:: SCMFSA_2 semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
theorem :: SCMFSA_2:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: SCMFSA_2:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: SCMFSA_2:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
func SCM+FSA -> strict AMI-Struct of
{INT ,(INT * )} equals :: SCMFSA_2:def 1
AMI-Struct(#
INT ,
(In 0,INT ),
SCM+FSA-Instr-Loc ,
(Segm 13),
SCM+FSA-Instr ,
SCM+FSA-OK ,
SCM+FSA-Exec #);
coherence
AMI-Struct(# INT ,(In 0,INT ),SCM+FSA-Instr-Loc ,(Segm 13),SCM+FSA-Instr ,SCM+FSA-OK ,SCM+FSA-Exec #) is strict AMI-Struct of {INT ,(INT * )}
;
end;
:: deftheorem defines SCM+FSA SCMFSA_2:def 1 :
theorem :: SCMFSA_2:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th7: :: SCMFSA_2:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem defines Int-Locations SCMFSA_2:def 2 :
:: deftheorem defines FinSeq-Locations SCMFSA_2:def 3 :
theorem :: SCMFSA_2:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def4 defines Int-Location SCMFSA_2:def 4 :
:: deftheorem Def5 defines FinSeq-Location SCMFSA_2:def 5 :
theorem :: SCMFSA_2:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem defines intloc SCMFSA_2:def 6 :
:: deftheorem defines insloc SCMFSA_2:def 7 :
:: deftheorem defines fsloc SCMFSA_2:def 8 :
theorem :: SCMFSA_2:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th17: :: SCMFSA_2:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th20: :: SCMFSA_2:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:24 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th25: :: SCMFSA_2:25 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th26: :: SCMFSA_2:26 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th27: :: SCMFSA_2:27 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:28 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:29 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:30 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def9 defines Next SCMFSA_2:def 9 :
theorem Th31: :: SCMFSA_2:31 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:32 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th33: :: SCMFSA_2:33 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th34: :: SCMFSA_2:34 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th35: :: SCMFSA_2:35 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:36 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th37: :: SCMFSA_2:37 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th38: :: SCMFSA_2:38 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
let a,
b be
Int-Location ;
canceled;func a := b -> Instruction of
SCM+FSA means :
Def11:
:: SCMFSA_2:def 11
ex
A,
B being
Data-Location st
(
a = A &
b = B &
it = A := B );
existence
ex b1 being Instruction of SCM+FSA ex A, B being Data-Location st
( a = A & b = B & b1 = A := B )
correctness
uniqueness
for b1, b2 being Instruction of SCM+FSA st ex A, B being Data-Location st
( a = A & b = B & b1 = A := B ) & ex A, B being Data-Location st
( a = A & b = B & b2 = A := B ) holds
b1 = b2;
;
func AddTo a,
b -> Instruction of
SCM+FSA means :
Def12:
:: SCMFSA_2:def 12
ex
A,
B being
Data-Location st
(
a = A &
b = B &
it = AddTo A,
B );
existence
ex b1 being Instruction of SCM+FSA ex A, B being Data-Location st
( a = A & b = B & b1 = AddTo A,B )
correctness
uniqueness
for b1, b2 being Instruction of SCM+FSA st ex A, B being Data-Location st
( a = A & b = B & b1 = AddTo A,B ) & ex A, B being Data-Location st
( a = A & b = B & b2 = AddTo A,B ) holds
b1 = b2;
;
func SubFrom a,
b -> Instruction of
SCM+FSA means :
Def13:
:: SCMFSA_2:def 13
ex
A,
B being
Data-Location st
(
a = A &
b = B &
it = SubFrom A,
B );
existence
ex b1 being Instruction of SCM+FSA ex A, B being Data-Location st
( a = A & b = B & b1 = SubFrom A,B )
correctness
uniqueness
for b1, b2 being Instruction of SCM+FSA st ex A, B being Data-Location st
( a = A & b = B & b1 = SubFrom A,B ) & ex A, B being Data-Location st
( a = A & b = B & b2 = SubFrom A,B ) holds
b1 = b2;
;
func MultBy a,
b -> Instruction of
SCM+FSA means :
Def14:
:: SCMFSA_2:def 14
ex
A,
B being
Data-Location st
(
a = A &
b = B &
it = MultBy A,
B );
existence
ex b1 being Instruction of SCM+FSA ex A, B being Data-Location st
( a = A & b = B & b1 = MultBy A,B )
correctness
uniqueness
for b1, b2 being Instruction of SCM+FSA st ex A, B being Data-Location st
( a = A & b = B & b1 = MultBy A,B ) & ex A, B being Data-Location st
( a = A & b = B & b2 = MultBy A,B ) holds
b1 = b2;
;
func Divide a,
b -> Instruction of
SCM+FSA means :
Def15:
:: SCMFSA_2:def 15
ex
A,
B being
Data-Location st
(
a = A &
b = B &
it = Divide A,
B );
existence
ex b1 being Instruction of SCM+FSA ex A, B being Data-Location st
( a = A & b = B & b1 = Divide A,B )
correctness
uniqueness
for b1, b2 being Instruction of SCM+FSA st ex A, B being Data-Location st
( a = A & b = B & b1 = Divide A,B ) & ex A, B being Data-Location st
( a = A & b = B & b2 = Divide A,B ) holds
b1 = b2;
;
end;
:: deftheorem SCMFSA_2:def 10 :
canceled;
:: deftheorem Def11 defines := SCMFSA_2:def 11 :
:: deftheorem Def12 defines AddTo SCMFSA_2:def 12 :
:: deftheorem Def13 defines SubFrom SCMFSA_2:def 13 :
:: deftheorem Def14 defines MultBy SCMFSA_2:def 14 :
:: deftheorem Def15 defines Divide SCMFSA_2:def 15 :
theorem :: SCMFSA_2:39 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def16 defines goto SCMFSA_2:def 16 :
:: deftheorem Def17 defines =0_goto SCMFSA_2:def 17 :
:: deftheorem Def18 defines >0_goto SCMFSA_2:def 18 :
definition
let c,
i be
Int-Location ;
let a be
FinSeq-Location ;
func c := a,
i -> Instruction of
SCM+FSA equals :: SCMFSA_2:def 19
[9,<*c,a,i*>];
coherence
[9,<*c,a,i*>] is Instruction of SCM+FSA
func a,
i := c -> Instruction of
SCM+FSA equals :: SCMFSA_2:def 20
[10,<*c,a,i*>];
coherence
[10,<*c,a,i*>] is Instruction of SCM+FSA
end;
:: deftheorem defines := SCMFSA_2:def 19 :
:: deftheorem defines := SCMFSA_2:def 20 :
definition
let i be
Int-Location ;
let a be
FinSeq-Location ;
func i :=len a -> Instruction of
SCM+FSA equals :: SCMFSA_2:def 21
[11,<*i,a*>];
coherence
[11,<*i,a*>] is Instruction of SCM+FSA
func a :=<0,...,0> i -> Instruction of
SCM+FSA equals :: SCMFSA_2:def 22
[12,<*i,a*>];
coherence
[12,<*i,a*>] is Instruction of SCM+FSA
end;
:: deftheorem defines :=len SCMFSA_2:def 21 :
:: deftheorem defines :=<0,...,0> SCMFSA_2:def 22 :
theorem :: SCMFSA_2:40 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: SCMFSA_2:41 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: SCMFSA_2:42 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:43 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:44 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:45 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:46 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:47 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:48 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:49 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:50 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:51 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:52 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:53 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th54: :: SCMFSA_2:54 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th55: :: SCMFSA_2:55 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th56: :: SCMFSA_2:56 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th57: :: SCMFSA_2:57 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th58: :: SCMFSA_2:58 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th59: :: SCMFSA_2:59 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th60: :: SCMFSA_2:60 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th61: :: SCMFSA_2:61 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th62: :: SCMFSA_2:62 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th63: :: SCMFSA_2:63 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th64: :: SCMFSA_2:64 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th65: :: SCMFSA_2:65 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:66 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:67 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th68: :: SCMFSA_2:68 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th69: :: SCMFSA_2:69 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th70: :: SCMFSA_2:70 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:71 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:72 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:73 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:74 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th75: :: SCMFSA_2:75 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th76: :: SCMFSA_2:76 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th77: :: SCMFSA_2:77 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th78: :: SCMFSA_2:78 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th79: :: SCMFSA_2:79 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th80: :: SCMFSA_2:80 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:81 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:82 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:83 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:84 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:85 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:86 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:87 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th88: :: SCMFSA_2:88 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th89: :: SCMFSA_2:89 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th90: :: SCMFSA_2:90 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th91: :: SCMFSA_2:91 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th92: :: SCMFSA_2:92 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th93: :: SCMFSA_2:93 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b being
Int-Location for
s being
State of
SCM+FSA holds
(
(Exec (Divide a,b),s) . (IC SCM+FSA ) = Next (IC s) & (
a <> b implies
(Exec (Divide a,b),s) . a = (s . a) div (s . b) ) &
(Exec (Divide a,b),s) . b = (s . a) mod (s . b) & ( for
c being
Int-Location st
c <> a &
c <> b holds
(Exec (Divide a,b),s) . c = s . c ) & ( for
f being
FinSeq-Location holds
(Exec (Divide a,b),s) . f = s . f ) )
theorem :: SCMFSA_2:94 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th95: :: SCMFSA_2:95 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th96: :: SCMFSA_2:96 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th97: :: SCMFSA_2:97 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th98: :: SCMFSA_2:98 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th99: :: SCMFSA_2:99 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
g being
FinSeq-Location for
a,
c being
Int-Location for
s being
State of
SCM+FSA holds
(
(Exec (g,a := c),s) . (IC SCM+FSA ) = Next (IC s) & ex
k being
Nat st
(
k = abs (s . a) &
(Exec (g,a := c),s) . g = (s . g) +* k,
(s . c) ) & ( for
b being
Int-Location holds
(Exec (g,a := c),s) . b = s . b ) & ( for
f being
FinSeq-Location st
f <> g holds
(Exec (g,a := c),s) . f = s . f ) )
theorem Th100: :: SCMFSA_2:100 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th101: :: SCMFSA_2:101 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
g being
FinSeq-Location for
c being
Int-Location for
s being
State of
SCM+FSA holds
(
(Exec (g :=<0,...,0> c),s) . (IC SCM+FSA ) = Next (IC s) & ex
k being
Nat st
(
k = abs (s . c) &
(Exec (g :=<0,...,0> c),s) . g = k |-> 0 ) & ( for
b being
Int-Location holds
(Exec (g :=<0,...,0> c),s) . b = s . b ) & ( for
f being
FinSeq-Location st
f <> g holds
(Exec (g :=<0,...,0> c),s) . f = s . f ) )
theorem Th102: :: SCMFSA_2:102 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th103: :: SCMFSA_2:103 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th104: :: SCMFSA_2:104 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th105: :: SCMFSA_2:105 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th106: :: SCMFSA_2:106 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th107: :: SCMFSA_2:107 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th108: :: SCMFSA_2:108 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th109: :: SCMFSA_2:109 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th110: :: SCMFSA_2:110 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th111: :: SCMFSA_2:111 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th112: :: SCMFSA_2:112 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th113: :: SCMFSA_2:113 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th114: :: SCMFSA_2:114 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th115: :: SCMFSA_2:115 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th116: :: SCMFSA_2:116 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:117 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:118 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th119: :: SCMFSA_2:119 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th120: :: SCMFSA_2:120 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
I being
set holds
(
I is
Instruction of
SCM+FSA iff (
I = [0,{} ] or ex
a,
b being
Int-Location st
I = a := b or ex
a,
b being
Int-Location st
I = AddTo a,
b or ex
a,
b being
Int-Location st
I = SubFrom a,
b or ex
a,
b being
Int-Location st
I = MultBy a,
b or ex
a,
b being
Int-Location st
I = Divide a,
b or ex
la being
Instruction-Location of
SCM+FSA st
I = goto la or ex
lb being
Instruction-Location of
SCM+FSA ex
da being
Int-Location st
I = da =0_goto lb or ex
lb being
Instruction-Location of
SCM+FSA ex
da being
Int-Location st
I = da >0_goto lb or ex
b,
a being
Int-Location ex
fa being
FinSeq-Location st
I = a := fa,
b or ex
a,
b being
Int-Location ex
fa being
FinSeq-Location st
I = fa,
a := b or ex
a being
Int-Location ex
f being
FinSeq-Location st
I = a :=len f or ex
a being
Int-Location ex
f being
FinSeq-Location st
I = f :=<0,...,0> a ) )
theorem Th121: :: SCMFSA_2:121 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th122: :: SCMFSA_2:122 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th123: :: SCMFSA_2:123 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:124 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: SCMFSA_2:125 :: Showing IDV graph ... (Click the Palm Tree again to close it)