1 . x,y = Class (EqRel X,a),(P + Q) ) ) & the carrier of b2 = Class (EqRel X,a) & ( for x, y being Element of b2 ex P, Q being Loop of a st
( x = Class (EqRel X,a),P & y = Class (EqRel X,a),Q & the mult of b2 . x,y = Class (EqRel X,a),(P + Q) ) ) holds
b1 = b2
end;
:: deftheorem Def3 defines FundamentalGroup TOPALG_1:def 3 :
for
X being non
empty TopSpace for
a being
Point of
X for
b3 being
strict HGrStr holds
(
b3 = FundamentalGroup X,
a iff ( the
carrier of
b3 = Class (EqRel X,a) & ( for
x,
y being
Element of
b3 ex
P,
Q being
Loop of
a st
(
x = Class (EqRel X,a),
P &
y = Class (EqRel X,a),
Q & the
mult of
b3 . x,
y = Class (EqRel X,a),
(P + Q) ) ) ) );
theorem Th48: :: TOPALG_1:48 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
let T be non
empty TopSpace;
let x0,
x1 be
Point of
T;
let P be
Path of
x0,
x1;
assume A1:
x0,
x1 are_connected
;
func pi_1-iso P -> Function of
(pi_1 T,x1),
(pi_1 T,x0) means :
Def4:
:: TOPALG_1:def 4
for
Q being
Loop of
x1 holds
it . (Class (EqRel T,x1),Q) = Class (EqRel T,x0),
((P + Q) + (- P));
existence
ex b1 being Function of (pi_1 T,x1),(pi_1 T,x0) st
for Q being Loop of x1 holds b1 . (Class (EqRel T,x1),Q) = Class (EqRel T,x0),((P + Q) + (- P))
uniqueness
for b1, b2 being Function of (pi_1 T,x1),(pi_1 T,x0) st ( for Q being Loop of x1 holds b1 . (Class (EqRel T,x1),Q) = Class (EqRel T,x0),((P + Q) + (- P)) ) & ( for Q being Loop of x1 holds b2 . (Class (EqRel T,x1),Q) = Class (EqRel T,x0),((P + Q) + (- P)) ) holds
b1 = b2
end;
:: deftheorem Def4 defines pi_1-iso TOPALG_1:def 4 :
for
T being non
empty TopSpace for
x0,
x1 being
Point of
T for
P being
Path of
x0,
x1 st
x0,
x1 are_connected holds
for
b5 being
Function of
(pi_1 T,x1),
(pi_1 T,x0) holds
(
b5 = pi_1-iso P iff for
Q being
Loop of
x1 holds
b5 . (Class (EqRel T,x1),Q) = Class (EqRel T,x0),
((P + Q) + (- P)) );
theorem Th49: :: TOPALG_1:49 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: TOPALG_1:50 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th51: :: TOPALG_1:51 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th52: :: TOPALG_1:52 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th53: :: TOPALG_1:53 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th54: :: TOPALG_1:54 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: TOPALG_1:55 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th56: :: TOPALG_1:56 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th57: :: TOPALG_1:57 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: TOPALG_1:58 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: TOPALG_1:59 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
let n be
Nat;
let a,
b be
Point of
(TOP-REAL n);
let P,
Q be
Path of
a,
b;
func RealHomotopy P,
Q -> Function of
[:I[01] ,I[01] :],
(TOP-REAL n) means :
Def5:
:: TOPALG_1:def 5
for
s,
t being
Element of
I[01] holds
it . s,
t = ((1 - t) * (P . s)) + (t * (Q . s));
existence
ex b1 being Function of [:I[01] ,I[01] :],(TOP-REAL n) st
for s, t being Element of I[01] holds b1 . s,t = ((1 - t) * (P . s)) + (t * (Q . s))
uniqueness
for b1, b2 being Function of [:I[01] ,I[01] :],(TOP-REAL n) st ( for s, t being Element of I[01] holds b1 . s,t = ((1 - t) * (P . s)) + (t * (Q . s)) ) & ( for s, t being Element of I[01] holds b2 . s,t = ((1 - t) * (P . s)) + (t * (Q . s)) ) holds
b1 = b2
end;
:: deftheorem Def5 defines RealHomotopy TOPALG_1:def 5 :
Lm3:
for n being Nat
for a, b being Point of (TOP-REAL n)
for P, Q being Path of a,b holds RealHomotopy P,Q is continuous
Lm4:
for n being Nat
for a, b being Point of (TOP-REAL n)
for P, Q being Path of a,b
for s being Point of I[01] holds
( (RealHomotopy P,Q) . s,0 = P . s & (RealHomotopy P,Q) . s,1 = Q . s & ( for t being Point of I[01] holds
( (RealHomotopy P,Q) . 0,t = a & (RealHomotopy P,Q) . 1,t = b ) ) )
theorem Th60: :: TOPALG_1:60 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th61: :: TOPALG_1:61 :: Showing IDV graph ... (Click the Palm Tree again to close it)