:: JORDAN13 semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
definition
let C be non
empty being_simple_closed_curve non
horizontal non
vertical Subset of
(TOP-REAL 2);
let n be
Nat;
assume A1:
n is_sufficiently_large_for C
;
func Span C,
n -> clockwise_oriented non
constant standard special_circular_sequence means :: JORDAN13:def 1
(
it is_sequence_on Gauge C,
n &
it /. 1
= (Gauge C,n) * (X-SpanStart C,n),
(Y-SpanStart C,n) &
it /. 2
= (Gauge C,n) * ((X-SpanStart C,n) -' 1),
(Y-SpanStart C,n) & ( for
k being
Nat st 1
<= k &
k + 2
<= len it holds
( (
front_right_cell it,
k,
(Gauge C,n) misses C &
front_left_cell it,
k,
(Gauge C,n) misses C implies
it turns_left k,
Gauge C,
n ) & (
front_right_cell it,
k,
(Gauge C,n) misses C &
front_left_cell it,
k,
(Gauge C,n) meets C implies
it goes_straight k,
Gauge C,
n ) & (
front_right_cell it,
k,
(Gauge C,n) meets C implies
it turns_right k,
Gauge C,
n ) ) ) );
existence
ex b1 being clockwise_oriented non constant standard special_circular_sequence st
( b1 is_sequence_on Gauge C,n & b1 /. 1 = (Gauge C,n) * (X-SpanStart C,n),(Y-SpanStart C,n) & b1 /. 2 = (Gauge C,n) * ((X-SpanStart C,n) -' 1),(Y-SpanStart C,n) & ( for k being Nat st 1 <= k & k + 2 <= len b1 holds
( ( front_right_cell b1,k,(Gauge C,n) misses C & front_left_cell b1,k,(Gauge C,n) misses C implies b1 turns_left k, Gauge C,n ) & ( front_right_cell b1,k,(Gauge C,n) misses C & front_left_cell b1,k,(Gauge C,n) meets C implies b1 goes_straight k, Gauge C,n ) & ( front_right_cell b1,k,(Gauge C,n) meets C implies b1 turns_right k, Gauge C,n ) ) ) )
uniqueness
for b1, b2 being clockwise_oriented non constant standard special_circular_sequence st b1 is_sequence_on Gauge C,n & b1 /. 1 = (Gauge C,n) * (X-SpanStart C,n),(Y-SpanStart C,n) & b1 /. 2 = (Gauge C,n) * ((X-SpanStart C,n) -' 1),(Y-SpanStart C,n) & ( for k being Nat st 1 <= k & k + 2 <= len b1 holds
( ( front_right_cell b1,k,(Gauge C,n) misses C & front_left_cell b1,k,(Gauge C,n) misses C implies b1 turns_left k, Gauge C,n ) & ( front_right_cell b1,k,(Gauge C,n) misses C & front_left_cell b1,k,(Gauge C,n) meets C implies b1 goes_straight k, Gauge C,n ) & ( front_right_cell b1,k,(Gauge C,n) meets C implies b1 turns_right k, Gauge C,n ) ) ) & b2 is_sequence_on Gauge C,n & b2 /. 1 = (Gauge C,n) * (X-SpanStart C,n),(Y-SpanStart C,n) & b2 /. 2 = (Gauge C,n) * ((X-SpanStart C,n) -' 1),(Y-SpanStart C,n) & ( for k being Nat st 1 <= k & k + 2 <= len b2 holds
( ( front_right_cell b2,k,(Gauge C,n) misses C & front_left_cell b2,k,(Gauge C,n) misses C implies b2 turns_left k, Gauge C,n ) & ( front_right_cell b2,k,(Gauge C,n) misses C & front_left_cell b2,k,(Gauge C,n) meets C implies b2 goes_straight k, Gauge C,n ) & ( front_right_cell b2,k,(Gauge C,n) meets C implies b2 turns_right k, Gauge C,n ) ) ) holds
b1 = b2
end;
:: deftheorem defines Span JORDAN13:def 1 :
for
C being non
empty being_simple_closed_curve non
horizontal non
vertical Subset of
(TOP-REAL 2) for
n being
Nat st
n is_sufficiently_large_for C holds
for
b3 being
clockwise_oriented non
constant standard special_circular_sequence holds
(
b3 = Span C,
n iff (
b3 is_sequence_on Gauge C,
n &
b3 /. 1
= (Gauge C,n) * (X-SpanStart C,n),
(Y-SpanStart C,n) &
b3 /. 2
= (Gauge C,n) * ((X-SpanStart C,n) -' 1),
(Y-SpanStart C,n) & ( for
k being
Nat st 1
<= k &
k + 2
<= len b3 holds
( (
front_right_cell b3,
k,
(Gauge C,n) misses C &
front_left_cell b3,
k,
(Gauge C,n) misses C implies
b3 turns_left k,
Gauge C,
n ) & (
front_right_cell b3,
k,
(Gauge C,n) misses C &
front_left_cell b3,
k,
(Gauge C,n) meets C implies
b3 goes_straight k,
Gauge C,
n ) & (
front_right_cell b3,
k,
(Gauge C,n) meets C implies
b3 turns_right k,
Gauge C,
n ) ) ) ) );