:: GOBOARD7 semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
theorem Th1: :: GOBOARD7:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
r1,
r2,
s being
Real holds
( not
abs (r1 - r2) > s or
r1 + s < r2 or
r2 + s < r1 )
theorem Th2: :: GOBOARD7:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
r,
s being
Real holds
(
abs (r - s) = 0 iff
r = s )
theorem Th3: :: GOBOARD7:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: GOBOARD7:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th5: :: GOBOARD7:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th6: :: GOBOARD7:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th7: :: GOBOARD7:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th8: :: GOBOARD7:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th9: :: GOBOARD7:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th10: :: GOBOARD7:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: GOBOARD7:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th12: :: GOBOARD7:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th13: :: GOBOARD7:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: GOBOARD7:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th15: :: GOBOARD7:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th16: :: GOBOARD7:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th17: :: GOBOARD7:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th18: :: GOBOARD7:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th19: :: GOBOARD7:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th20: :: GOBOARD7:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th21: :: GOBOARD7:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th22: :: GOBOARD7:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th23: :: GOBOARD7:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: GOBOARD7:24 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
G being
Go-board for
i1,
j1,
i2,
j2 being
Nat st 1
<= i1 &
i1 <= len G & 1
<= j1 &
j1 + 1
<= width G & 1
<= i2 &
i2 <= len G & 1
<= j2 &
j2 + 1
<= width G &
LSeg (G * i1,j1),
(G * i1,(j1 + 1)) meets LSeg (G * i2,j2),
(G * i2,(j2 + 1)) & not (
j1 = j2 &
LSeg (G * i1,j1),
(G * i1,(j1 + 1)) = LSeg (G * i2,j2),
(G * i2,(j2 + 1)) ) & not (
j1 = j2 + 1 &
(LSeg (G * i1,j1),(G * i1,(j1 + 1))) /\ (LSeg (G * i2,j2),(G * i2,(j2 + 1))) = {(G * i1,j1)} ) holds
(
j1 + 1
= j2 &
(LSeg (G * i1,j1),(G * i1,(j1 + 1))) /\ (LSeg (G * i2,j2),(G * i2,(j2 + 1))) = {(G * i2,j2)} )
theorem :: GOBOARD7:25 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
G being
Go-board for
i1,
j1,
i2,
j2 being
Nat st 1
<= i1 &
i1 + 1
<= len G & 1
<= j1 &
j1 <= width G & 1
<= i2 &
i2 + 1
<= len G & 1
<= j2 &
j2 <= width G &
LSeg (G * i1,j1),
(G * (i1 + 1),j1) meets LSeg (G * i2,j2),
(G * (i2 + 1),j2) & not (
i1 = i2 &
LSeg (G * i1,j1),
(G * (i1 + 1),j1) = LSeg (G * i2,j2),
(G * (i2 + 1),j2) ) & not (
i1 = i2 + 1 &
(LSeg (G * i1,j1),(G * (i1 + 1),j1)) /\ (LSeg (G * i2,j2),(G * (i2 + 1),j2)) = {(G * i1,j1)} ) holds
(
i1 + 1
= i2 &
(LSeg (G * i1,j1),(G * (i1 + 1),j1)) /\ (LSeg (G * i2,j2),(G * (i2 + 1),j2)) = {(G * i2,j2)} )
theorem :: GOBOARD7:26 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
G being
Go-board for
i1,
j1,
i2,
j2 being
Nat st 1
<= i1 &
i1 <= len G & 1
<= j1 &
j1 + 1
<= width G & 1
<= i2 &
i2 + 1
<= len G & 1
<= j2 &
j2 <= width G &
LSeg (G * i1,j1),
(G * i1,(j1 + 1)) meets LSeg (G * i2,j2),
(G * (i2 + 1),j2) & not (
j1 = j2 &
(LSeg (G * i1,j1),(G * i1,(j1 + 1))) /\ (LSeg (G * i2,j2),(G * (i2 + 1),j2)) = {(G * i1,j1)} ) holds
(
j1 + 1
= j2 &
(LSeg (G * i1,j1),(G * i1,(j1 + 1))) /\ (LSeg (G * i2,j2),(G * (i2 + 1),j2)) = {(G * i1,(j1 + 1))} )
Lm1:
1 - (1 / 2) = 1 / 2
;
theorem Th27: :: GOBOARD7:27 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th28: :: GOBOARD7:28 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th29: :: GOBOARD7:29 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th30: :: GOBOARD7:30 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm2:
for f being standard non constant special_circular_sequence holds len f > 1
theorem Th31: :: GOBOARD7:31 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th32: :: GOBOARD7:32 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th33: :: GOBOARD7:33 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: GOBOARD7:34 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: GOBOARD7:35 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th36: :: GOBOARD7:36 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th37: :: GOBOARD7:37 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th38: :: GOBOARD7:38 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th39: :: GOBOARD7:39 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th40: :: GOBOARD7:40 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th41: :: GOBOARD7:41 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th42: :: GOBOARD7:42 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: GOBOARD7:43 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j,
k being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i + 1
<= len (GoB f) & 1
<= j &
j + 1
<= width (GoB f) & 1
<= k &
k + 1
< len f &
LSeg ((GoB f) * i,(j + 1)),
((GoB f) * (i + 1),(j + 1)) = LSeg f,
k &
LSeg ((GoB f) * (i + 1),j),
((GoB f) * (i + 1),(j + 1)) = LSeg f,
(k + 1) holds
(
f /. k = (GoB f) * i,
(j + 1) &
f /. (k + 1) = (GoB f) * (i + 1),
(j + 1) &
f /. (k + 2) = (GoB f) * (i + 1),
j )
theorem :: GOBOARD7:44 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j,
k being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i <= len (GoB f) & 1
<= j &
j + 1
< width (GoB f) & 1
<= k &
k + 1
< len f &
LSeg ((GoB f) * i,(j + 1)),
((GoB f) * i,(j + 2)) = LSeg f,
k &
LSeg ((GoB f) * i,j),
((GoB f) * i,(j + 1)) = LSeg f,
(k + 1) holds
(
f /. k = (GoB f) * i,
(j + 2) &
f /. (k + 1) = (GoB f) * i,
(j + 1) &
f /. (k + 2) = (GoB f) * i,
j )
theorem :: GOBOARD7:45 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j,
k being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i + 1
<= len (GoB f) & 1
<= j &
j + 1
<= width (GoB f) & 1
<= k &
k + 1
< len f &
LSeg ((GoB f) * i,(j + 1)),
((GoB f) * (i + 1),(j + 1)) = LSeg f,
k &
LSeg ((GoB f) * i,j),
((GoB f) * i,(j + 1)) = LSeg f,
(k + 1) holds
(
f /. k = (GoB f) * (i + 1),
(j + 1) &
f /. (k + 1) = (GoB f) * i,
(j + 1) &
f /. (k + 2) = (GoB f) * i,
j )
theorem :: GOBOARD7:46 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j,
k being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i + 1
<= len (GoB f) & 1
<= j &
j + 1
<= width (GoB f) & 1
<= k &
k + 1
< len f &
LSeg ((GoB f) * (i + 1),j),
((GoB f) * (i + 1),(j + 1)) = LSeg f,
k &
LSeg ((GoB f) * i,(j + 1)),
((GoB f) * (i + 1),(j + 1)) = LSeg f,
(k + 1) holds
(
f /. k = (GoB f) * (i + 1),
j &
f /. (k + 1) = (GoB f) * (i + 1),
(j + 1) &
f /. (k + 2) = (GoB f) * i,
(j + 1) )
theorem :: GOBOARD7:47 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j,
k being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i + 1
< len (GoB f) & 1
<= j &
j <= width (GoB f) & 1
<= k &
k + 1
< len f &
LSeg ((GoB f) * (i + 1),j),
((GoB f) * (i + 2),j) = LSeg f,
k &
LSeg ((GoB f) * i,j),
((GoB f) * (i + 1),j) = LSeg f,
(k + 1) holds
(
f /. k = (GoB f) * (i + 2),
j &
f /. (k + 1) = (GoB f) * (i + 1),
j &
f /. (k + 2) = (GoB f) * i,
j )
theorem :: GOBOARD7:48 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j,
k being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i + 1
<= len (GoB f) & 1
<= j &
j + 1
<= width (GoB f) & 1
<= k &
k + 1
< len f &
LSeg ((GoB f) * (i + 1),j),
((GoB f) * (i + 1),(j + 1)) = LSeg f,
k &
LSeg ((GoB f) * i,j),
((GoB f) * (i + 1),j) = LSeg f,
(k + 1) holds
(
f /. k = (GoB f) * (i + 1),
(j + 1) &
f /. (k + 1) = (GoB f) * (i + 1),
j &
f /. (k + 2) = (GoB f) * i,
j )
theorem :: GOBOARD7:49 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j,
k being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i + 1
<= len (GoB f) & 1
<= j &
j + 1
<= width (GoB f) & 1
<= k &
k + 1
< len f &
LSeg ((GoB f) * (i + 1),j),
((GoB f) * (i + 1),(j + 1)) = LSeg f,
k &
LSeg ((GoB f) * i,(j + 1)),
((GoB f) * (i + 1),(j + 1)) = LSeg f,
(k + 1) holds
(
f /. k = (GoB f) * (i + 1),
j &
f /. (k + 1) = (GoB f) * (i + 1),
(j + 1) &
f /. (k + 2) = (GoB f) * i,
(j + 1) )
theorem :: GOBOARD7:50 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j,
k being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i <= len (GoB f) & 1
<= j &
j + 1
< width (GoB f) & 1
<= k &
k + 1
< len f &
LSeg ((GoB f) * i,j),
((GoB f) * i,(j + 1)) = LSeg f,
k &
LSeg ((GoB f) * i,(j + 1)),
((GoB f) * i,(j + 2)) = LSeg f,
(k + 1) holds
(
f /. k = (GoB f) * i,
j &
f /. (k + 1) = (GoB f) * i,
(j + 1) &
f /. (k + 2) = (GoB f) * i,
(j + 2) )
theorem :: GOBOARD7:51 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j,
k being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i + 1
<= len (GoB f) & 1
<= j &
j + 1
<= width (GoB f) & 1
<= k &
k + 1
< len f &
LSeg ((GoB f) * i,j),
((GoB f) * i,(j + 1)) = LSeg f,
k &
LSeg ((GoB f) * i,(j + 1)),
((GoB f) * (i + 1),(j + 1)) = LSeg f,
(k + 1) holds
(
f /. k = (GoB f) * i,
j &
f /. (k + 1) = (GoB f) * i,
(j + 1) &
f /. (k + 2) = (GoB f) * (i + 1),
(j + 1) )
theorem :: GOBOARD7:52 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j,
k being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i + 1
<= len (GoB f) & 1
<= j &
j + 1
<= width (GoB f) & 1
<= k &
k + 1
< len f &
LSeg ((GoB f) * i,(j + 1)),
((GoB f) * (i + 1),(j + 1)) = LSeg f,
k &
LSeg ((GoB f) * (i + 1),j),
((GoB f) * (i + 1),(j + 1)) = LSeg f,
(k + 1) holds
(
f /. k = (GoB f) * i,
(j + 1) &
f /. (k + 1) = (GoB f) * (i + 1),
(j + 1) &
f /. (k + 2) = (GoB f) * (i + 1),
j )
theorem :: GOBOARD7:53 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j,
k being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i + 1
< len (GoB f) & 1
<= j &
j <= width (GoB f) & 1
<= k &
k + 1
< len f &
LSeg ((GoB f) * i,j),
((GoB f) * (i + 1),j) = LSeg f,
k &
LSeg ((GoB f) * (i + 1),j),
((GoB f) * (i + 2),j) = LSeg f,
(k + 1) holds
(
f /. k = (GoB f) * i,
j &
f /. (k + 1) = (GoB f) * (i + 1),
j &
f /. (k + 2) = (GoB f) * (i + 2),
j )
theorem :: GOBOARD7:54 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j,
k being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i + 1
<= len (GoB f) & 1
<= j &
j + 1
<= width (GoB f) & 1
<= k &
k + 1
< len f &
LSeg ((GoB f) * i,j),
((GoB f) * (i + 1),j) = LSeg f,
k &
LSeg ((GoB f) * (i + 1),j),
((GoB f) * (i + 1),(j + 1)) = LSeg f,
(k + 1) holds
(
f /. k = (GoB f) * i,
j &
f /. (k + 1) = (GoB f) * (i + 1),
j &
f /. (k + 2) = (GoB f) * (i + 1),
(j + 1) )
theorem Th55: :: GOBOARD7:55 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i <= len (GoB f) & 1
<= j &
j + 1
< width (GoB f) &
LSeg ((GoB f) * i,j),
((GoB f) * i,(j + 1)) c= L~ f &
LSeg ((GoB f) * i,(j + 1)),
((GoB f) * i,(j + 2)) c= L~ f & not (
f /. 1
= (GoB f) * i,
(j + 1) & ( (
f /. 2
= (GoB f) * i,
j &
f /. ((len f) -' 1) = (GoB f) * i,
(j + 2) ) or (
f /. 2
= (GoB f) * i,
(j + 2) &
f /. ((len f) -' 1) = (GoB f) * i,
j ) ) ) holds
ex
k being
Nat st
( 1
<= k &
k + 1
< len f &
f /. (k + 1) = (GoB f) * i,
(j + 1) & ( (
f /. k = (GoB f) * i,
j &
f /. (k + 2) = (GoB f) * i,
(j + 2) ) or (
f /. k = (GoB f) * i,
(j + 2) &
f /. (k + 2) = (GoB f) * i,
j ) ) )
theorem Th56: :: GOBOARD7:56 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i + 1
<= len (GoB f) & 1
<= j &
j + 1
<= width (GoB f) &
LSeg ((GoB f) * i,j),
((GoB f) * i,(j + 1)) c= L~ f &
LSeg ((GoB f) * i,(j + 1)),
((GoB f) * (i + 1),(j + 1)) c= L~ f & not (
f /. 1
= (GoB f) * i,
(j + 1) & ( (
f /. 2
= (GoB f) * i,
j &
f /. ((len f) -' 1) = (GoB f) * (i + 1),
(j + 1) ) or (
f /. 2
= (GoB f) * (i + 1),
(j + 1) &
f /. ((len f) -' 1) = (GoB f) * i,
j ) ) ) holds
ex
k being
Nat st
( 1
<= k &
k + 1
< len f &
f /. (k + 1) = (GoB f) * i,
(j + 1) & ( (
f /. k = (GoB f) * i,
j &
f /. (k + 2) = (GoB f) * (i + 1),
(j + 1) ) or (
f /. k = (GoB f) * (i + 1),
(j + 1) &
f /. (k + 2) = (GoB f) * i,
j ) ) )
theorem Th57: :: GOBOARD7:57 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i + 1
<= len (GoB f) & 1
<= j &
j + 1
<= width (GoB f) &
LSeg ((GoB f) * i,(j + 1)),
((GoB f) * (i + 1),(j + 1)) c= L~ f &
LSeg ((GoB f) * (i + 1),(j + 1)),
((GoB f) * (i + 1),j) c= L~ f & not (
f /. 1
= (GoB f) * (i + 1),
(j + 1) & ( (
f /. 2
= (GoB f) * i,
(j + 1) &
f /. ((len f) -' 1) = (GoB f) * (i + 1),
j ) or (
f /. 2
= (GoB f) * (i + 1),
j &
f /. ((len f) -' 1) = (GoB f) * i,
(j + 1) ) ) ) holds
ex
k being
Nat st
( 1
<= k &
k + 1
< len f &
f /. (k + 1) = (GoB f) * (i + 1),
(j + 1) & ( (
f /. k = (GoB f) * i,
(j + 1) &
f /. (k + 2) = (GoB f) * (i + 1),
j ) or (
f /. k = (GoB f) * (i + 1),
j &
f /. (k + 2) = (GoB f) * i,
(j + 1) ) ) )
theorem Th58: :: GOBOARD7:58 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i + 1
< len (GoB f) & 1
<= j &
j <= width (GoB f) &
LSeg ((GoB f) * i,j),
((GoB f) * (i + 1),j) c= L~ f &
LSeg ((GoB f) * (i + 1),j),
((GoB f) * (i + 2),j) c= L~ f & not (
f /. 1
= (GoB f) * (i + 1),
j & ( (
f /. 2
= (GoB f) * i,
j &
f /. ((len f) -' 1) = (GoB f) * (i + 2),
j ) or (
f /. 2
= (GoB f) * (i + 2),
j &
f /. ((len f) -' 1) = (GoB f) * i,
j ) ) ) holds
ex
k being
Nat st
( 1
<= k &
k + 1
< len f &
f /. (k + 1) = (GoB f) * (i + 1),
j & ( (
f /. k = (GoB f) * i,
j &
f /. (k + 2) = (GoB f) * (i + 2),
j ) or (
f /. k = (GoB f) * (i + 2),
j &
f /. (k + 2) = (GoB f) * i,
j ) ) )
theorem Th59: :: GOBOARD7:59 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i + 1
<= len (GoB f) & 1
<= j &
j + 1
<= width (GoB f) &
LSeg ((GoB f) * i,j),
((GoB f) * (i + 1),j) c= L~ f &
LSeg ((GoB f) * (i + 1),j),
((GoB f) * (i + 1),(j + 1)) c= L~ f & not (
f /. 1
= (GoB f) * (i + 1),
j & ( (
f /. 2
= (GoB f) * i,
j &
f /. ((len f) -' 1) = (GoB f) * (i + 1),
(j + 1) ) or (
f /. 2
= (GoB f) * (i + 1),
(j + 1) &
f /. ((len f) -' 1) = (GoB f) * i,
j ) ) ) holds
ex
k being
Nat st
( 1
<= k &
k + 1
< len f &
f /. (k + 1) = (GoB f) * (i + 1),
j & ( (
f /. k = (GoB f) * i,
j &
f /. (k + 2) = (GoB f) * (i + 1),
(j + 1) ) or (
f /. k = (GoB f) * (i + 1),
(j + 1) &
f /. (k + 2) = (GoB f) * i,
j ) ) )
theorem Th60: :: GOBOARD7:60 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i + 1
<= len (GoB f) & 1
<= j &
j + 1
<= width (GoB f) &
LSeg ((GoB f) * (i + 1),j),
((GoB f) * (i + 1),(j + 1)) c= L~ f &
LSeg ((GoB f) * (i + 1),(j + 1)),
((GoB f) * i,(j + 1)) c= L~ f & not (
f /. 1
= (GoB f) * (i + 1),
(j + 1) & ( (
f /. 2
= (GoB f) * (i + 1),
j &
f /. ((len f) -' 1) = (GoB f) * i,
(j + 1) ) or (
f /. 2
= (GoB f) * i,
(j + 1) &
f /. ((len f) -' 1) = (GoB f) * (i + 1),
j ) ) ) holds
ex
k being
Nat st
( 1
<= k &
k + 1
< len f &
f /. (k + 1) = (GoB f) * (i + 1),
(j + 1) & ( (
f /. k = (GoB f) * (i + 1),
j &
f /. (k + 2) = (GoB f) * i,
(j + 1) ) or (
f /. k = (GoB f) * i,
(j + 1) &
f /. (k + 2) = (GoB f) * (i + 1),
j ) ) )
theorem :: GOBOARD7:61 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i < len (GoB f) & 1
<= j &
j + 1
< width (GoB f) &
LSeg ((GoB f) * i,j),
((GoB f) * i,(j + 1)) c= L~ f &
LSeg ((GoB f) * i,(j + 1)),
((GoB f) * i,(j + 2)) c= L~ f holds
not
LSeg ((GoB f) * i,(j + 1)),
((GoB f) * (i + 1),(j + 1)) c= L~ f
theorem :: GOBOARD7:62 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
i,
j being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= i &
i < len (GoB f) & 1
<= j &
j + 1
< width (GoB f) &
LSeg ((GoB f) * (i + 1),j),
((GoB f) * (i + 1),(j + 1)) c= L~ f &
LSeg ((GoB f) * (i + 1),(j + 1)),
((GoB f) * (i + 1),(j + 2)) c= L~ f holds
not
LSeg ((GoB f) * i,(j + 1)),
((GoB f) * (i + 1),(j + 1)) c= L~ f
theorem :: GOBOARD7:63 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
j,
i being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= j &
j < width (GoB f) & 1
<= i &
i + 1
< len (GoB f) &
LSeg ((GoB f) * i,j),
((GoB f) * (i + 1),j) c= L~ f &
LSeg ((GoB f) * (i + 1),j),
((GoB f) * (i + 2),j) c= L~ f holds
not
LSeg ((GoB f) * (i + 1),j),
((GoB f) * (i + 1),(j + 1)) c= L~ f
theorem :: GOBOARD7:64 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
j,
i being
Nat for
f being
standard non
constant special_circular_sequence st 1
<= j &
j < width (GoB f) & 1
<= i &
i + 1
< len (GoB f) &
LSeg ((GoB f) * i,(j + 1)),
((GoB f) * (i + 1),(j + 1)) c= L~ f &
LSeg ((GoB f) * (i + 1),(j + 1)),
((GoB f) * (i + 2),(j + 1)) c= L~ f holds
not
LSeg ((GoB f) * (i + 1),j),
((GoB f) * (i + 1),(j + 1)) c= L~ f