:: HOMOTHET semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
Lm1:
for AFP being AffinPlane holds
( AFP satisfies_DES iff for o, a, a', p, p', q, q' being Element of AFP st LIN o,a,a' & LIN o,p,p' & LIN o,q,q' & not LIN o,a,p & not LIN o,a,q & a,p // a',p' & a,q // a',q' holds
p,q // p',q' )
Lm2:
for AFP being AffinPlane holds
( AFP satisfies_TDES iff for o being Element of AFP
for K being Subset of AFP
for c, c', a, b, a', b' being Element of AFP st o in K & c in K & c' in K & K is_line & LIN o,a,a' & LIN o,b,b' & not a in K & a,b // K & a',b' // K & a,c // a',c' holds
b,c // b',c' )
Lm3:
for AFP being AffinPlane st AFP satisfies_TDES holds
for K being Subset of AFP
for o, a, b, c, a', b', c' being Element of AFP st K is_line & o in K & c in K & c' in K & not a in K & a <> b & LIN o,a,a' & a,b // a',b' & b,c // b',c' & a,c // a',c' & a,b // K holds
LIN o,b,b'
Lm4:
for AFP being AffinPlane st AFP satisfies_TDES holds
for K, A, C being Subset of AFP
for p, q, a, a', b, b' being Element of AFP st K // A & K // C & K <> A & K <> C & p in K & q in K & a in A & a' in A & b in C & b' in C & p,a // q,a' & p,b // q,b' holds
a,b // a',b'
theorem Th1: :: HOMOTHET:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
AFP being
AffinPlane for
o,
a,
p,
b,
x,
y,
p',
q,
q' being
Element of
AFP st not
LIN o,
a,
p &
LIN o,
a,
b &
LIN o,
a,
x &
LIN o,
a,
y &
LIN o,
p,
p' &
LIN o,
p,
q &
LIN o,
p,
q' &
p <> q &
a <> x &
o <> q &
o <> x &
a,
p // b,
p' &
a,
q // b,
q' &
x,
p // y,
p' &
AFP satisfies_DES holds
x,
q // y,
q'
theorem Th2: :: HOMOTHET:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm5:
for AFP being AffinPlane
for o, a, b, y, x being Element of AFP st o <> a & o <> b & LIN o,a,b & LIN o,a,y & ( ( not LIN o,a,x & LIN o,x,y & a,x // b,y ) or ( LIN o,a,x & ex p, p' being Element of AFP st
( not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y ) ) ) holds
LIN o,a,x
Lm6:
for AFP being AffinPlane
for o, a, b, x, y being Element of AFP st o <> a & o <> b & LIN o,a,b & ( ( not LIN o,a,x & LIN o,x,y & a,x // b,y ) or ( LIN o,a,x & ex p, p' being Element of AFP st
( not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y ) ) ) holds
( o <> b & o <> a & LIN o,b,a & ( ( not LIN o,b,y & LIN o,y,x & b,y // a,x ) or ( LIN o,b,y & ex p, p' being Element of AFP st
( not LIN o,b,p & LIN o,p,p' & b,p // a,p' & p,y // p',x & LIN o,b,x ) ) ) )
Lm7:
for AFP being AffinPlane
for o, a, b, x, y being Element of AFP st o <> a & o <> b & LIN o,a,b & x = o & ( ( not LIN o,a,x & LIN o,x,y & a,x // b,y ) or ( LIN o,a,x & ex p, p' being Element of AFP st
( not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y ) ) ) holds
y = o
Lm8:
for AFP being AffinPlane
for o, a, b, x being Element of AFP st o <> a & o <> b & LIN o,a,b holds
ex y being Element of AFP st
( ( not LIN o,a,x & LIN o,x,y & a,x // b,y ) or ( LIN o,a,x & ex p, p' being Element of AFP st
( not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y ) ) )
Lm9:
for AFP being AffinPlane
for o, a, b, y being Element of AFP st o <> a & o <> b & LIN o,a,b holds
ex x being Element of AFP st
( ( not LIN o,a,x & LIN o,x,y & a,x // b,y ) or ( LIN o,a,x & ex p, p' being Element of AFP st
( not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y ) ) )
Lm10:
for AFP being AffinPlane
for o, a, b, x, y being Element of AFP st o <> a & o <> b & LIN o,a,b & a = b & ( ( not LIN o,a,x & LIN o,x,y & a,x // b,y ) or ( LIN o,a,x & ex p, p' being Element of AFP st
( not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y ) ) ) holds
x = y
Lm11:
for AFP being AffinPlane
for o, a, b, x, y, r being Element of AFP st o <> a & o <> b & LIN o,a,b & AFP satisfies_DES & LIN o,a,x & ex p, p' being Element of AFP st
( not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y ) & ex p, p' being Element of AFP st
( not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',r & LIN o,a,r ) holds
y = r
Lm12:
for AFP being AffinPlane
for o, a, b, x, y, r being Element of AFP st o <> a & o <> b & LIN o,a,b & AFP satisfies_DES & ( ( not LIN o,a,x & LIN o,x,y & a,x // b,y ) or ( LIN o,a,x & ex p, p' being Element of AFP st
( not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y ) ) ) & ( ( not LIN o,a,r & LIN o,r,y & a,r // b,y ) or ( LIN o,a,r & ex p, p' being Element of AFP st
( not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,r // p',y & LIN o,a,y ) ) ) holds
x = r
Lm13:
for AFP being AffinPlane
for o, a, b being Element of AFP st AFP satisfies_DES & o <> a & o <> b & LIN o,a,b holds
ex f being Permutation of the carrier of AFP st
for x, y being Element of AFP holds
( f . x = y iff ( ( not LIN o,a,x & LIN o,x,y & a,x // b,y ) or ( LIN o,a,x & ex p, p' being Element of AFP st
( not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y ) ) ) )
Lm14:
for AFP being AffinPlane
for o, a, b, x, y, z, t being Element of AFP st AFP satisfies_DES & o <> a & o <> b & LIN o,a,b & not LIN o,a,x & LIN o,x,y & a,x // b,y & LIN o,a,z & ex p, p' being Element of AFP st
( not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,z // p',t & LIN o,a,t ) holds
x,z // y,t
Lm15:
for AFP being AffinPlane
for o, a, b, x, y, z, t being Element of AFP st AFP satisfies_DES & o <> a & o <> b & LIN o,a,b & LIN o,a,x & ex p, p' being Element of AFP st
( not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y ) & not LIN o,a,z & LIN o,z,t & a,z // b,t holds
x,z // y,t
Lm16:
for AFP being AffinPlane
for o, a, b, x, y, z, t being Element of AFP st o <> a & o <> b & LIN o,a,b & LIN o,a,x & ex p, p' being Element of AFP st
( not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y ) & LIN o,a,z & ex p, p' being Element of AFP st
( not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,z // p',t & LIN o,a,t ) holds
x,z // y,t
Lm17:
for AFP being AffinPlane
for o, a, b being Element of AFP
for f being Permutation of the carrier of AFP st o <> a & o <> b & LIN o,a,b & AFP satisfies_DES & ( for x, y being Element of AFP holds
( f . x = y iff ( ( not LIN o,a,x & LIN o,x,y & a,x // b,y ) or ( LIN o,a,x & ex p, p' being Element of AFP st
( not LIN o,a,p & LIN o,p,p' & a,p // b,p' & p,x // p',y & LIN o,a,y ) ) ) ) ) holds
( f is_Dil & f . o = o & f . a = b )
theorem Th3: :: HOMOTHET:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: HOMOTHET:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def1 defines is_Sc HOMOTHET:def 1 :
theorem Th5: :: HOMOTHET:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th6: :: HOMOTHET:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm18:
for AFP being AffinPlane
for a, b, x, y being Element of AFP
for K being Subset of AFP st a,b // K & not a in K & ( ( x in K & x = y ) or ( not x in K & ex p, p' being Element of AFP st
( p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K ) ) ) holds
( b,a // K & not b in K & ( ( y in K & y = x ) or ( not y in K & ex p, p' being Element of AFP st
( p in K & p' in K & p,b // p',y & p,a // p',x & y,x // K ) ) ) )
Lm19:
for AFP being AffinPlane
for a, b being Element of AFP
for K being Subset of AFP st a,b // K & not a in K holds
for x being Element of AFP ex y being Element of AFP st
( ( x in K & x = y ) or ( not x in K & ex p, p' being Element of AFP st
( p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K ) ) )
Lm20:
for AFP being AffinPlane
for a, b being Element of AFP
for K being Subset of AFP st a,b // K & not a in K holds
for y being Element of AFP ex x being Element of AFP st
( ( x in K & x = y ) or ( not x in K & ex p, p' being Element of AFP st
( p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K ) ) )
theorem Th7: :: HOMOTHET:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
AFP being
AffinPlane for
p,
q,
p',
q',
a,
b,
x,
y being
Element of
AFP for
K,
M being
Subset of
AFP st
K // M &
p in K &
q in K &
p' in K &
q' in K &
AFP satisfies_TDES &
a in M &
b in M &
x in M &
y in M &
a <> b &
q <> p &
p,
a // p',
x &
p,
b // p',
y &
q,
a // q',
x holds
q,
b // q',
y
Lm21:
for AFP being AffinPlane
for a, b, x, p, p', y, q, q' being Element of AFP
for K being Subset of AFP st a,b // K & not a in K & not x in K & AFP satisfies_TDES & p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K & q in K & q' in K & q,a // q',x holds
q,b // q',y
Lm22:
for AFP being AffinPlane
for a, b, x, p, p', y, q, q', s being Element of AFP
for K being Subset of AFP st a,b // K & not a in K & not x in K & AFP satisfies_TDES & p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K & q in K & q' in K & q,a // q',x & x,s // K & q,b // q',s holds
s = y
Lm23:
for AFP being AffinPlane
for a, b, x, y, r being Element of AFP
for K being Subset of AFP st a,b // K & not a in K & AFP satisfies_TDES & ( ( x in K & x = y ) or ( not x in K & ex p, p' being Element of AFP st
( p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K ) ) ) & ( ( r in K & r = y ) or ( not r in K & ex p, p' being Element of AFP st
( p in K & p' in K & p,a // p',r & p,b // p',y & r,y // K ) ) ) holds
x = r
Lm24:
for AFP being AffinPlane
for a, b being Element of AFP
for K being Subset of AFP st a,b // K & not a in K & AFP satisfies_TDES holds
ex f being Permutation of the carrier of AFP st
for x, y being Element of AFP holds
( f . x = y iff ( ( x in K & x = y ) or ( not x in K & ex p, p' being Element of AFP st
( p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K ) ) ) )
Lm25:
for AFP being AffinPlane
for a, b being Element of AFP
for K being Subset of AFP
for f being Permutation of the carrier of AFP st a,b // K & not a in K & ( for x, y being Element of AFP holds
( f . x = y iff ( ( x in K & x = y ) or ( not x in K & ex p, p' being Element of AFP st
( p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K ) ) ) ) ) holds
f . a = b
Lm26:
for AFP being AffinPlane
for a, b being Element of AFP
for K being Subset of AFP
for f being Permutation of the carrier of AFP st a,b // K & not a in K & ( for x, y being Element of AFP holds
( f . x = y iff ( ( x in K & x = y ) or ( not x in K & ex p, p' being Element of AFP st
( p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K ) ) ) ) ) holds
for x being Element of AFP holds x,f . x // K
Lm27:
for AFP being AffinPlane
for a, b being Element of AFP
for K being Subset of AFP
for f being Permutation of the carrier of AFP st a,b // K & not a in K & AFP satisfies_TDES & ( for x, y being Element of AFP holds
( f . x = y iff ( ( x in K & x = y ) or ( not x in K & ex p, p' being Element of AFP st
( p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K ) ) ) ) ) holds
f is_Col
Lm28:
for AFP being AffinPlane
for a, b being Element of AFP
for K being Subset of AFP
for f being Permutation of the carrier of AFP st a,b // K & not a in K & AFP satisfies_TDES & ( for x, y being Element of AFP holds
( f . x = y iff ( ( x in K & x = y ) or ( not x in K & ex p, p' being Element of AFP st
( p in K & p' in K & p,a // p',x & p,b // p',y & x,y // K ) ) ) ) ) holds
f is_Sc K
theorem Th8: :: HOMOTHET:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: HOMOTHET:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)