:: SCMFSA8A semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
set A = the Instruction-Locations of SCM+FSA ;
set D = Int-Locations \/ FinSeq-Locations ;
theorem :: SCMFSA8A:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th2: :: SCMFSA8A:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th3: :: SCMFSA8A:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th4: :: SCMFSA8A:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th5: :: SCMFSA8A:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th6: :: SCMFSA8A:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th7: :: SCMFSA8A:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA8A:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th9: :: SCMFSA8A:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th10: :: SCMFSA8A:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA8A:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th12: :: SCMFSA8A:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th13: :: SCMFSA8A:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th14: :: SCMFSA8A:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th15: :: SCMFSA8A:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th16: :: SCMFSA8A:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th17: :: SCMFSA8A:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem defines Directed SCMFSA8A:def 1 :
theorem Th18: :: SCMFSA8A:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th19: :: SCMFSA8A:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th20: :: SCMFSA8A:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th21: :: SCMFSA8A:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th22: :: SCMFSA8A:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th23: :: SCMFSA8A:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th24: :: SCMFSA8A:24 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th25: :: SCMFSA8A:25 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th26: :: SCMFSA8A:26 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th27: :: SCMFSA8A:27 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm1:
for l being Instruction-Location of SCM+FSA holds
( dom ((insloc 0) .--> (goto l)) = {(insloc 0)} & insloc 0 in dom ((insloc 0) .--> (goto l)) & ((insloc 0) .--> (goto l)) . (insloc 0) = goto l & card ((insloc 0) .--> (goto l)) = 1 & not halt SCM+FSA in rng ((insloc 0) .--> (goto l)) )
:: deftheorem defines Goto SCMFSA8A:def 2 :
:: deftheorem Def3 defines is_pseudo-closed_on SCMFSA8A:def 3 :
:: deftheorem Def4 defines pseudo-paraclosed SCMFSA8A:def 4 :
:: deftheorem Def5 defines pseudo-LifeSpan SCMFSA8A:def 5 :
theorem Th28: :: SCMFSA8A:28 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th29: :: SCMFSA8A:29 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th30: :: SCMFSA8A:30 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th31: :: SCMFSA8A:31 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th32: :: SCMFSA8A:32 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th33: :: SCMFSA8A:33 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th34: :: SCMFSA8A:34 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th35: :: SCMFSA8A:35 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th36: :: SCMFSA8A:36 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm2:
for s being State of SCM+FSA
for I being Macro-Instruction st I is_closed_on s & I is_halting_on s holds
( Directed I is_pseudo-closed_on s & pseudo-LifeSpan s,(Directed I) = (LifeSpan (s +* (I +* (Start-At (insloc 0))))) + 1 )
theorem :: SCMFSA8A:37 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA8A:38 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th39: :: SCMFSA8A:39 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th40: :: SCMFSA8A:40 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th41: :: SCMFSA8A:41 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th42: :: SCMFSA8A:42 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th43: :: SCMFSA8A:43 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th44: :: SCMFSA8A:44 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th45: :: SCMFSA8A:45 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm3:
for I being Macro-Instruction
for s being State of SCM+FSA st I is_closed_on s & I is_halting_on s holds
( IC ((Computation (s +* ((I ';' SCM+FSA-Stop ) +* (Start-At (insloc 0))))) . ((LifeSpan (s +* (I +* (Start-At (insloc 0))))) + 1)) = insloc (card I) & ((Computation (s +* (I +* (Start-At (insloc 0))))) . (LifeSpan (s +* (I +* (Start-At (insloc 0)))))) | (Int-Locations \/ FinSeq-Locations ) = ((Computation (s +* ((I ';' SCM+FSA-Stop ) +* (Start-At (insloc 0))))) . ((LifeSpan (s +* (I +* (Start-At (insloc 0))))) + 1)) | (Int-Locations \/ FinSeq-Locations ) & s +* ((I ';' SCM+FSA-Stop ) +* (Start-At (insloc 0))) is halting & LifeSpan (s +* ((I ';' SCM+FSA-Stop ) +* (Start-At (insloc 0)))) = (LifeSpan (s +* (I +* (Start-At (insloc 0))))) + 1 & I ';' SCM+FSA-Stop is_closed_on s & I ';' SCM+FSA-Stop is_halting_on s )
theorem :: SCMFSA8A:46 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th47: :: SCMFSA8A:47 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th48: :: SCMFSA8A:48 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th49: :: SCMFSA8A:49 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th50: :: SCMFSA8A:50 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th51: :: SCMFSA8A:51 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th52: :: SCMFSA8A:52 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm4:
for I being Macro-Instruction
for s being State of SCM+FSA st I is_closed_on Initialize s & I is_halting_on Initialize s holds
( IC ((Computation (s +* (Initialized (I ';' SCM+FSA-Stop )))) . ((LifeSpan (s +* (Initialized I))) + 1)) = insloc (card I) & ((Computation (s +* (Initialized I))) . (LifeSpan (s +* (Initialized I)))) | (Int-Locations \/ FinSeq-Locations ) = ((Computation (s +* (Initialized (I ';' SCM+FSA-Stop )))) . ((LifeSpan (s +* (Initialized I))) + 1)) | (Int-Locations \/ FinSeq-Locations ) & s +* (Initialized (I ';' SCM+FSA-Stop )) is halting & LifeSpan (s +* (Initialized (I ';' SCM+FSA-Stop ))) = (LifeSpan (s +* (Initialized I))) + 1 )
theorem :: SCMFSA8A:53 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA8A:54 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA8A:55 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA8A:56 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA8A:57 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm5:
for I, J being Macro-Instruction
for s being State of SCM+FSA st I is_closed_on s & I is_halting_on s holds
( IC ((Computation (s +* ((((I ';' (Goto (insloc ((card J) + 1)))) ';' J) ';' SCM+FSA-Stop ) +* (Start-At (insloc 0))))) . ((LifeSpan (s +* (I +* (Start-At (insloc 0))))) + 2)) = insloc (((card I) + (card J)) + 1) & ((Computation (s +* (I +* (Start-At (insloc 0))))) . (LifeSpan (s +* (I +* (Start-At (insloc 0)))))) | (Int-Locations \/ FinSeq-Locations ) = ((Computation (s +* ((((I ';' (Goto (insloc ((card J) + 1)))) ';' J) ';' SCM+FSA-Stop ) +* (Start-At (insloc 0))))) . ((LifeSpan (s +* (I +* (Start-At (insloc 0))))) + 2)) | (Int-Locations \/ FinSeq-Locations ) & ( for k being Nat st k < (LifeSpan (s +* (I +* (Start-At (insloc 0))))) + 2 holds
CurInstr ((Computation (s +* ((((I ';' (Goto (insloc ((card J) + 1)))) ';' J) ';' SCM+FSA-Stop ) +* (Start-At (insloc 0))))) . k) <> halt SCM+FSA ) & ( for k being Nat st k <= LifeSpan (s +* (I +* (Start-At (insloc 0)))) holds
IC ((Computation (s +* ((((I ';' (Goto (insloc ((card J) + 1)))) ';' J) ';' SCM+FSA-Stop ) +* (Start-At (insloc 0))))) . k) = IC ((Computation (s +* (I +* (Start-At (insloc 0))))) . k) ) & IC ((Computation (s +* ((((I ';' (Goto (insloc ((card J) + 1)))) ';' J) ';' SCM+FSA-Stop ) +* (Start-At (insloc 0))))) . ((LifeSpan (s +* (I +* (Start-At (insloc 0))))) + 1)) = insloc (card I) & s +* ((((I ';' (Goto (insloc ((card J) + 1)))) ';' J) ';' SCM+FSA-Stop ) +* (Start-At (insloc 0))) is halting & LifeSpan (s +* ((((I ';' (Goto (insloc ((card J) + 1)))) ';' J) ';' SCM+FSA-Stop ) +* (Start-At (insloc 0)))) = (LifeSpan (s +* (I +* (Start-At (insloc 0))))) + 2 )
theorem :: SCMFSA8A:58 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA8A:59 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm6:
for I, J being Macro-Instruction
for s being State of SCM+FSA st I is_closed_on Initialize s & I is_halting_on Initialize s holds
( IC ((Computation (s +* (Initialized (((I ';' (Goto (insloc ((card J) + 1)))) ';' J) ';' SCM+FSA-Stop )))) . ((LifeSpan (s +* (Initialized I))) + 2)) = insloc (((card I) + (card J)) + 1) & ((Computation (s +* (Initialized I))) . (LifeSpan (s +* (Initialized I)))) | (Int-Locations \/ FinSeq-Locations ) = ((Computation (s +* (Initialized (((I ';' (Goto (insloc ((card J) + 1)))) ';' J) ';' SCM+FSA-Stop )))) . ((LifeSpan (s +* (Initialized I))) + 2)) | (Int-Locations \/ FinSeq-Locations ) & ( for k being Nat st k < (LifeSpan (s +* (Initialized I))) + 2 holds
CurInstr ((Computation (s +* (Initialized (((I ';' (Goto (insloc ((card J) + 1)))) ';' J) ';' SCM+FSA-Stop )))) . k) <> halt SCM+FSA ) & ( for k being Nat st k <= LifeSpan (s +* (Initialized I)) holds
IC ((Computation (s +* (Initialized (((I ';' (Goto (insloc ((card J) + 1)))) ';' J) ';' SCM+FSA-Stop )))) . k) = IC ((Computation (s +* (Initialized I))) . k) ) & IC ((Computation (s +* (Initialized (((I ';' (Goto (insloc ((card J) + 1)))) ';' J) ';' SCM+FSA-Stop )))) . ((LifeSpan (s +* (Initialized I))) + 1)) = insloc (card I) & s +* (Initialized (((I ';' (Goto (insloc ((card J) + 1)))) ';' J) ';' SCM+FSA-Stop )) is halting & LifeSpan (s +* (Initialized (((I ';' (Goto (insloc ((card J) + 1)))) ';' J) ';' SCM+FSA-Stop ))) = (LifeSpan (s +* (Initialized I))) + 2 )
theorem :: SCMFSA8A:60 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA8A:61 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA8A:62 :: Showing IDV graph ... (Click the Palm Tree again to close it)