:: POLYNOM3 semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
theorem Th1: :: POLYNOM3:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th2: :: POLYNOM3:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th3: :: POLYNOM3:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th4: :: POLYNOM3:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def1 defines < POLYNOM3:def 1 :
:: deftheorem Def2 defines <= POLYNOM3:def 2 :
theorem Th5: :: POLYNOM3:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
n being
Nat for
p,
q,
r being
Element of
n -tuples_on NAT holds
( (
p < q &
q < r implies
p < r ) & ( ( (
p < q &
q <= r ) or (
p <= q &
q < r ) or (
p <= q &
q <= r ) ) implies
p <= r ) )
theorem Th6: :: POLYNOM3:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th7: :: POLYNOM3:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def3 defines TuplesOrder POLYNOM3:def 3 :
:: deftheorem Def4 defines Decomp POLYNOM3:def 4 :
theorem Th8: :: POLYNOM3:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th9: :: POLYNOM3:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: POLYNOM3:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th11: :: POLYNOM3:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th12: :: POLYNOM3:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th13: :: POLYNOM3:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th14: :: POLYNOM3:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def5 defines prodTuples POLYNOM3:def 5 :
theorem Th15: :: POLYNOM3:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th16: :: POLYNOM3:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th17: :: POLYNOM3:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th18: :: POLYNOM3:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th19: :: POLYNOM3:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th20: :: POLYNOM3:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th21: :: POLYNOM3:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th22: :: POLYNOM3:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th23: :: POLYNOM3:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def6 defines + POLYNOM3:def 6 :
theorem Th24: :: POLYNOM3:24 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: POLYNOM3:25 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th26: :: POLYNOM3:26 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def7 defines - POLYNOM3:def 7 :
:: deftheorem defines - POLYNOM3:def 8 :
theorem Th27: :: POLYNOM3:27 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem defines 0_. POLYNOM3:def 9 :
theorem Th28: :: POLYNOM3:28 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th29: :: POLYNOM3:29 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th30: :: POLYNOM3:30 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem defines 1_. POLYNOM3:def 10 :
theorem Th31: :: POLYNOM3:31 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def11 defines *' POLYNOM3:def 11 :
theorem Th32: :: POLYNOM3:32 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th33: :: POLYNOM3:33 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th34: :: POLYNOM3:34 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: POLYNOM3:35 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th36: :: POLYNOM3:36 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
let L be non
empty add-associative right_zeroed right_complementable distributive doubleLoopStr ;
func Polynom-Ring L -> non
empty strict doubleLoopStr means :
Def12:
:: POLYNOM3:def 12
( ( for
x being
set holds
(
x in the
carrier of
it iff
x is
Polynomial of
L ) ) & ( for
x,
y being
Element of
it for
p,
q being
sequence of
L st
x = p &
y = q holds
x + y = p + q ) & ( for
x,
y being
Element of
it for
p,
q being
sequence of
L st
x = p &
y = q holds
x * y = p *' q ) &
0. it = 0_. L &
1_ it = 1_. L );
existence
ex b1 being non empty strict doubleLoopStr st
( ( for x being set holds
( x in the carrier of b1 iff x is Polynomial of L ) ) & ( for x, y being Element of b1
for p, q being sequence of L st x = p & y = q holds
x + y = p + q ) & ( for x, y being Element of b1
for p, q being sequence of L st x = p & y = q holds
x * y = p *' q ) & 0. b1 = 0_. L & 1_ b1 = 1_. L )
uniqueness
for b1, b2 being non empty strict doubleLoopStr st ( for x being set holds
( x in the carrier of b1 iff x is Polynomial of L ) ) & ( for x, y being Element of b1
for p, q being sequence of L st x = p & y = q holds
x + y = p + q ) & ( for x, y being Element of b1
for p, q being sequence of L st x = p & y = q holds
x * y = p *' q ) & 0. b1 = 0_. L & 1_ b1 = 1_. L & ( for x being set holds
( x in the carrier of b2 iff x is Polynomial of L ) ) & ( for x, y being Element of b2
for p, q being sequence of L st x = p & y = q holds
x + y = p + q ) & ( for x, y being Element of b2
for p, q being sequence of L st x = p & y = q holds
x * y = p *' q ) & 0. b2 = 0_. L & 1_ b2 = 1_. L holds
b1 = b2
end;
:: deftheorem Def12 defines Polynom-Ring POLYNOM3:def 12 :
theorem :: POLYNOM3:37 :: Showing IDV graph ... (Click the Palm Tree again to close it)