:: POLYEQ_2 semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
Lm1:
4 = 2 * 2
;
definition
let a,
b,
c,
d,
e,
x be
real number ;
func Four a,
b,
c,
d,
e,
x -> set equals :: POLYEQ_2:def 1
((((a * (x |^ 4)) + (b * (x |^ 3))) + (c * (x ^2 ))) + (d * x)) + e;
correctness
coherence
((((a * (x |^ 4)) + (b * (x |^ 3))) + (c * (x ^2 ))) + (d * x)) + e is set ;
;
end;
:: deftheorem defines Four POLYEQ_2:def 1 :
for
a,
b,
c,
d,
e,
x being
real number holds
Four a,
b,
c,
d,
e,
x = ((((a * (x |^ 4)) + (b * (x |^ 3))) + (c * (x ^2 ))) + (d * x)) + e;
registration
let a,
b,
c,
d,
e,
x be
real number ;
cluster Four a,
b,
c,
d,
e,
x -> real ;
coherence
Four a,b,c,d,e,x is real
;
end;
theorem :: POLYEQ_2:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
c,
e,
x being
real number st
a <> 0 &
e <> 0 &
(c ^2 ) - ((4 * a) * e) > 0 &
Four a,0,
c,0,
e,
x = 0 holds
(
x <> 0 & (
x = sqrt (((- c) + (sqrt (delta a,c,e))) / (2 * a)) or
x = sqrt (((- c) - (sqrt (delta a,c,e))) / (2 * a)) or
x = - (sqrt (((- c) + (sqrt (delta a,c,e))) / (2 * a))) or
x = - (sqrt (((- c) - (sqrt (delta a,c,e))) / (2 * a))) ) )
theorem Th2: :: POLYEQ_2:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: POLYEQ_2:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c,
x,
y being
real number st
a <> 0 &
((b ^2 ) - ((4 * a) * c)) + (8 * (a ^2 )) > 0 &
y = x + (1 / x) &
Four a,
b,
c,
b,
a,
x = 0 holds
for
y1,
y2 being
real number st
y1 = ((- b) + (sqrt (((b ^2 ) - ((4 * a) * c)) + (8 * (a ^2 ))))) / (2 * a) &
y2 = ((- b) - (sqrt (((b ^2 ) - ((4 * a) * c)) + (8 * (a ^2 ))))) / (2 * a) holds
(
x <> 0 & (
x = (y1 + (sqrt (delta 1,(- y1),1))) / 2 or
x = (y2 + (sqrt (delta 1,(- y2),1))) / 2 or
x = (y1 - (sqrt (delta 1,(- y1),1))) / 2 or
x = (y2 - (sqrt (delta 1,(- y2),1))) / 2 ) )
theorem Th4: :: POLYEQ_2:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th5: :: POLYEQ_2:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: POLYEQ_2:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th7: :: POLYEQ_2:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a1,
a2,
a3,
a4,
a5,
b1,
b2,
b3,
b4,
b5 being
real number st ( for
x being
real number holds
Four a1,
a2,
a3,
a4,
a5,
x = Four b1,
b2,
b3,
b4,
b5,
x ) holds
(
a5 = b5 &
((a1 - a2) + a3) - a4 = ((b1 - b2) + b3) - b4 &
((a1 + a2) + a3) + a4 = ((b1 + b2) + b3) + b4 )
theorem Th8: :: POLYEQ_2:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a1,
a2,
a3,
a4,
a5,
b1,
b2,
b3,
b4,
b5 being
real number st ( for
x being
real number holds
Four a1,
a2,
a3,
a4,
a5,
x = Four b1,
b2,
b3,
b4,
b5,
x ) holds
(
a1 - b1 = b3 - a3 &
a2 - b2 = b4 - a4 )
theorem Th9: :: POLYEQ_2:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a1,
a2,
a3,
a4,
a5,
b1,
b2,
b3,
b4,
b5 being
real number st ( for
x being
real number holds
Four a1,
a2,
a3,
a4,
a5,
x = Four b1,
b2,
b3,
b4,
b5,
x ) holds
(
a1 = b1 &
a2 = b2 &
a3 = b3 &
a4 = b4 &
a5 = b5 )
definition
let a1,
x1,
x2,
x3,
x4,
x be
real number ;
func Four0 a1,
x1,
x2,
x3,
x4,
x -> set equals :: POLYEQ_2:def 2
a1 * ((((x - x1) * (x - x2)) * (x - x3)) * (x - x4));
correctness
coherence
a1 * ((((x - x1) * (x - x2)) * (x - x3)) * (x - x4)) is set ;
;
end;
:: deftheorem defines Four0 POLYEQ_2:def 2 :
for
a1,
x1,
x2,
x3,
x4,
x being
real number holds
Four0 a1,
x1,
x2,
x3,
x4,
x = a1 * ((((x - x1) * (x - x2)) * (x - x3)) * (x - x4));
registration
let a1,
x1,
x2,
x3,
x4,
x be
real number ;
cluster Four0 a1,
x1,
x2,
x3,
x4,
x -> real ;
coherence
Four0 a1,x1,x2,x3,x4,x is real
;
end;
theorem Th10: :: POLYEQ_2:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a1,
a2,
a3,
a4,
a5,
x,
x1,
x2,
x3,
x4 being
real number st
a1 <> 0 & ( for
x being
real number holds
Four a1,
a2,
a3,
a4,
a5,
x = Four0 a1,
x1,
x2,
x3,
x4,
x ) holds
(((((a1 * (x |^ 4)) + (a2 * (x |^ 3))) + (a3 * (x ^2 ))) + (a4 * x)) + a5) / a1 = (((((x ^2 ) * (x ^2 )) - (((x1 + x2) + x3) * ((x ^2 ) * x))) + ((((x1 * x3) + (x2 * x3)) + (x1 * x2)) * (x ^2 ))) - (((x1 * x2) * x3) * x)) - ((((x - x1) * (x - x2)) * (x - x3)) * x4)
theorem Th11: :: POLYEQ_2:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a1,
a2,
a3,
a4,
a5,
x,
x1,
x2,
x3,
x4 being
real number st
a1 <> 0 & ( for
x being
real number holds
Four a1,
a2,
a3,
a4,
a5,
x = Four0 a1,
x1,
x2,
x3,
x4,
x ) holds
(((((a1 * (x |^ 4)) + (a2 * (x |^ 3))) + (a3 * (x ^2 ))) + (a4 * x)) + a5) / a1 = ((((x |^ 4) - ((((x1 + x2) + x3) + x4) * (x |^ 3))) + ((((((x1 * x2) + (x1 * x3)) + (x1 * x4)) + ((x2 * x3) + (x2 * x4))) + (x3 * x4)) * (x ^2 ))) - ((((((x1 * x2) * x3) + ((x1 * x2) * x4)) + ((x1 * x3) * x4)) + ((x2 * x3) * x4)) * x)) + (((x1 * x2) * x3) * x4)
theorem :: POLYEQ_2:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a1,
a2,
a3,
a4,
a5,
x1,
x2,
x3,
x4 being
real number st
a1 <> 0 & ( for
x being
real number holds
Four a1,
a2,
a3,
a4,
a5,
x = Four0 a1,
x1,
x2,
x3,
x4,
x ) holds
(
a2 / a1 = - (((x1 + x2) + x3) + x4) &
a3 / a1 = ((((x1 * x2) + (x1 * x3)) + (x1 * x4)) + ((x2 * x3) + (x2 * x4))) + (x3 * x4) &
a4 / a1 = - (((((x1 * x2) * x3) + ((x1 * x2) * x4)) + ((x1 * x3) * x4)) + ((x2 * x3) * x4)) &
a5 / a1 = ((x1 * x2) * x3) * x4 )
theorem :: POLYEQ_2:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)