:: PASCH semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
definition
let OAS be
OAffinSpace;
attr OAS is
satisfying_Int_Par_Pasch means :: PASCH:def 1
for
a,
b,
c,
d,
p being
Element of
OAS st not
LIN p,
b,
c &
Mid b,
p,
a &
LIN p,
c,
d &
b,
c '||' d,
a holds
Mid c,
p,
d;
end;
:: deftheorem defines satisfying_Int_Par_Pasch PASCH:def 1 :
for
OAS being
OAffinSpace holds
(
OAS is
satisfying_Int_Par_Pasch iff for
a,
b,
c,
d,
p being
Element of
OAS st not
LIN p,
b,
c &
Mid b,
p,
a &
LIN p,
c,
d &
b,
c '||' d,
a holds
Mid c,
p,
d );
definition
let OAS be
OAffinSpace;
attr OAS is
satisfying_Ext_Par_Pasch means :: PASCH:def 2
for
a,
b,
c,
d,
p being
Element of
OAS st
Mid p,
b,
c &
LIN p,
a,
d &
a,
b '||' c,
d & not
LIN p,
a,
b holds
Mid p,
a,
d;
end;
:: deftheorem defines satisfying_Ext_Par_Pasch PASCH:def 2 :
for
OAS being
OAffinSpace holds
(
OAS is
satisfying_Ext_Par_Pasch iff for
a,
b,
c,
d,
p being
Element of
OAS st
Mid p,
b,
c &
LIN p,
a,
d &
a,
b '||' c,
d & not
LIN p,
a,
b holds
Mid p,
a,
d );
definition
let OAS be
OAffinSpace;
attr OAS is
satisfying_Gen_Par_Pasch means :: PASCH:def 3
for
a,
b,
c,
a',
b',
c' being
Element of
OAS st not
LIN a,
b,
a' &
a,
a' '||' b,
b' &
a,
a' '||' c,
c' &
Mid a,
b,
c &
LIN a',
b',
c' holds
Mid a',
b',
c';
end;
:: deftheorem defines satisfying_Gen_Par_Pasch PASCH:def 3 :
for
OAS being
OAffinSpace holds
(
OAS is
satisfying_Gen_Par_Pasch iff for
a,
b,
c,
a',
b',
c' being
Element of
OAS st not
LIN a,
b,
a' &
a,
a' '||' b,
b' &
a,
a' '||' c,
c' &
Mid a,
b,
c &
LIN a',
b',
c' holds
Mid a',
b',
c' );
definition
let OAS be
OAffinSpace;
attr OAS is
satisfying_Ext_Bet_Pasch means :: PASCH:def 4
for
a,
b,
c,
d,
x,
y being
Element of
OAS st
Mid a,
b,
d &
Mid b,
x,
c & not
LIN a,
b,
c holds
ex
y being
Element of
OAS st
(
Mid a,
y,
c &
Mid y,
x,
d );
end;
:: deftheorem defines satisfying_Ext_Bet_Pasch PASCH:def 4 :
for
OAS being
OAffinSpace holds
(
OAS is
satisfying_Ext_Bet_Pasch iff for
a,
b,
c,
d,
x,
y being
Element of
OAS st
Mid a,
b,
d &
Mid b,
x,
c & not
LIN a,
b,
c holds
ex
y being
Element of
OAS st
(
Mid a,
y,
c &
Mid y,
x,
d ) );
definition
let OAS be
OAffinSpace;
attr OAS is
satisfying_Int_Bet_Pasch means :: PASCH:def 5
for
a,
b,
c,
d,
x,
y being
Element of
OAS st
Mid a,
b,
d &
Mid a,
x,
c & not
LIN a,
b,
c holds
ex
y being
Element of
OAS st
(
Mid b,
y,
c &
Mid x,
y,
d );
end;
:: deftheorem defines satisfying_Int_Bet_Pasch PASCH:def 5 :
for
OAS being
OAffinSpace holds
(
OAS is
satisfying_Int_Bet_Pasch iff for
a,
b,
c,
d,
x,
y being
Element of
OAS st
Mid a,
b,
d &
Mid a,
x,
c & not
LIN a,
b,
c holds
ex
y being
Element of
OAS st
(
Mid b,
y,
c &
Mid x,
y,
d ) );
definition
let OAS be
OAffinSpace;
attr OAS is
Fanoian means :: PASCH:def 6
for
a,
b,
c,
d being
Element of
OAS st
a,
b // c,
d &
a,
c // b,
d & not
LIN a,
b,
c holds
ex
x being
Element of
OAS st
(
Mid a,
x,
d &
Mid b,
x,
c );
end;
:: deftheorem defines Fanoian PASCH:def 6 :
for
OAS being
OAffinSpace holds
(
OAS is
Fanoian iff for
a,
b,
c,
d being
Element of
OAS st
a,
b // c,
d &
a,
c // b,
d & not
LIN a,
b,
c holds
ex
x being
Element of
OAS st
(
Mid a,
x,
d &
Mid b,
x,
c ) );
theorem :: PASCH:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: PASCH:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: PASCH:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: PASCH:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: PASCH:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: PASCH:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th7: :: PASCH:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th8: :: PASCH:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: PASCH:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: PASCH:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th11: :: PASCH:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
p,
a,
b,
c,
d1,
d2 being
Element of
OAS st not
LIN p,
a,
b &
LIN p,
b,
c &
LIN p,
a,
d1 &
LIN p,
a,
d2 &
a,
b '||' c,
d1 &
a,
b '||' c,
d2 holds
d1 = d2
theorem Th12: :: PASCH:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
a,
b,
c,
d1,
d2 being
Element of
OAS st not
LIN a,
b,
c &
a,
b '||' c,
d1 &
a,
b '||' c,
d2 &
a,
c '||' b,
d1 &
a,
c '||' b,
d2 holds
d1 = d2
theorem Th13: :: PASCH:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
p,
b,
c,
a,
d being
Element of
OAS st not
LIN p,
b,
c &
Mid b,
p,
a &
LIN p,
c,
d &
b,
c '||' d,
a holds
Mid c,
p,
d
theorem :: PASCH:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th15: :: PASCH:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
p,
b,
c,
a,
d being
Element of
OAS st
Mid p,
b,
c &
LIN p,
a,
d &
a,
b '||' c,
d & not
LIN p,
a,
b holds
Mid p,
a,
d
theorem :: PASCH:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th17: :: PASCH:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
a,
b,
a',
b',
c,
c' being
Element of
OAS st not
LIN a,
b,
a' &
a,
a' '||' b,
b' &
a,
a' '||' c,
c' &
Mid a,
b,
c &
LIN a',
b',
c' holds
Mid a',
b',
c'
theorem :: PASCH:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: PASCH:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
p,
a,
b,
a',
b' being
Element of
OAS st not
LIN p,
a,
b &
a,
p // p,
a' &
b,
p // p,
b' &
a,
b '||' a',
b' holds
a,
b // b',
a'
theorem :: PASCH:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
p,
a,
a',
b,
b' being
Element of
OAS st not
LIN p,
a,
a' &
p,
a // p,
b &
p,
a' // p,
b' &
a,
a' '||' b,
b' holds
a,
a' // b,
b'
theorem Th21: :: PASCH:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
p,
a,
b,
c being
Element of
OAS st not
LIN p,
a,
b &
p,
a '||' b,
c &
p,
b '||' a,
c holds
(
p,
a // b,
c &
p,
b // a,
c )
theorem Th22: :: PASCH:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
p,
c,
b,
d,
a being
Element of
OAS st
Mid p,
c,
b &
c,
d // b,
a &
p,
d // p,
a & not
LIN p,
a,
b &
p <> c holds
Mid p,
d,
a
theorem Th23: :: PASCH:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
p,
d,
a,
c,
b being
Element of
OAS st
Mid p,
d,
a &
c,
d // b,
a &
p,
c // p,
b & not
LIN p,
a,
b &
p <> c holds
Mid p,
c,
b
theorem Th24: :: PASCH:24 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
p,
a,
b,
c,
d being
Element of
OAS st not
LIN p,
a,
b &
p,
b // p,
c &
b,
a // c,
d &
LIN a,
p,
d &
p <> d holds
not
Mid a,
p,
d
theorem Th25: :: PASCH:25 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th26: :: PASCH:26 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th27: :: PASCH:27 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th28: :: PASCH:28 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
p,
a,
b,
c being
Element of
OAS st not
LIN p,
a,
b &
Mid p,
c,
b holds
ex
x being
Element of
OAS st
(
Mid p,
x,
a &
a,
b // x,
c )
theorem :: PASCH:29 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th30: :: PASCH:30 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
a,
b,
c,
d being
Element of
OAS st
a,
b // c,
d & not
LIN a,
b,
c holds
ex
x being
Element of
OAS st
(
Mid a,
x,
d &
Mid b,
x,
c )
theorem :: PASCH:31 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: PASCH:32 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: PASCH:33 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
a,
b,
c,
d being
Element of
OAS st
a,
b '||' c,
d &
a,
c '||' b,
d & not
LIN a,
b,
c holds
ex
x being
Element of
OAS st
(
LIN x,
a,
d &
LIN x,
b,
c )
theorem :: PASCH:34 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
a,
b,
c,
d,
p being
Element of
OAS st
a,
b '||' c,
d &
a,
c '||' b,
d & not
LIN a,
b,
c &
LIN p,
a,
d &
LIN p,
b,
c holds
not
LIN p,
a,
b
theorem Th35: :: PASCH:35 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
a,
b,
d,
x,
c being
Element of
OAS st
Mid a,
b,
d &
Mid b,
x,
c & not
LIN a,
b,
c holds
ex
y being
Element of
OAS st
(
Mid a,
y,
c &
Mid y,
x,
d )
theorem :: PASCH:36 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th37: :: PASCH:37 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
a,
b,
d,
x,
c being
Element of
OAS st
Mid a,
b,
d &
Mid a,
x,
c & not
LIN a,
b,
c holds
ex
y being
Element of
OAS st
(
Mid b,
y,
c &
Mid x,
y,
d )
theorem :: PASCH:38 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: PASCH:39 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
OAS being
OAffinSpace for
p,
a,
b,
p',
a',
b' being
Element of
OAS st
Mid p,
a,
b &
p,
a // p',
a' & not
LIN p,
a,
p' &
LIN p',
a',
b' &
p,
p' // a,
a' &
p,
p' // b,
b' holds
Mid p',
a',
b'