:: CIRCCMB2 semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
theorem Th1: :: CIRCCMB2:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CIRCCMB2:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th3: :: CIRCCMB2:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th4: :: CIRCCMB2:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
scheme :: CIRCCMB2:sch 2
CIRCCMB2'sch2{
F1(
set ,
set ,
set )
-> non
empty ManySortedSign ,
F2(
set ,
set )
-> set ,
P1[
set ,
set ,
set ],
F3()
-> ManySortedSet of
NAT ,
F4()
-> ManySortedSet of
NAT } :
provided
A1:
ex
S being non
empty ManySortedSign ex
x being
set st
(
S = F3()
. 0 &
x = F4()
. 0 &
P1[
S,
x,0] )
and A2:
for
n being
Nat for
S being non
empty ManySortedSign for
x being
set st
S = F3()
. n &
x = F4()
. n holds
(
F3()
. (n + 1) = F1(
S,
x,
n) &
F4()
. (n + 1) = F2(
x,
n) )
and A3:
for
n being
Nat for
S being non
empty ManySortedSign for
x being
set st
S = F3()
. n &
x = F4()
. n &
P1[
S,
x,
n] holds
P1[
F1(
S,
x,
n),
F2(
x,
n),
n + 1]
defpred S1[ set , set , set ] means verum;
scheme :: CIRCCMB2:sch 3
CIRCCMB2'sch3{
F1()
-> non
empty ManySortedSign ,
F2(
set ,
set ,
set )
-> non
empty ManySortedSign ,
F3(
set ,
set )
-> set ,
F4()
-> ManySortedSet of
NAT ,
F5()
-> ManySortedSet of
NAT } :
for
n being
Nat for
x being
set st
x = F5()
. n holds
F5()
. (n + 1) = F3(
x,
n)
provided
A1:
F4()
. 0
= F1()
and A2:
for
n being
Nat for
S being non
empty ManySortedSign for
x being
set st
S = F4()
. n &
x = F5()
. n holds
(
F4()
. (n + 1) = F2(
S,
x,
n) &
F5()
. (n + 1) = F3(
x,
n) )
scheme :: CIRCCMB2:sch 6
CIRCCMB2'sch6{
F1()
-> non
empty ManySortedSign ,
F2()
-> set ,
F3(
set ,
set ,
set )
-> non
empty ManySortedSign ,
F4(
set ,
set )
-> set ,
F5()
-> Nat } :
( ex
S being non
empty ManySortedSign ex
f,
h being
ManySortedSet of
NAT st
(
S = f . F5() &
f . 0
= F1() &
h . 0
= F2() & ( for
n being
Nat for
S being non
empty ManySortedSign for
x being
set st
S = f . n &
x = h . n holds
(
f . (n + 1) = F3(
S,
x,
n) &
h . (n + 1) = F4(
x,
n) ) ) ) & ( for
S1,
S2 being non
empty ManySortedSign st ex
f,
h being
ManySortedSet of
NAT st
(
S1 = f . F5() &
f . 0
= F1() &
h . 0
= F2() & ( for
n being
Nat for
S being non
empty ManySortedSign for
x being
set st
S = f . n &
x = h . n holds
(
f . (n + 1) = F3(
S,
x,
n) &
h . (n + 1) = F4(
x,
n) ) ) ) & ex
f,
h being
ManySortedSet of
NAT st
(
S2 = f . F5() &
f . 0
= F1() &
h . 0
= F2() & ( for
n being
Nat for
S being non
empty ManySortedSign for
x being
set st
S = f . n &
x = h . n holds
(
f . (n + 1) = F3(
S,
x,
n) &
h . (n + 1) = F4(
x,
n) ) ) ) holds
S1 = S2 ) )
scheme :: CIRCCMB2:sch 7
CIRCCMB2'sch7{
F1()
-> non
empty ManySortedSign ,
F2(
set ,
set ,
set )
-> non
empty ManySortedSign ,
F3()
-> set ,
F4(
set ,
set )
-> set ,
F5()
-> Nat } :
provided
A1:
(
F1() is
unsplit &
F1() is
gate`1=arity &
F1() is
gate`2isBoolean & not
F1() is
void & not
F1() is
empty &
F1() is
strict )
and A2:
for
S being non
empty strict non
void unsplit gate`1=arity gate`2isBoolean ManySortedSign for
x being
set for
n being
Nat holds
(
F2(
S,
x,
n) is
unsplit &
F2(
S,
x,
n) is
gate`1=arity &
F2(
S,
x,
n) is
gate`2isBoolean & not
F2(
S,
x,
n) is
void & not
F2(
S,
x,
n) is
empty &
F2(
S,
x,
n) is
strict )
theorem Th5: :: CIRCCMB2:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th6: :: CIRCCMB2:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th7: :: CIRCCMB2:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CIRCCMB2:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th9: :: CIRCCMB2:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
scheme :: CIRCCMB2:sch 12
CIRCCMB2'sch12{
F1()
-> non
empty ManySortedSign ,
F2()
-> non-empty MSAlgebra of
F1(),
F3()
-> set ,
F4(
set ,
set ,
set )
-> non
empty ManySortedSign ,
F5(
set ,
set ,
set ,
set )
-> set ,
F6(
set ,
set )
-> set } :
scheme :: CIRCCMB2:sch 13
CIRCCMB2'sch13{
F1(
set ,
set ,
set )
-> non
empty ManySortedSign ,
F2(
set ,
set ,
set ,
set )
-> set ,
F3(
set ,
set )
-> set ,
P1[
set ,
set ,
set ,
set ],
F4()
-> ManySortedSet of
NAT ,
F5()
-> ManySortedSet of
NAT ,
F6()
-> ManySortedSet of
NAT } :
provided
A1:
ex
S being non
empty ManySortedSign ex
A being
non-empty MSAlgebra of
S ex
x being
set st
(
S = F4()
. 0 &
A = F5()
. 0 &
x = F6()
. 0 &
P1[
S,
A,
x,0] )
and A2:
for
n being
Nat for
S being non
empty ManySortedSign for
A being
non-empty MSAlgebra of
S for
x being
set st
S = F4()
. n &
A = F5()
. n &
x = F6()
. n holds
(
F4()
. (n + 1) = F1(
S,
x,
n) &
F5()
. (n + 1) = F2(
S,
A,
x,
n) &
F6()
. (n + 1) = F3(
x,
n) )
and A3:
for
n being
Nat for
S being non
empty ManySortedSign for
A being
non-empty MSAlgebra of
S for
x being
set st
S = F4()
. n &
A = F5()
. n &
x = F6()
. n &
P1[
S,
A,
x,
n] holds
P1[
F1(
S,
x,
n),
F2(
S,
A,
x,
n),
F3(
x,
n),
n + 1]
and A4:
for
S being non
empty ManySortedSign for
A being
non-empty MSAlgebra of
S for
x being
set for
n being
Nat holds
F2(
S,
A,
x,
n) is
non-empty MSAlgebra of
F1(
S,
x,
n)
defpred S2[ set , set , set , set ] means verum;
scheme :: CIRCCMB2:sch 14
CIRCCMB2'sch14{
F1(
set ,
set ,
set )
-> non
empty ManySortedSign ,
F2(
set ,
set ,
set ,
set )
-> set ,
F3(
set ,
set )
-> set ,
F4()
-> ManySortedSet of
NAT ,
F5()
-> ManySortedSet of
NAT ,
F6()
-> ManySortedSet of
NAT ,
F7()
-> ManySortedSet of
NAT ,
F8()
-> ManySortedSet of
NAT ,
F9()
-> ManySortedSet of
NAT } :
(
F4()
= F5() &
F6()
= F7() &
F8()
= F9() )
provided
A1:
ex
S being non
empty ManySortedSign ex
A being
non-empty MSAlgebra of
S st
(
S = F4()
. 0 &
A = F6()
. 0 )
and A2:
(
F4()
. 0
= F5()
. 0 &
F6()
. 0
= F7()
. 0 &
F8()
. 0
= F9()
. 0 )
and A3:
for
n being
Nat for
S being non
empty ManySortedSign for
A being
non-empty MSAlgebra of
S for
x being
set st
S = F4()
. n &
A = F6()
. n &
x = F8()
. n holds
(
F4()
. (n + 1) = F1(
S,
x,
n) &
F6()
. (n + 1) = F2(
S,
A,
x,
n) &
F8()
. (n + 1) = F3(
x,
n) )
and A4:
for
n being
Nat for
S being non
empty ManySortedSign for
A being
non-empty MSAlgebra of
S for
x being
set st
S = F5()
. n &
A = F7()
. n &
x = F9()
. n holds
(
F5()
. (n + 1) = F1(
S,
x,
n) &
F7()
. (n + 1) = F2(
S,
A,
x,
n) &
F9()
. (n + 1) = F3(
x,
n) )
and A5:
for
S being non
empty ManySortedSign for
A being
non-empty MSAlgebra of
S for
x being
set for
n being
Nat holds
F2(
S,
A,
x,
n) is
non-empty MSAlgebra of
F1(
S,
x,
n)
scheme :: CIRCCMB2:sch 15
CIRCCMB2'sch15{
F1()
-> non
empty ManySortedSign ,
F2()
-> non-empty MSAlgebra of
F1(),
F3(
set ,
set ,
set )
-> non
empty ManySortedSign ,
F4(
set ,
set ,
set ,
set )
-> set ,
F5(
set ,
set )
-> set ,
F6()
-> ManySortedSet of
NAT ,
F7()
-> ManySortedSet of
NAT ,
F8()
-> ManySortedSet of
NAT } :
provided
A1:
(
F6()
. 0
= F1() &
F7()
. 0
= F2() )
and A2:
for
n being
Nat for
S being non
empty ManySortedSign for
A being
non-empty MSAlgebra of
S for
x being
set st
S = F6()
. n &
A = F7()
. n &
x = F8()
. n holds
(
F6()
. (n + 1) = F3(
S,
x,
n) &
F7()
. (n + 1) = F4(
S,
A,
x,
n) &
F8()
. (n + 1) = F5(
x,
n) )
and A3:
for
S being non
empty ManySortedSign for
A being
non-empty MSAlgebra of
S for
x being
set for
n being
Nat holds
F4(
S,
A,
x,
n) is
non-empty MSAlgebra of
F3(
S,
x,
n)
scheme :: CIRCCMB2:sch 16
CIRCCMB2'sch16{
F1()
-> non
empty ManySortedSign ,
F2()
-> non-empty MSAlgebra of
F1(),
F3()
-> set ,
F4(
set ,
set ,
set )
-> non
empty ManySortedSign ,
F5(
set ,
set ,
set ,
set )
-> set ,
F6(
set ,
set )
-> set ,
F7()
-> Nat } :
provided
scheme :: CIRCCMB2:sch 17
CIRCCMB2'sch17{
F1()
-> non
empty ManySortedSign ,
F2()
-> non
empty ManySortedSign ,
F3()
-> non-empty MSAlgebra of
F1(),
F4()
-> set ,
F5(
set ,
set ,
set )
-> non
empty ManySortedSign ,
F6(
set ,
set ,
set ,
set )
-> set ,
F7(
set ,
set )
-> set ,
F8()
-> Nat } :
provided
scheme :: CIRCCMB2:sch 18
CIRCCMB2'sch18{
F1()
-> non
empty ManySortedSign ,
F2()
-> non
empty ManySortedSign ,
F3()
-> non-empty MSAlgebra of
F1(),
F4()
-> set ,
F5(
set ,
set ,
set )
-> non
empty ManySortedSign ,
F6(
set ,
set ,
set ,
set )
-> set ,
F7(
set ,
set )
-> set ,
F8()
-> Nat } :
for
A1,
A2 being
non-empty MSAlgebra of
F2() st ex
f,
g,
h being
ManySortedSet of
NAT st
(
F2()
= f . F8() &
A1 = g . F8() &
f . 0
= F1() &
g . 0
= F3() &
h . 0
= F4() & ( for
n being
Nat for
S being non
empty ManySortedSign for
A being
non-empty MSAlgebra of
S for
x being
set st
S = f . n &
A = g . n &
x = h . n holds
(
f . (n + 1) = F5(
S,
x,
n) &
g . (n + 1) = F6(
S,
A,
x,
n) &
h . (n + 1) = F7(
x,
n) ) ) ) & ex
f,
g,
h being
ManySortedSet of
NAT st
(
F2()
= f . F8() &
A2 = g . F8() &
f . 0
= F1() &
g . 0
= F3() &
h . 0
= F4() & ( for
n being
Nat for
S being non
empty ManySortedSign for
A being
non-empty MSAlgebra of
S for
x being
set st
S = f . n &
A = g . n &
x = h . n holds
(
f . (n + 1) = F5(
S,
x,
n) &
g . (n + 1) = F6(
S,
A,
x,
n) &
h . (n + 1) = F7(
x,
n) ) ) ) holds
A1 = A2
provided
scheme :: CIRCCMB2:sch 19
CIRCCMB2'sch19{
F1()
-> non
empty strict non
void unsplit gate`1=arity gate`2isBoolean ManySortedSign ,
F2()
-> non
empty strict non
void unsplit gate`1=arity gate`2isBoolean ManySortedSign ,
F3()
-> strict gate`2=den Boolean Circuit of
F1(),
F4(
set ,
set ,
set )
-> non
empty ManySortedSign ,
F5(
set ,
set ,
set ,
set )
-> set ,
F6()
-> set ,
F7(
set ,
set )
-> set ,
F8()
-> Nat } :
provided
A1:
for
S being non
empty strict non
void unsplit gate`1=arity gate`2isBoolean ManySortedSign for
x being
set for
n being
Nat holds
(
F4(
S,
x,
n) is
unsplit &
F4(
S,
x,
n) is
gate`1=arity &
F4(
S,
x,
n) is
gate`2isBoolean & not
F4(
S,
x,
n) is
void &
F4(
S,
x,
n) is
strict )
and A2:
ex
f,
h being
ManySortedSet of
NAT st
(
F2()
= f . F8() &
f . 0
= F1() &
h . 0
= F6() & ( for
n being
Nat for
S being non
empty ManySortedSign for
x being
set st
S = f . n &
x = h . n holds
(
f . (n + 1) = F4(
S,
x,
n) &
h . (n + 1) = F7(
x,
n) ) ) )
and A3:
for
S being non
empty ManySortedSign for
A being
non-empty MSAlgebra of
S for
x being
set for
n being
Nat holds
F5(
S,
A,
x,
n) is
non-empty MSAlgebra of
F4(
S,
x,
n)
and A4:
for
S,
S1 being non
empty strict non
void unsplit gate`1=arity gate`2isBoolean ManySortedSign for
A being
strict gate`2=den Boolean Circuit of
S for
x being
set for
n being
Nat st
S1 = F4(
S,
x,
n) holds
F5(
S,
A,
x,
n) is
strict gate`2=den Boolean Circuit of
S1
:: deftheorem Def1 defines MSAlg CIRCCMB2:def 1 :
scheme :: CIRCCMB2:sch 20
CIRCCMB2'sch20{
F1()
-> non
empty strict non
void unsplit gate`1=arity gate`2isBoolean ManySortedSign ,
F2()
-> non
empty strict non
void unsplit gate`1=arity gate`2isBoolean ManySortedSign ,
F3()
-> strict gate`2=den Boolean Circuit of
F1(),
F4(
set ,
set )
-> non
empty non
void unsplit gate`1=arity gate`2isBoolean ManySortedSign ,
F5(
set ,
set )
-> set ,
F6()
-> set ,
F7(
set ,
set )
-> set ,
F8()
-> Nat } :
provided
scheme :: CIRCCMB2:sch 21
CIRCCMB2'sch21{
F1()
-> non
empty ManySortedSign ,
F2()
-> non
empty strict non
void unsplit gate`1=arity gate`2isBoolean ManySortedSign ,
F3()
-> non-empty MSAlgebra of
F1(),
F4()
-> set ,
F5(
set ,
set ,
set )
-> non
empty ManySortedSign ,
F6(
set ,
set ,
set ,
set )
-> set ,
F7(
set ,
set )
-> set ,
F8()
-> Nat } :
for
A1,
A2 being
strict gate`2=den Boolean Circuit of
F2() st ex
f,
g,
h being
ManySortedSet of
NAT st
(
F2()
= f . F8() &
A1 = g . F8() &
f . 0
= F1() &
g . 0
= F3() &
h . 0
= F4() & ( for
n being
Nat for
S being non
empty ManySortedSign for
A being
non-empty MSAlgebra of
S for
x being
set st
S = f . n &
A = g . n &
x = h . n holds
(
f . (n + 1) = F5(
S,
x,
n) &
g . (n + 1) = F6(
S,
A,
x,
n) &
h . (n + 1) = F7(
x,
n) ) ) ) & ex
f,
g,
h being
ManySortedSet of
NAT st
(
F2()
= f . F8() &
A2 = g . F8() &
f . 0
= F1() &
g . 0
= F3() &
h . 0
= F4() & ( for
n being
Nat for
S being non
empty ManySortedSign for
A being
non-empty MSAlgebra of
S for
x being
set st
S = f . n &
A = g . n &
x = h . n holds
(
f . (n + 1) = F5(
S,
x,
n) &
g . (n + 1) = F6(
S,
A,
x,
n) &
h . (n + 1) = F7(
x,
n) ) ) ) holds
A1 = A2
provided
theorem :: CIRCCMB2:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th11: :: CIRCCMB2:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CIRCCMB2:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CIRCCMB2:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th14: :: CIRCCMB2:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th15: :: CIRCCMB2:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th16: :: CIRCCMB2:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CIRCCMB2:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th18: :: CIRCCMB2:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th19: :: CIRCCMB2:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th20: :: CIRCCMB2:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th21: :: CIRCCMB2:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th22: :: CIRCCMB2:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th23: :: CIRCCMB2:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CIRCCMB2:24 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CIRCCMB2:25 :: Showing IDV graph ... (Click the Palm Tree again to close it)
scheme :: CIRCCMB2:sch 22
CIRCCMB2'sch22{
F1()
-> non
empty strict non
void unsplit gate`1=arity gate`2isBoolean ManySortedSign ,
F2()
-> non
empty strict non
void unsplit gate`1=arity gate`2isBoolean ManySortedSign ,
F3()
-> strict gate`2=den Boolean Circuit of
F1(),
F4()
-> strict gate`2=den Boolean Circuit of
F2(),
F5(
set ,
set )
-> non
empty strict non
void unsplit gate`1=arity gate`2isBoolean ManySortedSign ,
F6(
set ,
set )
-> set ,
F7()
-> ManySortedSet of
NAT ,
F8()
-> set ,
F9(
set ,
set )
-> set ,
F10(
Nat)
-> Nat } :
provided
A1:
for
x being
set for
n being
Nat holds
F6(
x,
n) is
strict gate`2=den Boolean Circuit of
F5(
x,
n)
and A2:
for
s being
State of
F3() holds
Following s,
F10(0) is
stable
and A3:
for
n being
Nat for
x being
set for
A being
non-empty Circuit of
F5(
x,
n) st
x = F7()
. n &
A = F6(
x,
n) holds
for
s being
State of
A holds
Following s,
F10(1) is
stable
and A4:
ex
f,
g being
ManySortedSet of
NAT st
(
F2()
= f . F10(2) &
F4()
= g . F10(2) &
f . 0
= F1() &
g . 0
= F3() &
F7()
. 0
= F8() & ( for
n being
Nat for
S being non
empty ManySortedSign for
A1 being
non-empty MSAlgebra of
S for
x being
set for
A2 being
non-empty MSAlgebra of
F5(
x,
n) st
S = f . n &
A1 = g . n &
x = F7()
. n &
A2 = F6(
x,
n) holds
(
f . (n + 1) = S +* F5(
x,
n) &
g . (n + 1) = A1 +* A2 &
F7()
. (n + 1) = F9(
x,
n) ) ) )
and A5:
(
InnerVertices F1() is
Relation & not
InputVertices F1() is
with_pair )
and A6:
(
F7()
. 0
= F8() &
F8()
in InnerVertices F1() )
and A7:
for
n being
Nat for
x being
set holds
InnerVertices F5(
x,
n) is
Relation
and A8:
for
n being
Nat for
x being
set st
x = F7()
. n holds
not
(InputVertices F5(x,n)) \ {x} is
with_pair
and A9:
for
n being
Nat for
x being
set st
x = F7()
. n holds
(
F7()
. (n + 1) = F9(
x,
n) &
x in InputVertices F5(
x,
n) &
F9(
x,
n)
in InnerVertices F5(
x,
n) )