:: MSUALG_1 semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
:: deftheorem MSUALG_1:def 1 :
canceled;
:: deftheorem MSUALG_1:def 2 :
canceled;
:: deftheorem MSUALG_1:def 3 :
canceled;
:: deftheorem MSUALG_1:def 4 :
canceled;
:: deftheorem Def5 defines void MSUALG_1:def 5 :
:: deftheorem defines the_arity_of MSUALG_1:def 6 :
:: deftheorem defines the_result_sort_of MSUALG_1:def 7 :
:: deftheorem Def8 defines non-empty MSUALG_1:def 8 :
:: deftheorem defines Args MSUALG_1:def 9 :
:: deftheorem defines Result MSUALG_1:def 10 :
:: deftheorem defines Den MSUALG_1:def 11 :
theorem :: MSUALG_1:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: MSUALG_1:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: MSUALG_1:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: MSUALG_1:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: MSUALG_1:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: MSUALG_1:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm1:
for D being non empty set
for h being non empty homogeneous quasi_total PartFunc of D * ,D holds dom h = (arity h) -tuples_on D
theorem Th7: :: MSUALG_1:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th8: :: MSUALG_1:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th9: :: MSUALG_1:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def12 defines segmental MSUALG_1:def 12 :
theorem Th10: :: MSUALG_1:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm2:
for A being Universal_Algebra
for f being Function of dom (signature A),{0} * st f = (*--> 0) * (signature A) holds
( not ManySortedSign(# {0},(dom (signature A)),f,((dom (signature A)) --> 0) #) is empty & ManySortedSign(# {0},(dom (signature A)),f,((dom (signature A)) --> 0) #) is segmental & ManySortedSign(# {0},(dom (signature A)),f,((dom (signature A)) --> 0) #) is trivial & not ManySortedSign(# {0},(dom (signature A)),f,((dom (signature A)) --> 0) #) is void & ManySortedSign(# {0},(dom (signature A)),f,((dom (signature A)) --> 0) #) is strict )
:: deftheorem Def13 defines MSSign MSUALG_1:def 13 :
:: deftheorem defines MSSorts MSUALG_1:def 14 :
:: deftheorem defines MSCharact MSUALG_1:def 15 :
:: deftheorem defines MSAlg MSUALG_1:def 16 :
:: deftheorem Def17 defines the_sort_of MSUALG_1:def 17 :
theorem Th11: :: MSUALG_1:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th12: :: MSUALG_1:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th13: :: MSUALG_1:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th14: :: MSUALG_1:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem defines the_charact_of MSUALG_1:def 18 :
:: deftheorem defines 1-Alg MSUALG_1:def 19 :
theorem :: MSUALG_1:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: MSUALG_1:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)