:: GOBOARD7 semantic presentation  Show TPTP formulae Show IDV graph for whole article:: Showing IDV graph ... (Click the Palm Trees again to close it)

theorem Th1: :: GOBOARD7:1  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for r1, r2, s being Real holds
( not abs (r1 - r2) > s or r1 + s < r2 or r2 + s < r1 )
proof end;

theorem Th2: :: GOBOARD7:2  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for r, s being Real holds
( abs (r - s) = 0 iff r = s )
proof end;

theorem Th3: :: GOBOARD7:3  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for n being Nat
for p, p1, q being Point of (TOP-REAL n) st p + p1 = q + p1 holds
p = q
proof end;

theorem :: GOBOARD7:4  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for n being Nat
for p, p1, q being Point of (TOP-REAL n) st p1 + p = p1 + q holds
p = q by Th3;

theorem Th5: :: GOBOARD7:5  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for p1, p, q being Point of (TOP-REAL 2) st p1 in LSeg p,q & p `1 = q `1 holds
p1 `1 = q `1
proof end;

theorem Th6: :: GOBOARD7:6  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for p1, p, q being Point of (TOP-REAL 2) st p1 in LSeg p,q & p `2 = q `2 holds
p1 `2 = q `2
proof end;

theorem Th7: :: GOBOARD7:7  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for n being Nat
for p, q being Point of (TOP-REAL n) holds (1 / 2) * (p + q) in LSeg p,q
proof end;

theorem Th8: :: GOBOARD7:8  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for p, q, p1 being Point of (TOP-REAL 2) st p `1 = q `1 & q `1 = p1 `1 & p `2 <= q `2 & q `2 <= p1 `2 holds
q in LSeg p,p1
proof end;

theorem Th9: :: GOBOARD7:9  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for p, q, p1 being Point of (TOP-REAL 2) st p `1 <= q `1 & q `1 <= p1 `1 & p `2 = q `2 & q `2 = p1 `2 holds
q in LSeg p,p1
proof end;

theorem Th10: :: GOBOARD7:10  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for D being non empty set
for i, j being Nat
for M being Matrix of D st 1 <= i & i <= len M & 1 <= j & j <= width M holds
[i,j] in Indices M
proof end;

theorem :: GOBOARD7:11  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j being Nat
for G being Go-board st 1 <= i & i + 1 <= len G & 1 <= j & j + 1 <= width G holds
(1 / 2) * ((G * i,j) + (G * (i + 1),(j + 1))) = (1 / 2) * ((G * i,(j + 1)) + (G * (i + 1),j))
proof end;

theorem Th12: :: GOBOARD7:12  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for f being non empty FinSequence of (TOP-REAL 2)
for k being Nat st LSeg f,k is horizontal holds
ex j being Nat st
( 1 <= j & j <= width (GoB f) & ( for p being Point of (TOP-REAL 2) st p in LSeg f,k holds
p `2 = ((GoB f) * 1,j) `2 ) )
proof end;

theorem Th13: :: GOBOARD7:13  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for f being non empty FinSequence of (TOP-REAL 2)
for k being Nat st LSeg f,k is vertical holds
ex i being Nat st
( 1 <= i & i <= len (GoB f) & ( for p being Point of (TOP-REAL 2) st p in LSeg f,k holds
p `1 = ((GoB f) * i,1) `1 ) )
proof end;

theorem :: GOBOARD7:14  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for f being non empty FinSequence of (TOP-REAL 2)
for i, j being Nat st f is special & i <= len (GoB f) & j <= width (GoB f) holds
Int (cell (GoB f),i,j) misses L~ f
proof end;

theorem Th15: :: GOBOARD7:15  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j being Nat
for G being Go-board st 1 <= i & i <= len G & 1 <= j & j + 2 <= width G holds
(LSeg (G * i,j),(G * i,(j + 1))) /\ (LSeg (G * i,(j + 1)),(G * i,(j + 2))) = {(G * i,(j + 1))}
proof end;

theorem Th16: :: GOBOARD7:16  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j being Nat
for G being Go-board st 1 <= i & i + 2 <= len G & 1 <= j & j <= width G holds
(LSeg (G * i,j),(G * (i + 1),j)) /\ (LSeg (G * (i + 1),j),(G * (i + 2),j)) = {(G * (i + 1),j)}
proof end;

theorem Th17: :: GOBOARD7:17  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j being Nat
for G being Go-board st 1 <= i & i + 1 <= len G & 1 <= j & j + 1 <= width G holds
(LSeg (G * i,j),(G * i,(j + 1))) /\ (LSeg (G * i,(j + 1)),(G * (i + 1),(j + 1))) = {(G * i,(j + 1))}
proof end;

theorem Th18: :: GOBOARD7:18  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j being Nat
for G being Go-board st 1 <= i & i + 1 <= len G & 1 <= j & j + 1 <= width G holds
(LSeg (G * i,(j + 1)),(G * (i + 1),(j + 1))) /\ (LSeg (G * (i + 1),j),(G * (i + 1),(j + 1))) = {(G * (i + 1),(j + 1))}
proof end;

theorem Th19: :: GOBOARD7:19  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j being Nat
for G being Go-board st 1 <= i & i + 1 <= len G & 1 <= j & j + 1 <= width G holds
(LSeg (G * i,j),(G * (i + 1),j)) /\ (LSeg (G * i,j),(G * i,(j + 1))) = {(G * i,j)}
proof end;

theorem Th20: :: GOBOARD7:20  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j being Nat
for G being Go-board st 1 <= i & i + 1 <= len G & 1 <= j & j + 1 <= width G holds
(LSeg (G * i,j),(G * (i + 1),j)) /\ (LSeg (G * (i + 1),j),(G * (i + 1),(j + 1))) = {(G * (i + 1),j)}
proof end;

theorem Th21: :: GOBOARD7:21  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for G being Go-board
for i1, j1, i2, j2 being Nat st 1 <= i1 & i1 <= len G & 1 <= j1 & j1 + 1 <= width G & 1 <= i2 & i2 <= len G & 1 <= j2 & j2 + 1 <= width G & LSeg (G * i1,j1),(G * i1,(j1 + 1)) meets LSeg (G * i2,j2),(G * i2,(j2 + 1)) holds
( i1 = i2 & abs (j1 - j2) <= 1 )
proof end;

theorem Th22: :: GOBOARD7:22  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for G being Go-board
for i1, j1, i2, j2 being Nat st 1 <= i1 & i1 + 1 <= len G & 1 <= j1 & j1 <= width G & 1 <= i2 & i2 + 1 <= len G & 1 <= j2 & j2 <= width G & LSeg (G * i1,j1),(G * (i1 + 1),j1) meets LSeg (G * i2,j2),(G * (i2 + 1),j2) holds
( j1 = j2 & abs (i1 - i2) <= 1 )
proof end;

theorem Th23: :: GOBOARD7:23  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for G being Go-board
for i1, j1, i2, j2 being Nat st 1 <= i1 & i1 <= len G & 1 <= j1 & j1 + 1 <= width G & 1 <= i2 & i2 + 1 <= len G & 1 <= j2 & j2 <= width G & LSeg (G * i1,j1),(G * i1,(j1 + 1)) meets LSeg (G * i2,j2),(G * (i2 + 1),j2) holds
( ( i1 = i2 or i1 = i2 + 1 ) & ( j1 = j2 or j1 + 1 = j2 ) )
proof end;

theorem :: GOBOARD7:24  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for G being Go-board
for i1, j1, i2, j2 being Nat st 1 <= i1 & i1 <= len G & 1 <= j1 & j1 + 1 <= width G & 1 <= i2 & i2 <= len G & 1 <= j2 & j2 + 1 <= width G & LSeg (G * i1,j1),(G * i1,(j1 + 1)) meets LSeg (G * i2,j2),(G * i2,(j2 + 1)) & not ( j1 = j2 & LSeg (G * i1,j1),(G * i1,(j1 + 1)) = LSeg (G * i2,j2),(G * i2,(j2 + 1)) ) & not ( j1 = j2 + 1 & (LSeg (G * i1,j1),(G * i1,(j1 + 1))) /\ (LSeg (G * i2,j2),(G * i2,(j2 + 1))) = {(G * i1,j1)} ) holds
( j1 + 1 = j2 & (LSeg (G * i1,j1),(G * i1,(j1 + 1))) /\ (LSeg (G * i2,j2),(G * i2,(j2 + 1))) = {(G * i2,j2)} )
proof end;

theorem :: GOBOARD7:25  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for G being Go-board
for i1, j1, i2, j2 being Nat st 1 <= i1 & i1 + 1 <= len G & 1 <= j1 & j1 <= width G & 1 <= i2 & i2 + 1 <= len G & 1 <= j2 & j2 <= width G & LSeg (G * i1,j1),(G * (i1 + 1),j1) meets LSeg (G * i2,j2),(G * (i2 + 1),j2) & not ( i1 = i2 & LSeg (G * i1,j1),(G * (i1 + 1),j1) = LSeg (G * i2,j2),(G * (i2 + 1),j2) ) & not ( i1 = i2 + 1 & (LSeg (G * i1,j1),(G * (i1 + 1),j1)) /\ (LSeg (G * i2,j2),(G * (i2 + 1),j2)) = {(G * i1,j1)} ) holds
( i1 + 1 = i2 & (LSeg (G * i1,j1),(G * (i1 + 1),j1)) /\ (LSeg (G * i2,j2),(G * (i2 + 1),j2)) = {(G * i2,j2)} )
proof end;

theorem :: GOBOARD7:26  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for G being Go-board
for i1, j1, i2, j2 being Nat st 1 <= i1 & i1 <= len G & 1 <= j1 & j1 + 1 <= width G & 1 <= i2 & i2 + 1 <= len G & 1 <= j2 & j2 <= width G & LSeg (G * i1,j1),(G * i1,(j1 + 1)) meets LSeg (G * i2,j2),(G * (i2 + 1),j2) & not ( j1 = j2 & (LSeg (G * i1,j1),(G * i1,(j1 + 1))) /\ (LSeg (G * i2,j2),(G * (i2 + 1),j2)) = {(G * i1,j1)} ) holds
( j1 + 1 = j2 & (LSeg (G * i1,j1),(G * i1,(j1 + 1))) /\ (LSeg (G * i2,j2),(G * (i2 + 1),j2)) = {(G * i1,(j1 + 1))} )
proof end;

Lm1: 1 - (1 / 2) = 1 / 2
;

theorem Th27: :: GOBOARD7:27  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i1, j1, i2, j2 being Nat
for G being Go-board st 1 <= i1 & i1 <= len G & 1 <= j1 & j1 + 1 <= width G & 1 <= i2 & i2 <= len G & 1 <= j2 & j2 + 1 <= width G & (1 / 2) * ((G * i1,j1) + (G * i1,(j1 + 1))) in LSeg (G * i2,j2),(G * i2,(j2 + 1)) holds
( i1 = i2 & j1 = j2 )
proof end;

theorem Th28: :: GOBOARD7:28  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i1, j1, i2, j2 being Nat
for G being Go-board st 1 <= i1 & i1 + 1 <= len G & 1 <= j1 & j1 <= width G & 1 <= i2 & i2 + 1 <= len G & 1 <= j2 & j2 <= width G & (1 / 2) * ((G * i1,j1) + (G * (i1 + 1),j1)) in LSeg (G * i2,j2),(G * (i2 + 1),j2) holds
( i1 = i2 & j1 = j2 )
proof end;

theorem Th29: :: GOBOARD7:29  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i1, j1 being Nat
for G being Go-board st 1 <= i1 & i1 + 1 <= len G & 1 <= j1 & j1 <= width G holds
for i2, j2 being Nat holds
( not 1 <= i2 or not i2 <= len G or not 1 <= j2 or not j2 + 1 <= width G or not (1 / 2) * ((G * i1,j1) + (G * (i1 + 1),j1)) in LSeg (G * i2,j2),(G * i2,(j2 + 1)) )
proof end;

theorem Th30: :: GOBOARD7:30  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i1, j1 being Nat
for G being Go-board st 1 <= i1 & i1 <= len G & 1 <= j1 & j1 + 1 <= width G holds
for i2, j2 being Nat holds
( not 1 <= i2 or not i2 + 1 <= len G or not 1 <= j2 or not j2 <= width G or not (1 / 2) * ((G * i1,j1) + (G * i1,(j1 + 1))) in LSeg (G * i2,j2),(G * (i2 + 1),j2) )
proof end;

Lm2: for f being standard non constant special_circular_sequence holds len f > 1
proof end;

theorem Th31: :: GOBOARD7:31  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i being Nat
for f being non empty standard FinSequence of (TOP-REAL 2) st i in dom f & i + 1 in dom f holds
f /. i <> f /. (i + 1)
proof end;

theorem Th32: :: GOBOARD7:32  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for f being standard non constant special_circular_sequence ex i being Nat st
( i in dom f & (f /. i) `1 <> (f /. 1) `1 )
proof end;

theorem Th33: :: GOBOARD7:33  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for f being standard non constant special_circular_sequence ex i being Nat st
( i in dom f & (f /. i) `2 <> (f /. 1) `2 )
proof end;

theorem :: GOBOARD7:34  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for f being standard non constant special_circular_sequence holds len (GoB f) > 1
proof end;

theorem :: GOBOARD7:35  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for f being standard non constant special_circular_sequence holds width (GoB f) > 1
proof end;

theorem Th36: :: GOBOARD7:36  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for f being standard non constant special_circular_sequence holds len f > 4
proof end;

theorem Th37: :: GOBOARD7:37  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for f being circular s.c.c. FinSequence of (TOP-REAL 2) st len f > 4 holds
for i, j being Nat st 1 <= i & i < j & j < len f holds
f /. i <> f /. j
proof end;

theorem Th38: :: GOBOARD7:38  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for f being standard non constant special_circular_sequence
for i, j being Nat st 1 <= i & i < j & j < len f holds
f /. i <> f /. j
proof end;

theorem Th39: :: GOBOARD7:39  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for f being standard non constant special_circular_sequence
for i, j being Nat st 1 < i & i < j & j <= len f holds
f /. i <> f /. j
proof end;

theorem Th40: :: GOBOARD7:40  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for f being standard non constant special_circular_sequence
for i being Nat st 1 < i & i <= len f & f /. i = f /. 1 holds
i = len f
proof end;

theorem Th41: :: GOBOARD7:41  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i <= len (GoB f) & 1 <= j & j + 1 <= width (GoB f) & (1 / 2) * (((GoB f) * i,j) + ((GoB f) * i,(j + 1))) in L~ f holds
ex k being Nat st
( 1 <= k & k + 1 <= len f & LSeg ((GoB f) * i,j),((GoB f) * i,(j + 1)) = LSeg f,k )
proof end;

theorem Th42: :: GOBOARD7:42  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i + 1 <= len (GoB f) & 1 <= j & j <= width (GoB f) & (1 / 2) * (((GoB f) * i,j) + ((GoB f) * (i + 1),j)) in L~ f holds
ex k being Nat st
( 1 <= k & k + 1 <= len f & LSeg ((GoB f) * i,j),((GoB f) * (i + 1),j) = LSeg f,k )
proof end;

theorem :: GOBOARD7:43  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j, k being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i + 1 <= len (GoB f) & 1 <= j & j + 1 <= width (GoB f) & 1 <= k & k + 1 < len f & LSeg ((GoB f) * i,(j + 1)),((GoB f) * (i + 1),(j + 1)) = LSeg f,k & LSeg ((GoB f) * (i + 1),j),((GoB f) * (i + 1),(j + 1)) = LSeg f,(k + 1) holds
( f /. k = (GoB f) * i,(j + 1) & f /. (k + 1) = (GoB f) * (i + 1),(j + 1) & f /. (k + 2) = (GoB f) * (i + 1),j )
proof end;

theorem :: GOBOARD7:44  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j, k being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i <= len (GoB f) & 1 <= j & j + 1 < width (GoB f) & 1 <= k & k + 1 < len f & LSeg ((GoB f) * i,(j + 1)),((GoB f) * i,(j + 2)) = LSeg f,k & LSeg ((GoB f) * i,j),((GoB f) * i,(j + 1)) = LSeg f,(k + 1) holds
( f /. k = (GoB f) * i,(j + 2) & f /. (k + 1) = (GoB f) * i,(j + 1) & f /. (k + 2) = (GoB f) * i,j )
proof end;

theorem :: GOBOARD7:45  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j, k being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i + 1 <= len (GoB f) & 1 <= j & j + 1 <= width (GoB f) & 1 <= k & k + 1 < len f & LSeg ((GoB f) * i,(j + 1)),((GoB f) * (i + 1),(j + 1)) = LSeg f,k & LSeg ((GoB f) * i,j),((GoB f) * i,(j + 1)) = LSeg f,(k + 1) holds
( f /. k = (GoB f) * (i + 1),(j + 1) & f /. (k + 1) = (GoB f) * i,(j + 1) & f /. (k + 2) = (GoB f) * i,j )
proof end;

theorem :: GOBOARD7:46  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j, k being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i + 1 <= len (GoB f) & 1 <= j & j + 1 <= width (GoB f) & 1 <= k & k + 1 < len f & LSeg ((GoB f) * (i + 1),j),((GoB f) * (i + 1),(j + 1)) = LSeg f,k & LSeg ((GoB f) * i,(j + 1)),((GoB f) * (i + 1),(j + 1)) = LSeg f,(k + 1) holds
( f /. k = (GoB f) * (i + 1),j & f /. (k + 1) = (GoB f) * (i + 1),(j + 1) & f /. (k + 2) = (GoB f) * i,(j + 1) )
proof end;

theorem :: GOBOARD7:47  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j, k being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i + 1 < len (GoB f) & 1 <= j & j <= width (GoB f) & 1 <= k & k + 1 < len f & LSeg ((GoB f) * (i + 1),j),((GoB f) * (i + 2),j) = LSeg f,k & LSeg ((GoB f) * i,j),((GoB f) * (i + 1),j) = LSeg f,(k + 1) holds
( f /. k = (GoB f) * (i + 2),j & f /. (k + 1) = (GoB f) * (i + 1),j & f /. (k + 2) = (GoB f) * i,j )
proof end;

theorem :: GOBOARD7:48  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j, k being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i + 1 <= len (GoB f) & 1 <= j & j + 1 <= width (GoB f) & 1 <= k & k + 1 < len f & LSeg ((GoB f) * (i + 1),j),((GoB f) * (i + 1),(j + 1)) = LSeg f,k & LSeg ((GoB f) * i,j),((GoB f) * (i + 1),j) = LSeg f,(k + 1) holds
( f /. k = (GoB f) * (i + 1),(j + 1) & f /. (k + 1) = (GoB f) * (i + 1),j & f /. (k + 2) = (GoB f) * i,j )
proof end;

theorem :: GOBOARD7:49  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j, k being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i + 1 <= len (GoB f) & 1 <= j & j + 1 <= width (GoB f) & 1 <= k & k + 1 < len f & LSeg ((GoB f) * (i + 1),j),((GoB f) * (i + 1),(j + 1)) = LSeg f,k & LSeg ((GoB f) * i,(j + 1)),((GoB f) * (i + 1),(j + 1)) = LSeg f,(k + 1) holds
( f /. k = (GoB f) * (i + 1),j & f /. (k + 1) = (GoB f) * (i + 1),(j + 1) & f /. (k + 2) = (GoB f) * i,(j + 1) )
proof end;

theorem :: GOBOARD7:50  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j, k being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i <= len (GoB f) & 1 <= j & j + 1 < width (GoB f) & 1 <= k & k + 1 < len f & LSeg ((GoB f) * i,j),((GoB f) * i,(j + 1)) = LSeg f,k & LSeg ((GoB f) * i,(j + 1)),((GoB f) * i,(j + 2)) = LSeg f,(k + 1) holds
( f /. k = (GoB f) * i,j & f /. (k + 1) = (GoB f) * i,(j + 1) & f /. (k + 2) = (GoB f) * i,(j + 2) )
proof end;

theorem :: GOBOARD7:51  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j, k being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i + 1 <= len (GoB f) & 1 <= j & j + 1 <= width (GoB f) & 1 <= k & k + 1 < len f & LSeg ((GoB f) * i,j),((GoB f) * i,(j + 1)) = LSeg f,k & LSeg ((GoB f) * i,(j + 1)),((GoB f) * (i + 1),(j + 1)) = LSeg f,(k + 1) holds
( f /. k = (GoB f) * i,j & f /. (k + 1) = (GoB f) * i,(j + 1) & f /. (k + 2) = (GoB f) * (i + 1),(j + 1) )
proof end;

theorem :: GOBOARD7:52  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j, k being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i + 1 <= len (GoB f) & 1 <= j & j + 1 <= width (GoB f) & 1 <= k & k + 1 < len f & LSeg ((GoB f) * i,(j + 1)),((GoB f) * (i + 1),(j + 1)) = LSeg f,k & LSeg ((GoB f) * (i + 1),j),((GoB f) * (i + 1),(j + 1)) = LSeg f,(k + 1) holds
( f /. k = (GoB f) * i,(j + 1) & f /. (k + 1) = (GoB f) * (i + 1),(j + 1) & f /. (k + 2) = (GoB f) * (i + 1),j )
proof end;

theorem :: GOBOARD7:53  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j, k being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i + 1 < len (GoB f) & 1 <= j & j <= width (GoB f) & 1 <= k & k + 1 < len f & LSeg ((GoB f) * i,j),((GoB f) * (i + 1),j) = LSeg f,k & LSeg ((GoB f) * (i + 1),j),((GoB f) * (i + 2),j) = LSeg f,(k + 1) holds
( f /. k = (GoB f) * i,j & f /. (k + 1) = (GoB f) * (i + 1),j & f /. (k + 2) = (GoB f) * (i + 2),j )
proof end;

theorem :: GOBOARD7:54  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j, k being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i + 1 <= len (GoB f) & 1 <= j & j + 1 <= width (GoB f) & 1 <= k & k + 1 < len f & LSeg ((GoB f) * i,j),((GoB f) * (i + 1),j) = LSeg f,k & LSeg ((GoB f) * (i + 1),j),((GoB f) * (i + 1),(j + 1)) = LSeg f,(k + 1) holds
( f /. k = (GoB f) * i,j & f /. (k + 1) = (GoB f) * (i + 1),j & f /. (k + 2) = (GoB f) * (i + 1),(j + 1) )
proof end;

theorem Th55: :: GOBOARD7:55  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i <= len (GoB f) & 1 <= j & j + 1 < width (GoB f) & LSeg ((GoB f) * i,j),((GoB f) * i,(j + 1)) c= L~ f & LSeg ((GoB f) * i,(j + 1)),((GoB f) * i,(j + 2)) c= L~ f & not ( f /. 1 = (GoB f) * i,(j + 1) & ( ( f /. 2 = (GoB f) * i,j & f /. ((len f) -' 1) = (GoB f) * i,(j + 2) ) or ( f /. 2 = (GoB f) * i,(j + 2) & f /. ((len f) -' 1) = (GoB f) * i,j ) ) ) holds
ex k being Nat st
( 1 <= k & k + 1 < len f & f /. (k + 1) = (GoB f) * i,(j + 1) & ( ( f /. k = (GoB f) * i,j & f /. (k + 2) = (GoB f) * i,(j + 2) ) or ( f /. k = (GoB f) * i,(j + 2) & f /. (k + 2) = (GoB f) * i,j ) ) )
proof end;

theorem Th56: :: GOBOARD7:56  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i + 1 <= len (GoB f) & 1 <= j & j + 1 <= width (GoB f) & LSeg ((GoB f) * i,j),((GoB f) * i,(j + 1)) c= L~ f & LSeg ((GoB f) * i,(j + 1)),((GoB f) * (i + 1),(j + 1)) c= L~ f & not ( f /. 1 = (GoB f) * i,(j + 1) & ( ( f /. 2 = (GoB f) * i,j & f /. ((len f) -' 1) = (GoB f) * (i + 1),(j + 1) ) or ( f /. 2 = (GoB f) * (i + 1),(j + 1) & f /. ((len f) -' 1) = (GoB f) * i,j ) ) ) holds
ex k being Nat st
( 1 <= k & k + 1 < len f & f /. (k + 1) = (GoB f) * i,(j + 1) & ( ( f /. k = (GoB f) * i,j & f /. (k + 2) = (GoB f) * (i + 1),(j + 1) ) or ( f /. k = (GoB f) * (i + 1),(j + 1) & f /. (k + 2) = (GoB f) * i,j ) ) )
proof end;

theorem Th57: :: GOBOARD7:57  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i + 1 <= len (GoB f) & 1 <= j & j + 1 <= width (GoB f) & LSeg ((GoB f) * i,(j + 1)),((GoB f) * (i + 1),(j + 1)) c= L~ f & LSeg ((GoB f) * (i + 1),(j + 1)),((GoB f) * (i + 1),j) c= L~ f & not ( f /. 1 = (GoB f) * (i + 1),(j + 1) & ( ( f /. 2 = (GoB f) * i,(j + 1) & f /. ((len f) -' 1) = (GoB f) * (i + 1),j ) or ( f /. 2 = (GoB f) * (i + 1),j & f /. ((len f) -' 1) = (GoB f) * i,(j + 1) ) ) ) holds
ex k being Nat st
( 1 <= k & k + 1 < len f & f /. (k + 1) = (GoB f) * (i + 1),(j + 1) & ( ( f /. k = (GoB f) * i,(j + 1) & f /. (k + 2) = (GoB f) * (i + 1),j ) or ( f /. k = (GoB f) * (i + 1),j & f /. (k + 2) = (GoB f) * i,(j + 1) ) ) )
proof end;

theorem Th58: :: GOBOARD7:58  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i + 1 < len (GoB f) & 1 <= j & j <= width (GoB f) & LSeg ((GoB f) * i,j),((GoB f) * (i + 1),j) c= L~ f & LSeg ((GoB f) * (i + 1),j),((GoB f) * (i + 2),j) c= L~ f & not ( f /. 1 = (GoB f) * (i + 1),j & ( ( f /. 2 = (GoB f) * i,j & f /. ((len f) -' 1) = (GoB f) * (i + 2),j ) or ( f /. 2 = (GoB f) * (i + 2),j & f /. ((len f) -' 1) = (GoB f) * i,j ) ) ) holds
ex k being Nat st
( 1 <= k & k + 1 < len f & f /. (k + 1) = (GoB f) * (i + 1),j & ( ( f /. k = (GoB f) * i,j & f /. (k + 2) = (GoB f) * (i + 2),j ) or ( f /. k = (GoB f) * (i + 2),j & f /. (k + 2) = (GoB f) * i,j ) ) )
proof end;

theorem Th59: :: GOBOARD7:59  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i + 1 <= len (GoB f) & 1 <= j & j + 1 <= width (GoB f) & LSeg ((GoB f) * i,j),((GoB f) * (i + 1),j) c= L~ f & LSeg ((GoB f) * (i + 1),j),((GoB f) * (i + 1),(j + 1)) c= L~ f & not ( f /. 1 = (GoB f) * (i + 1),j & ( ( f /. 2 = (GoB f) * i,j & f /. ((len f) -' 1) = (GoB f) * (i + 1),(j + 1) ) or ( f /. 2 = (GoB f) * (i + 1),(j + 1) & f /. ((len f) -' 1) = (GoB f) * i,j ) ) ) holds
ex k being Nat st
( 1 <= k & k + 1 < len f & f /. (k + 1) = (GoB f) * (i + 1),j & ( ( f /. k = (GoB f) * i,j & f /. (k + 2) = (GoB f) * (i + 1),(j + 1) ) or ( f /. k = (GoB f) * (i + 1),(j + 1) & f /. (k + 2) = (GoB f) * i,j ) ) )
proof end;

theorem Th60: :: GOBOARD7:60  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i + 1 <= len (GoB f) & 1 <= j & j + 1 <= width (GoB f) & LSeg ((GoB f) * (i + 1),j),((GoB f) * (i + 1),(j + 1)) c= L~ f & LSeg ((GoB f) * (i + 1),(j + 1)),((GoB f) * i,(j + 1)) c= L~ f & not ( f /. 1 = (GoB f) * (i + 1),(j + 1) & ( ( f /. 2 = (GoB f) * (i + 1),j & f /. ((len f) -' 1) = (GoB f) * i,(j + 1) ) or ( f /. 2 = (GoB f) * i,(j + 1) & f /. ((len f) -' 1) = (GoB f) * (i + 1),j ) ) ) holds
ex k being Nat st
( 1 <= k & k + 1 < len f & f /. (k + 1) = (GoB f) * (i + 1),(j + 1) & ( ( f /. k = (GoB f) * (i + 1),j & f /. (k + 2) = (GoB f) * i,(j + 1) ) or ( f /. k = (GoB f) * i,(j + 1) & f /. (k + 2) = (GoB f) * (i + 1),j ) ) )
proof end;

theorem :: GOBOARD7:61  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i < len (GoB f) & 1 <= j & j + 1 < width (GoB f) & LSeg ((GoB f) * i,j),((GoB f) * i,(j + 1)) c= L~ f & LSeg ((GoB f) * i,(j + 1)),((GoB f) * i,(j + 2)) c= L~ f holds
not LSeg ((GoB f) * i,(j + 1)),((GoB f) * (i + 1),(j + 1)) c= L~ f
proof end;

theorem :: GOBOARD7:62  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for i, j being Nat
for f being standard non constant special_circular_sequence st 1 <= i & i < len (GoB f) & 1 <= j & j + 1 < width (GoB f) & LSeg ((GoB f) * (i + 1),j),((GoB f) * (i + 1),(j + 1)) c= L~ f & LSeg ((GoB f) * (i + 1),(j + 1)),((GoB f) * (i + 1),(j + 2)) c= L~ f holds
not LSeg ((GoB f) * i,(j + 1)),((GoB f) * (i + 1),(j + 1)) c= L~ f
proof end;

theorem :: GOBOARD7:63  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for j, i being Nat
for f being standard non constant special_circular_sequence st 1 <= j & j < width (GoB f) & 1 <= i & i + 1 < len (GoB f) & LSeg ((GoB f) * i,j),((GoB f) * (i + 1),j) c= L~ f & LSeg ((GoB f) * (i + 1),j),((GoB f) * (i + 2),j) c= L~ f holds
not LSeg ((GoB f) * (i + 1),j),((GoB f) * (i + 1),(j + 1)) c= L~ f
proof end;

theorem :: GOBOARD7:64  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for j, i being Nat
for f being standard non constant special_circular_sequence st 1 <= j & j < width (GoB f) & 1 <= i & i + 1 < len (GoB f) & LSeg ((GoB f) * i,(j + 1)),((GoB f) * (i + 1),(j + 1)) c= L~ f & LSeg ((GoB f) * (i + 1),(j + 1)),((GoB f) * (i + 2),(j + 1)) c= L~ f holds
not LSeg ((GoB f) * (i + 1),j),((GoB f) * (i + 1),(j + 1)) c= L~ f
proof end;