:: JORDAN20 semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
theorem Th1: :: JORDAN20:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th2: :: JORDAN20:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th3: :: JORDAN20:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: JORDAN20:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: JORDAN20:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th6: :: JORDAN20:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th7: :: JORDAN20:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
let P be
Subset of
(TOP-REAL 2);
let p1,
p2,
p be
Point of
(TOP-REAL 2);
let e be
Real;
pred p is_Lin P,
p1,
p2,
e means :
Def1:
:: JORDAN20:def 1
(
P is_an_arc_of p1,
p2 &
p in P &
p `1 = e & ex
p4 being
Point of
(TOP-REAL 2) st
(
p4 `1 < e &
LE p4,
p,
P,
p1,
p2 & ( for
p5 being
Point of
(TOP-REAL 2) st
LE p4,
p5,
P,
p1,
p2 &
LE p5,
p,
P,
p1,
p2 holds
p5 `1 <= e ) ) );
pred p is_Rin P,
p1,
p2,
e means :
Def2:
:: JORDAN20:def 2
(
P is_an_arc_of p1,
p2 &
p in P &
p `1 = e & ex
p4 being
Point of
(TOP-REAL 2) st
(
p4 `1 > e &
LE p4,
p,
P,
p1,
p2 & ( for
p5 being
Point of
(TOP-REAL 2) st
LE p4,
p5,
P,
p1,
p2 &
LE p5,
p,
P,
p1,
p2 holds
p5 `1 >= e ) ) );
pred p is_Lout P,
p1,
p2,
e means :
Def3:
:: JORDAN20:def 3
(
P is_an_arc_of p1,
p2 &
p in P &
p `1 = e & ex
p4 being
Point of
(TOP-REAL 2) st
(
p4 `1 < e &
LE p,
p4,
P,
p1,
p2 & ( for
p5 being
Point of
(TOP-REAL 2) st
LE p5,
p4,
P,
p1,
p2 &
LE p,
p5,
P,
p1,
p2 holds
p5 `1 <= e ) ) );
pred p is_Rout P,
p1,
p2,
e means :
Def4:
:: JORDAN20:def 4
(
P is_an_arc_of p1,
p2 &
p in P &
p `1 = e & ex
p4 being
Point of
(TOP-REAL 2) st
(
p4 `1 > e &
LE p,
p4,
P,
p1,
p2 & ( for
p5 being
Point of
(TOP-REAL 2) st
LE p5,
p4,
P,
p1,
p2 &
LE p,
p5,
P,
p1,
p2 holds
p5 `1 >= e ) ) );
pred p is_OSin P,
p1,
p2,
e means :
Def5:
:: JORDAN20:def 5
(
P is_an_arc_of p1,
p2 &
p in P &
p `1 = e & ex
p7 being
Point of
(TOP-REAL 2) st
(
LE p7,
p,
P,
p1,
p2 & ( for
p8 being
Point of
(TOP-REAL 2) st
LE p7,
p8,
P,
p1,
p2 &
LE p8,
p,
P,
p1,
p2 holds
p8 `1 = e ) & ( for
p4 being
Point of
(TOP-REAL 2) st
LE p4,
p7,
P,
p1,
p2 &
p4 <> p7 holds
( ex
p5 being
Point of
(TOP-REAL 2) st
(
LE p4,
p5,
P,
p1,
p2 &
LE p5,
p7,
P,
p1,
p2 &
p5 `1 > e ) & ex
p6 being
Point of
(TOP-REAL 2) st
(
LE p4,
p6,
P,
p1,
p2 &
LE p6,
p7,
P,
p1,
p2 &
p6 `1 < e ) ) ) ) );
pred p is_OSout P,
p1,
p2,
e means :
Def6:
:: JORDAN20:def 6
(
P is_an_arc_of p1,
p2 &
p in P &
p `1 = e & ex
p7 being
Point of
(TOP-REAL 2) st
(
LE p,
p7,
P,
p1,
p2 & ( for
p8 being
Point of
(TOP-REAL 2) st
LE p8,
p7,
P,
p1,
p2 &
LE p,
p8,
P,
p1,
p2 holds
p8 `1 = e ) & ( for
p4 being
Point of
(TOP-REAL 2) st
LE p7,
p4,
P,
p1,
p2 &
p4 <> p7 holds
( ex
p5 being
Point of
(TOP-REAL 2) st
(
LE p5,
p4,
P,
p1,
p2 &
LE p7,
p5,
P,
p1,
p2 &
p5 `1 > e ) & ex
p6 being
Point of
(TOP-REAL 2) st
(
LE p6,
p4,
P,
p1,
p2 &
LE p7,
p6,
P,
p1,
p2 &
p6 `1 < e ) ) ) ) );
correctness
;
end;
:: deftheorem Def1 defines is_Lin JORDAN20:def 1 :
for
P being
Subset of
(TOP-REAL 2) for
p1,
p2,
p being
Point of
(TOP-REAL 2) for
e being
Real holds
(
p is_Lin P,
p1,
p2,
e iff (
P is_an_arc_of p1,
p2 &
p in P &
p `1 = e & ex
p4 being
Point of
(TOP-REAL 2) st
(
p4 `1 < e &
LE p4,
p,
P,
p1,
p2 & ( for
p5 being
Point of
(TOP-REAL 2) st
LE p4,
p5,
P,
p1,
p2 &
LE p5,
p,
P,
p1,
p2 holds
p5 `1 <= e ) ) ) );
:: deftheorem Def2 defines is_Rin JORDAN20:def 2 :
for
P being
Subset of
(TOP-REAL 2) for
p1,
p2,
p being
Point of
(TOP-REAL 2) for
e being
Real holds
(
p is_Rin P,
p1,
p2,
e iff (
P is_an_arc_of p1,
p2 &
p in P &
p `1 = e & ex
p4 being
Point of
(TOP-REAL 2) st
(
p4 `1 > e &
LE p4,
p,
P,
p1,
p2 & ( for
p5 being
Point of
(TOP-REAL 2) st
LE p4,
p5,
P,
p1,
p2 &
LE p5,
p,
P,
p1,
p2 holds
p5 `1 >= e ) ) ) );
:: deftheorem Def3 defines is_Lout JORDAN20:def 3 :
for
P being
Subset of
(TOP-REAL 2) for
p1,
p2,
p being
Point of
(TOP-REAL 2) for
e being
Real holds
(
p is_Lout P,
p1,
p2,
e iff (
P is_an_arc_of p1,
p2 &
p in P &
p `1 = e & ex
p4 being
Point of
(TOP-REAL 2) st
(
p4 `1 < e &
LE p,
p4,
P,
p1,
p2 & ( for
p5 being
Point of
(TOP-REAL 2) st
LE p5,
p4,
P,
p1,
p2 &
LE p,
p5,
P,
p1,
p2 holds
p5 `1 <= e ) ) ) );
:: deftheorem Def4 defines is_Rout JORDAN20:def 4 :
for
P being
Subset of
(TOP-REAL 2) for
p1,
p2,
p being
Point of
(TOP-REAL 2) for
e being
Real holds
(
p is_Rout P,
p1,
p2,
e iff (
P is_an_arc_of p1,
p2 &
p in P &
p `1 = e & ex
p4 being
Point of
(TOP-REAL 2) st
(
p4 `1 > e &
LE p,
p4,
P,
p1,
p2 & ( for
p5 being
Point of
(TOP-REAL 2) st
LE p5,
p4,
P,
p1,
p2 &
LE p,
p5,
P,
p1,
p2 holds
p5 `1 >= e ) ) ) );
:: deftheorem Def5 defines is_OSin JORDAN20:def 5 :
for
P being
Subset of
(TOP-REAL 2) for
p1,
p2,
p being
Point of
(TOP-REAL 2) for
e being
Real holds
(
p is_OSin P,
p1,
p2,
e iff (
P is_an_arc_of p1,
p2 &
p in P &
p `1 = e & ex
p7 being
Point of
(TOP-REAL 2) st
(
LE p7,
p,
P,
p1,
p2 & ( for
p8 being
Point of
(TOP-REAL 2) st
LE p7,
p8,
P,
p1,
p2 &
LE p8,
p,
P,
p1,
p2 holds
p8 `1 = e ) & ( for
p4 being
Point of
(TOP-REAL 2) st
LE p4,
p7,
P,
p1,
p2 &
p4 <> p7 holds
( ex
p5 being
Point of
(TOP-REAL 2) st
(
LE p4,
p5,
P,
p1,
p2 &
LE p5,
p7,
P,
p1,
p2 &
p5 `1 > e ) & ex
p6 being
Point of
(TOP-REAL 2) st
(
LE p4,
p6,
P,
p1,
p2 &
LE p6,
p7,
P,
p1,
p2 &
p6 `1 < e ) ) ) ) ) );
:: deftheorem Def6 defines is_OSout JORDAN20:def 6 :
for
P being
Subset of
(TOP-REAL 2) for
p1,
p2,
p being
Point of
(TOP-REAL 2) for
e being
Real holds
(
p is_OSout P,
p1,
p2,
e iff (
P is_an_arc_of p1,
p2 &
p in P &
p `1 = e & ex
p7 being
Point of
(TOP-REAL 2) st
(
LE p,
p7,
P,
p1,
p2 & ( for
p8 being
Point of
(TOP-REAL 2) st
LE p8,
p7,
P,
p1,
p2 &
LE p,
p8,
P,
p1,
p2 holds
p8 `1 = e ) & ( for
p4 being
Point of
(TOP-REAL 2) st
LE p7,
p4,
P,
p1,
p2 &
p4 <> p7 holds
( ex
p5 being
Point of
(TOP-REAL 2) st
(
LE p5,
p4,
P,
p1,
p2 &
LE p7,
p5,
P,
p1,
p2 &
p5 `1 > e ) & ex
p6 being
Point of
(TOP-REAL 2) st
(
LE p6,
p4,
P,
p1,
p2 &
LE p7,
p6,
P,
p1,
p2 &
p6 `1 < e ) ) ) ) ) );
theorem :: JORDAN20:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: JORDAN20:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
P being non
empty Subset of
(TOP-REAL 2) for
p1,
p2,
p being
Point of
(TOP-REAL 2) for
e being
Real st
P is_an_arc_of p1,
p2 &
p1 `1 < e &
p2 `1 > e &
p in P &
p `1 = e & not
p is_Lin P,
p1,
p2,
e & not
p is_Rin P,
p1,
p2,
e holds
p is_OSin P,
p1,
p2,
e
theorem :: JORDAN20:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
P being non
empty Subset of
(TOP-REAL 2) for
p1,
p2,
p being
Point of
(TOP-REAL 2) for
e being
Real st
P is_an_arc_of p1,
p2 &
p1 `1 < e &
p2 `1 > e &
p in P &
p `1 = e & not
p is_Lout P,
p1,
p2,
e & not
p is_Rout P,
p1,
p2,
e holds
p is_OSout P,
p1,
p2,
e
theorem Th11: :: JORDAN20:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th12: :: JORDAN20:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th13: :: JORDAN20:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th14: :: JORDAN20:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th15: :: JORDAN20:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th16: :: JORDAN20:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th17: :: JORDAN20:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th18: :: JORDAN20:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th19: :: JORDAN20:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
P being non
empty Subset of
(TOP-REAL 2) for
p1,
p2,
q1,
q2 being
Point of
(TOP-REAL 2) st
P is_an_arc_of p1,
p2 &
q1 in P &
q2 in P & not
LE q1,
q2,
P,
p1,
p2 holds
LE q2,
q1,
P,
p1,
p2
theorem Th20: :: JORDAN20:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th21: :: JORDAN20:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th22: :: JORDAN20:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th23: :: JORDAN20:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
P being non
empty Subset of
(TOP-REAL 2) for
p1,
p2,
q1,
q2,
q3 being
Point of
(TOP-REAL 2) st
P is_an_arc_of p1,
p2 &
LE q1,
q2,
P,
p1,
p2 &
LE q2,
q3,
P,
p1,
p2 holds
(Segment P,p1,p2,q1,q2) \/ (Segment P,p1,p2,q2,q3) = Segment P,
p1,
p2,
q1,
q3
theorem :: JORDAN20:24 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
P being non
empty Subset of
(TOP-REAL 2) for
p1,
p2,
q1,
q2,
q3 being
Point of
(TOP-REAL 2) st
P is_an_arc_of p1,
p2 &
LE q1,
q2,
P,
p1,
p2 &
LE q2,
q3,
P,
p1,
p2 holds
(Segment P,p1,p2,q1,q2) /\ (Segment P,p1,p2,q2,q3) = {q2}
theorem Th25: :: JORDAN20:25 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: JORDAN20:26 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th27: :: JORDAN20:27 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th28: :: JORDAN20:28 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
P,
Q1 being non
empty Subset of
(TOP-REAL 2) for
p1,
p2,
q1,
q2 being
Point of
(TOP-REAL 2) st
P is_an_arc_of p1,
p2 &
Q1 is_an_arc_of q1,
q2 &
LE q1,
q2,
P,
p1,
p2 &
Q1 c= P holds
Q1 = Segment P,
p1,
p2,
q1,
q2
theorem :: JORDAN20:29 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
P being non
empty Subset of
(TOP-REAL 2) for
p1,
p2,
q1,
q2,
p being
Point of
(TOP-REAL 2) for
e being
Real st
p1 `1 < e &
p2 `1 > e &
q1 is_Lin P,
p1,
p2,
e &
q2 `1 = e &
LSeg q1,
q2 c= P &
p in LSeg q1,
q2 holds
p is_Lin P,
p1,
p2,
e
theorem :: JORDAN20:30 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
P being non
empty Subset of
(TOP-REAL 2) for
p1,
p2,
q1,
q2,
p being
Point of
(TOP-REAL 2) for
e being
Real st
p1 `1 < e &
p2 `1 > e &
q1 is_Rin P,
p1,
p2,
e &
q2 `1 = e &
LSeg q1,
q2 c= P &
p in LSeg q1,
q2 holds
p is_Rin P,
p1,
p2,
e
theorem :: JORDAN20:31 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
P being non
empty Subset of
(TOP-REAL 2) for
p1,
p2,
q1,
q2,
p being
Point of
(TOP-REAL 2) for
e being
Real st
p1 `1 < e &
p2 `1 > e &
q1 is_Lout P,
p1,
p2,
e &
q2 `1 = e &
LSeg q1,
q2 c= P &
p in LSeg q1,
q2 holds
p is_Lout P,
p1,
p2,
e
theorem :: JORDAN20:32 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
P being non
empty Subset of
(TOP-REAL 2) for
p1,
p2,
q1,
q2,
p being
Point of
(TOP-REAL 2) for
e being
Real st
p1 `1 < e &
p2 `1 > e &
q1 is_Rout P,
p1,
p2,
e &
q2 `1 = e &
LSeg q1,
q2 c= P &
p in LSeg q1,
q2 holds
p is_Rout P,
p1,
p2,
e
theorem :: JORDAN20:33 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: JORDAN20:34 :: Showing IDV graph ... (Click the Palm Tree again to close it)