:: PROJDES1 semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
theorem Th1: :: PROJDES1:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
FCPS being
up-3-dimensional CollProjectiveSpace for
a,
b,
c being
Element of
FCPS st
a,
b,
c is_collinear holds
(
b,
c,
a is_collinear &
c,
a,
b is_collinear &
b,
a,
c is_collinear &
a,
c,
b is_collinear &
c,
b,
a is_collinear )
theorem :: PROJDES1:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: PROJDES1:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: PROJDES1:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: PROJDES1:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: PROJDES1:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: PROJDES1:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th8: :: PROJDES1:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
FCPS being
up-3-dimensional CollProjectiveSpace for
o,
a,
d,
d',
s,
a' being
Element of
FCPS st not
o,
a,
d is_collinear &
o,
d,
d' is_collinear &
a,
d,
s is_collinear &
d <> d' &
a',
d',
s is_collinear &
o,
a,
a' is_collinear &
o <> a' holds
s <> d
Lm1:
for FCPS being up-3-dimensional CollProjectiveSpace
for a, b, c, b', c' being Element of FCPS st not a,b,c is_collinear & a,b,b' is_collinear & a,c,c' is_collinear & a <> b' holds
b' <> c'
definition
let FCPS be
up-3-dimensional CollProjectiveSpace;
let a,
b,
c,
d be
Element of
FCPS;
pred a,
b,
c,
d are_coplanar means :
Def1:
:: PROJDES1:def 1
ex
x being
Element of
FCPS st
(
a,
b,
x is_collinear &
c,
d,
x is_collinear );
end;
:: deftheorem Def1 defines are_coplanar PROJDES1:def 1 :
for
FCPS being
up-3-dimensional CollProjectiveSpace for
a,
b,
c,
d being
Element of
FCPS holds
(
a,
b,
c,
d are_coplanar iff ex
x being
Element of
FCPS st
(
a,
b,
x is_collinear &
c,
d,
x is_collinear ) );
theorem :: PROJDES1:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th10: :: PROJDES1:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
FCPS being
up-3-dimensional CollProjectiveSpace for
a,
b,
c,
d being
Element of
FCPS st (
a,
b,
c is_collinear or
b,
c,
d is_collinear or
c,
d,
a is_collinear or
d,
a,
b is_collinear ) holds
a,
b,
c,
d are_coplanar
Lm2:
for FCPS being up-3-dimensional CollProjectiveSpace
for a, b, c, d being Element of FCPS st a,b,c,d are_coplanar holds
b,a,c,d are_coplanar
Lm3:
for FCPS being up-3-dimensional CollProjectiveSpace
for a, b, c, d being Element of FCPS st a,b,c,d are_coplanar holds
b,c,d,a are_coplanar
theorem Th11: :: PROJDES1:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
FCPS being
up-3-dimensional CollProjectiveSpace for
a,
b,
c,
d being
Element of
FCPS st
a,
b,
c,
d are_coplanar holds
(
b,
c,
d,
a are_coplanar &
c,
d,
a,
b are_coplanar &
d,
a,
b,
c are_coplanar &
b,
a,
c,
d are_coplanar &
c,
b,
d,
a are_coplanar &
d,
c,
a,
b are_coplanar &
a,
d,
b,
c are_coplanar &
a,
c,
d,
b are_coplanar &
b,
d,
a,
c are_coplanar &
c,
a,
b,
d are_coplanar &
d,
b,
c,
a are_coplanar &
c,
a,
d,
b are_coplanar &
d,
b,
a,
c are_coplanar &
a,
c,
b,
d are_coplanar &
b,
d,
c,
a are_coplanar &
a,
b,
d,
c are_coplanar &
a,
d,
c,
b are_coplanar &
b,
c,
a,
d are_coplanar &
b,
a,
d,
c are_coplanar &
c,
b,
a,
d are_coplanar &
c,
d,
b,
a are_coplanar &
d,
a,
c,
b are_coplanar &
d,
c,
b,
a are_coplanar )
Lm4:
for FCPS being up-3-dimensional CollProjectiveSpace
for a, b, c, p, q being Element of FCPS st not a,b,c is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar holds
a,b,p,q are_coplanar
theorem Th12: :: PROJDES1:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
FCPS being
up-3-dimensional CollProjectiveSpace for
a,
b,
c,
p,
q,
r,
s being
Element of
FCPS st not
a,
b,
c is_collinear &
a,
b,
c,
p are_coplanar &
a,
b,
c,
q are_coplanar &
a,
b,
c,
r are_coplanar &
a,
b,
c,
s are_coplanar holds
p,
q,
r,
s are_coplanar
Lm5:
for FCPS being up-3-dimensional CollProjectiveSpace
for a, b, c, p, q, r being Element of FCPS st not a,b,c is_collinear & a,b,c,p are_coplanar & a,b,c,q are_coplanar & a,b,c,r are_coplanar holds
a,p,q,r are_coplanar
theorem :: PROJDES1:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
FCPS being
up-3-dimensional CollProjectiveSpace for
p,
q,
r,
a,
b,
c,
s being
Element of
FCPS st not
p,
q,
r is_collinear &
a,
b,
c,
p are_coplanar &
a,
b,
c,
r are_coplanar &
a,
b,
c,
q are_coplanar &
p,
q,
r,
s are_coplanar holds
a,
b,
c,
s are_coplanar
Lm6:
for FCPS being up-3-dimensional CollProjectiveSpace
for p, q, r, a, b being Element of FCPS st p <> q & p,q,r is_collinear & a,b,p,q are_coplanar holds
a,b,p,r are_coplanar
theorem Th14: :: PROJDES1:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
FCPS being
up-3-dimensional CollProjectiveSpace for
p,
q,
r,
a,
b,
c being
Element of
FCPS st
p <> q &
p,
q,
r is_collinear &
a,
b,
c,
p are_coplanar &
a,
b,
c,
q are_coplanar holds
a,
b,
c,
r are_coplanar
theorem :: PROJDES1:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
FCPS being
up-3-dimensional CollProjectiveSpace for
a,
b,
c,
p,
q,
r,
s being
Element of
FCPS st not
a,
b,
c is_collinear &
a,
b,
c,
p are_coplanar &
a,
b,
c,
q are_coplanar &
a,
b,
c,
r are_coplanar &
a,
b,
c,
s are_coplanar holds
ex
x being
Element of
FCPS st
(
p,
q,
x is_collinear &
r,
s,
x is_collinear )
theorem Th16: :: PROJDES1:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th17: :: PROJDES1:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th18: :: PROJDES1:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th19: :: PROJDES1:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
FCPS being
up-3-dimensional CollProjectiveSpace for
a,
b,
c,
o,
a' being
Element of
FCPS st not
a,
b,
c,
o are_coplanar &
o,
a,
a' is_collinear &
a <> a' holds
not
a,
b,
c,
a' are_coplanar
theorem Th20: :: PROJDES1:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
FCPS being
up-3-dimensional CollProjectiveSpace for
a,
b,
c,
a',
b',
c',
p,
q,
r being
Element of
FCPS st not
a,
b,
c is_collinear & not
a',
b',
c' is_collinear &
a,
b,
c,
p are_coplanar &
a,
b,
c,
q are_coplanar &
a,
b,
c,
r are_coplanar &
a',
b',
c',
p are_coplanar &
a',
b',
c',
q are_coplanar &
a',
b',
c',
r are_coplanar & not
a,
b,
c,
a' are_coplanar holds
p,
q,
r is_collinear
theorem Th21: :: PROJDES1:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
FCPS being
up-3-dimensional CollProjectiveSpace for
a,
a',
o,
b,
c,
b',
c',
p,
q,
r being
Element of
FCPS st
a <> a' &
o,
a,
a' is_collinear & not
a,
b,
c,
o are_coplanar & not
a',
b',
c' is_collinear &
a,
b,
p is_collinear &
a',
b',
p is_collinear &
b,
c,
q is_collinear &
b',
c',
q is_collinear &
a,
c,
r is_collinear &
a',
c',
r is_collinear holds
p,
q,
r is_collinear
theorem Th22: :: PROJDES1:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
FCPS being
up-3-dimensional CollProjectiveSpace for
a,
b,
c,
d,
o being
Element of
FCPS st not
a,
b,
c,
d are_coplanar &
a,
b,
c,
o are_coplanar & not
a,
b,
o is_collinear holds
not
a,
b,
d,
o are_coplanar
theorem Th23: :: PROJDES1:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
FCPS being
up-3-dimensional CollProjectiveSpace for
a,
b,
c,
o,
a',
b',
c' being
Element of
FCPS st not
a,
b,
c,
o are_coplanar &
o,
a,
a' is_collinear &
o,
b,
b' is_collinear &
o,
c,
c' is_collinear &
o <> a' &
o <> b' &
o <> c' holds
( not
a',
b',
c' is_collinear & not
a',
b',
c',
o are_coplanar )
theorem Th24: :: PROJDES1:24 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
FCPS being
up-3-dimensional CollProjectiveSpace for
a,
b,
c,
o,
d,
d',
a',
b',
c',
s,
t,
u being
Element of
FCPS st
a,
b,
c,
o are_coplanar & not
a,
b,
c,
d are_coplanar & not
a,
b,
d,
o are_coplanar & not
b,
c,
d,
o are_coplanar & not
a,
c,
d,
o are_coplanar &
o,
d,
d' is_collinear &
o,
a,
a' is_collinear &
o,
b,
b' is_collinear &
o,
c,
c' is_collinear &
a,
d,
s is_collinear &
a',
d',
s is_collinear &
b,
d,
t is_collinear &
b',
d',
t is_collinear &
c,
d,
u is_collinear &
o <> a' &
o <> d' &
d <> d' &
o <> b' holds
not
s,
t,
u is_collinear
definition
let FCPS be
up-3-dimensional CollProjectiveSpace;
let o,
a,
b,
c be
Element of
FCPS;
pred o,
a,
b,
c constitute_a_quadrangle means :
Def2:
:: PROJDES1:def 2
( not
a,
b,
c is_collinear & not
o,
a,
b is_collinear & not
o,
b,
c is_collinear & not
o,
c,
a is_collinear );
end;
:: deftheorem Def2 defines constitute_a_quadrangle PROJDES1:def 2 :
for
FCPS being
up-3-dimensional CollProjectiveSpace for
o,
a,
b,
c being
Element of
FCPS holds
(
o,
a,
b,
c constitute_a_quadrangle iff ( not
a,
b,
c is_collinear & not
o,
a,
b is_collinear & not
o,
b,
c is_collinear & not
o,
c,
a is_collinear ) );
Lm7:
for FCPS being up-3-dimensional CollProjectiveSpace
for o, a', b', c', a, b, c, p, q, r being Element of FCPS st o <> a' & o <> b' & o <> c' & a <> a' & b <> b' & o,a,b,c constitute_a_quadrangle & o,a,a' is_collinear & o,b,b' is_collinear & o,c,c' is_collinear & a,b,p is_collinear & a',b',p is_collinear & b,c,q is_collinear & b',c',q is_collinear & a,c,r is_collinear & a',c',r is_collinear holds
p,q,r is_collinear
theorem :: PROJDES1:25 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th26: :: PROJDES1:26 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
FCPS being
up-3-dimensional CollProjectiveSpace for
o,
a,
b,
c,
a',
b',
c',
p,
r,
q being
Element of
FCPS st not
o,
a,
b is_collinear & not
o,
b,
c is_collinear & not
o,
a,
c is_collinear &
o,
a,
a' is_collinear &
o,
b,
b' is_collinear &
o,
c,
c' is_collinear &
a,
b,
p is_collinear &
a',
b',
p is_collinear &
a <> a' &
b,
c,
r is_collinear &
b',
c',
r is_collinear &
a,
c,
q is_collinear &
b <> b' &
a',
c',
q is_collinear &
o <> a' &
o <> b' &
o <> c' holds
r,
q,
p is_collinear
theorem Th27: :: PROJDES1:27 :: Showing IDV graph ... (Click the Palm Tree again to close it)