:: MSALIMIT semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
definition
let P be non
empty Poset;
let S be non
empty non
void ManySortedSign ;
mode OrderedAlgFam of
P,
S -> MSAlgebra-Family of the
carrier of
P,
S means :
Def1:
:: MSALIMIT:def 1
ex
F being
ManySortedFunction of the
InternalRel of
P st
for
i,
j,
k being
Element of
P st
i >= j &
j >= k holds
ex
f1 being
ManySortedFunction of
(it . i),
(it . j) ex
f2 being
ManySortedFunction of
(it . j),
(it . k) st
(
f1 = F . j,
i &
f2 = F . k,
j &
F . k,
i = f2 ** f1 &
f1 is_homomorphism it . i,
it . j );
existence
ex b1 being MSAlgebra-Family of the carrier of P,S ex F being ManySortedFunction of the InternalRel of P st
for i, j, k being Element of P st i >= j & j >= k holds
ex f1 being ManySortedFunction of (b1 . i),(b1 . j) ex f2 being ManySortedFunction of (b1 . j),(b1 . k) st
( f1 = F . j,i & f2 = F . k,j & F . k,i = f2 ** f1 & f1 is_homomorphism b1 . i,b1 . j )
end;
:: deftheorem Def1 defines OrderedAlgFam MSALIMIT:def 1 :
for
P being non
empty Poset for
S being non
empty non
void ManySortedSign for
b3 being
MSAlgebra-Family of the
carrier of
P,
S holds
(
b3 is
OrderedAlgFam of
P,
S iff ex
F being
ManySortedFunction of the
InternalRel of
P st
for
i,
j,
k being
Element of
P st
i >= j &
j >= k holds
ex
f1 being
ManySortedFunction of
(b3 . i),
(b3 . j) ex
f2 being
ManySortedFunction of
(b3 . j),
(b3 . k) st
(
f1 = F . j,
i &
f2 = F . k,
j &
F . k,
i = f2 ** f1 &
f1 is_homomorphism b3 . i,
b3 . j ) );
definition
let P be non
empty Poset;
let S be non
empty non
void ManySortedSign ;
let OAF be
OrderedAlgFam of
P,
S;
mode Binding of
OAF -> ManySortedFunction of the
InternalRel of
P means :
Def2:
:: MSALIMIT:def 2
for
i,
j,
k being
Element of
P st
i >= j &
j >= k holds
ex
f1 being
ManySortedFunction of
(OAF . i),
(OAF . j) ex
f2 being
ManySortedFunction of
(OAF . j),
(OAF . k) st
(
f1 = it . j,
i &
f2 = it . k,
j &
it . k,
i = f2 ** f1 &
f1 is_homomorphism OAF . i,
OAF . j );
existence
ex b1 being ManySortedFunction of the InternalRel of P st
for i, j, k being Element of P st i >= j & j >= k holds
ex f1 being ManySortedFunction of (OAF . i),(OAF . j) ex f2 being ManySortedFunction of (OAF . j),(OAF . k) st
( f1 = b1 . j,i & f2 = b1 . k,j & b1 . k,i = f2 ** f1 & f1 is_homomorphism OAF . i,OAF . j )
by Def1;
end;
:: deftheorem Def2 defines Binding MSALIMIT:def 2 :
:: deftheorem Def3 defines bind MSALIMIT:def 3 :
theorem Th1: :: MSALIMIT:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def4 defines normalized MSALIMIT:def 4 :
theorem Th2: :: MSALIMIT:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
let P be non
empty Poset;
let S be non
empty non
void ManySortedSign ;
let OAF be
OrderedAlgFam of
P,
S;
let B be
Binding of
OAF;
func Normalized B -> Binding of
OAF means :
Def5:
:: MSALIMIT:def 5
for
i,
j being
Element of
P st
i >= j holds
it . j,
i = IFEQ j,
i,
(id the Sorts of (OAF . i)),
((bind B,i,j) ** (id the Sorts of (OAF . i)));
existence
ex b1 being Binding of OAF st
for i, j being Element of P st i >= j holds
b1 . j,i = IFEQ j,i,(id the Sorts of (OAF . i)),((bind B,i,j) ** (id the Sorts of (OAF . i)))
uniqueness
for b1, b2 being Binding of OAF st ( for i, j being Element of P st i >= j holds
b1 . j,i = IFEQ j,i,(id the Sorts of (OAF . i)),((bind B,i,j) ** (id the Sorts of (OAF . i))) ) & ( for i, j being Element of P st i >= j holds
b2 . j,i = IFEQ j,i,(id the Sorts of (OAF . i)),((bind B,i,j) ** (id the Sorts of (OAF . i))) ) holds
b1 = b2
end;
:: deftheorem Def5 defines Normalized MSALIMIT:def 5 :
theorem Th3: :: MSALIMIT:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: MSALIMIT:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
let P be non
empty Poset;
let S be non
empty non
void ManySortedSign ;
let OAF be
OrderedAlgFam of
P,
S;
let B be
Binding of
OAF;
func InvLim B -> strict MSSubAlgebra of
product OAF means :
Def6:
:: MSALIMIT:def 6
for
s being
SortSymbol of
S for
f being
Element of
(SORTS OAF) . s holds
(
f in the
Sorts of
it . s iff for
i,
j being
Element of
P st
i >= j holds
((bind B,i,j) . s) . (f . i) = f . j );
existence
ex b1 being strict MSSubAlgebra of product OAF st
for s being SortSymbol of S
for f being Element of (SORTS OAF) . s holds
( f in the Sorts of b1 . s iff for i, j being Element of P st i >= j holds
((bind B,i,j) . s) . (f . i) = f . j )
uniqueness
for b1, b2 being strict MSSubAlgebra of product OAF st ( for s being SortSymbol of S
for f being Element of (SORTS OAF) . s holds
( f in the Sorts of b1 . s iff for i, j being Element of P st i >= j holds
((bind B,i,j) . s) . (f . i) = f . j ) ) & ( for s being SortSymbol of S
for f being Element of (SORTS OAF) . s holds
( f in the Sorts of b2 . s iff for i, j being Element of P st i >= j holds
((bind B,i,j) . s) . (f . i) = f . j ) ) holds
b1 = b2
end;
:: deftheorem Def6 defines InvLim MSALIMIT:def 6 :
theorem :: MSALIMIT:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def7 defines MSS-membered MSALIMIT:def 7 :
:: deftheorem Def8 defines TrivialMSSign MSALIMIT:def 8 :
Lm1:
for S being empty void ManySortedSign holds id the carrier of S, id the OperSymbols of S form_morphism_between S,S
Lm2:
for S being non empty void ManySortedSign holds id the carrier of S, id the OperSymbols of S form_morphism_between S,S
theorem :: MSALIMIT:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def9 defines MSS_set MSALIMIT:def 9 :
definition
let S1,
S2 be
ManySortedSign ;
func MSS_morph S1,
S2 -> set means :: MSALIMIT:def 10
for
x being
set holds
(
x in it iff ex
f,
g being
Function st
(
x = [f,g] &
f,
g form_morphism_between S1,
S2 ) );
existence
ex b1 being set st
for x being set holds
( x in b1 iff ex f, g being Function st
( x = [f,g] & f,g form_morphism_between S1,S2 ) )
uniqueness
for b1, b2 being set st ( for x being set holds
( x in b1 iff ex f, g being Function st
( x = [f,g] & f,g form_morphism_between S1,S2 ) ) ) & ( for x being set holds
( x in b2 iff ex f, g being Function st
( x = [f,g] & f,g form_morphism_between S1,S2 ) ) ) holds
b1 = b2
end;
:: deftheorem defines MSS_morph MSALIMIT:def 10 :