:: RSSPACE3 semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
:: deftheorem Def1 defines the_set_of_l1RealSequences RSSPACE3:def 1 :
theorem Th1: :: RSSPACE3:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm1:
RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is Subspace of Linear_Space_of_RealSequences
by RSSPACE:13;
registration
cluster RLSStruct(#
the_set_of_l1RealSequences ,
(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),
(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),
(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #)
-> Abelian add-associative right_zeroed right_complementable RealLinearSpace-like ;
coherence
( RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is Abelian & RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is add-associative & RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is right_zeroed & RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is right_complementable & RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is RealLinearSpace-like )
by RSSPACE:13;
end;
Lm2:
RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is RealLinearSpace
;
Lm3:
ex NORM being Function of the_set_of_l1RealSequences , REAL st
for x being set st x in the_set_of_l1RealSequences holds
NORM . x = Sum (abs (seq_id x))
:: deftheorem Def2 defines l_norm RSSPACE3:def 2 :
registration
let X be non
empty set ;
let Z be
Element of
X;
let A be
BinOp of
X;
let M be
Function of
[:REAL ,X:],
X;
let N be
Function of
X,
REAL ;
cluster NORMSTR(#
X,
Z,
A,
M,
N #)
-> non
empty ;
coherence
not NORMSTR(# X,Z,A,M,N #) is empty
by STRUCT_0:def 1;
end;
theorem :: RSSPACE3:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: RSSPACE3:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th4: :: RSSPACE3:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th5: :: RSSPACE3:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th6: :: RSSPACE3:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th7: :: RSSPACE3:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
func l1_Space -> non
empty NORMSTR equals :: RSSPACE3:def 3
NORMSTR(#
the_set_of_l1RealSequences ,
(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),
(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),
(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),
l_norm #);
coherence
NORMSTR(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),l_norm #) is non empty NORMSTR
;
end;
:: deftheorem defines l1_Space RSSPACE3:def 3 :
theorem Th8: :: RSSPACE3:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th9: :: RSSPACE3:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm4:
for c being Real
for seq, seq1 being Real_Sequence st seq is convergent & seq1 is convergent holds
for rseq being Real_Sequence st ( for i being Nat holds rseq . i = (abs ((seq . i) - c)) + (seq1 . i) ) holds
( rseq is convergent & lim rseq = (abs ((lim seq) - c)) + (lim seq1) )
:: deftheorem defines dist RSSPACE3:def 4 :
:: deftheorem Def5 defines CCauchy RSSPACE3:def 5 :
theorem Th10: :: RSSPACE3:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: RSSPACE3:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)