:: TAYLOR_2 semantic presentation
:: Showing IDV graph ... (Click the Palm Trees again to close it)
theorem Th1: :: TAYLOR_2:1
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
:: deftheorem defines Maclaurin TAYLOR_2:def 1 :
theorem Th2: :: TAYLOR_2:2
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem :: TAYLOR_2:3
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
for
n being
Nat for
f being
PartFunc of
REAL ,
REAL for
x0,
r being
Real st 0
< r &
f is_differentiable_on n + 1,
].(x0 - r),(x0 + r).[ holds
for
x being
Real st
x in ].(x0 - r),(x0 + r).[ holds
ex
s being
Real st
( 0
< s &
s < 1 &
abs ((f . x) - ((Partial_Sums (Taylor f,].(x0 - r),(x0 + r).[,x0,x)) . n)) = abs (((((diff f,].(x0 - r),(x0 + r).[) . (n + 1)) . (x0 + (s * (x - x0)))) * ((x - x0) |^ (n + 1))) / ((n + 1) ! )) )
theorem Th4: :: TAYLOR_2:4
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem Th5: :: TAYLOR_2:5
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem Th6: :: TAYLOR_2:6
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem Th7: :: TAYLOR_2:7
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem :: TAYLOR_2:8
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem :: TAYLOR_2:9
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem Th10: :: TAYLOR_2:10
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem Th11: :: TAYLOR_2:11
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem Th12: :: TAYLOR_2:12
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
for
M,
L being
Real st
M >= 0 &
L >= 0 holds
for
e being
Real st
e > 0 holds
ex
n being
Nat st
for
m being
Nat st
n <= m holds
(M * (L |^ m)) / (m ! ) < e
theorem Th13: :: TAYLOR_2:13
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem :: TAYLOR_2:14
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem Th15: :: TAYLOR_2:15
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem :: TAYLOR_2:16
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
for
r,
x being
Real st 0
< r holds
(
Maclaurin exp ,
].(- r),r.[,
x = x ExpSeq &
Maclaurin exp ,
].(- r),r.[,
x is
absolutely_summable &
exp . x = Sum (Maclaurin exp ,].(- r),r.[,x) )
theorem Th17: :: TAYLOR_2:17
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem :: TAYLOR_2:18
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem Th19: :: TAYLOR_2:19
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
for
r being
Real for
n being
Nat holds
(
(diff sin ,].(- r),r.[) . (2 * n) = ((- 1) |^ n) (#) (sin | ].(- r),r.[) &
(diff sin ,].(- r),r.[) . ((2 * n) + 1) = ((- 1) |^ n) (#) (cos | ].(- r),r.[) &
(diff cos ,].(- r),r.[) . (2 * n) = ((- 1) |^ n) (#) (cos | ].(- r),r.[) &
(diff cos ,].(- r),r.[) . ((2 * n) + 1) = ((- 1) |^ (n + 1)) (#) (sin | ].(- r),r.[) )
theorem Th20: :: TAYLOR_2:20
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
for
n being
Nat for
r,
x being
Real st
r > 0 holds
(
(Maclaurin sin ,].(- r),r.[,x) . (2 * n) = 0 &
(Maclaurin sin ,].(- r),r.[,x) . ((2 * n) + 1) = (((- 1) |^ n) * (x |^ ((2 * n) + 1))) / (((2 * n) + 1) ! ) &
(Maclaurin cos ,].(- r),r.[,x) . (2 * n) = (((- 1) |^ n) * (x |^ (2 * n))) / ((2 * n) ! ) &
(Maclaurin cos ,].(- r),r.[,x) . ((2 * n) + 1) = 0 )
theorem Th21: :: TAYLOR_2:21
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem Th22: :: TAYLOR_2:22
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem Th23: :: TAYLOR_2:23
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem :: TAYLOR_2:24
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem Th25: :: TAYLOR_2:25
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem Th26: :: TAYLOR_2:26
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem Th27: :: TAYLOR_2:27
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
theorem :: TAYLOR_2:28
:: Showing IDV graph ... (Click the Palm Tree again to close it) 
for
r,
x being
Real st
r > 0 holds
(
Partial_Sums (Maclaurin sin ,].(- r),r.[,x) is
convergent &
sin . x = Sum (Maclaurin sin ,].(- r),r.[,x) &
Partial_Sums (Maclaurin cos ,].(- r),r.[,x) is
convergent &
cos . x = Sum (Maclaurin cos ,].(- r),r.[,x) )