:: GATE_1 semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
theorem Th1: :: GATE_1:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: GATE_1:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def1 defines NOT1 GATE_1:def 1 :
theorem :: GATE_1:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th4: :: GATE_1:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th5: :: GATE_1:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def2 defines AND2 GATE_1:def 2 :
theorem :: GATE_1:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def3 defines OR2 GATE_1:def 3 :
theorem Th7: :: GATE_1:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def4 defines XOR2 GATE_1:def 4 :
for
a,
b being
set holds
( ( ( (
$ a & not
$ b ) or ( not
$ a &
$ b ) ) implies
XOR2 a,
b = NOT1 {} ) & ( (
$ a & not
$ b ) or ( not
$ a &
$ b ) or
XOR2 a,
b = {} ) );
theorem :: GATE_1:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b being
set holds
( ( (
$ a & not
$ b ) or ( not
$ a &
$ b ) ) iff
$ XOR2 a,
b )
by Def4, Th5;
theorem :: GATE_1:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a being
set holds
( contradiction iff
$ XOR2 a,
a )
theorem :: GATE_1:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: GATE_1:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def5 defines EQV2 GATE_1:def 5 :
for
a,
b being
set holds
( not ( (
$ a implies
$ b ) & (
$ b implies
$ a ) & not
EQV2 a,
b = NOT1 {} ) & ( ( (
$ a & not
$ b ) or (
$ b & not
$ a ) ) implies
EQV2 a,
b = {} ) );
theorem :: GATE_1:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: GATE_1:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def6 defines NAND2 GATE_1:def 6 :
theorem :: GATE_1:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def7 defines NOR2 GATE_1:def 7 :
theorem :: GATE_1:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def8 defines AND3 GATE_1:def 8 :
for
a,
b,
c being
set holds
( (
$ a &
$ b &
$ c implies
AND3 a,
b,
c = NOT1 {} ) & ( ( not
$ a or not
$ b or not
$ c ) implies
AND3 a,
b,
c = {} ) );
theorem :: GATE_1:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def9 defines OR3 GATE_1:def 9 :
for
a,
b,
c being
set holds
( ( (
$ a or
$ b or
$ c ) implies
OR3 a,
b,
c = NOT1 {} ) & (
$ a or
$ b or
$ c or
OR3 a,
b,
c = {} ) );
theorem :: GATE_1:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def10 defines XOR3 GATE_1:def 10 :
for
a,
b,
c being
set holds
( ( ( ( ( (
$ a & not
$ b ) or ( not
$ a &
$ b ) ) & not
$ c ) or ( not (
$ a & not
$ b ) & not ( not
$ a &
$ b ) &
$ c ) ) implies
XOR3 a,
b,
c = NOT1 {} ) & ( ( ( (
$ a & not
$ b ) or ( not
$ a &
$ b ) ) & not
$ c ) or ( not (
$ a & not
$ b ) & not ( not
$ a &
$ b ) &
$ c ) or
XOR3 a,
b,
c = {} ) );
theorem Th18: :: GATE_1:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c being
set holds
( ( ( ( (
$ a & not
$ b ) or ( not
$ a &
$ b ) ) & not
$ c ) or ( not (
$ a & not
$ b ) & not ( not
$ a &
$ b ) &
$ c ) ) iff
$ XOR3 a,
b,
c )
by Def10, Th5;
:: deftheorem Def11 defines MAJ3 GATE_1:def 11 :
for
a,
b,
c being
set holds
( ( ( (
$ a &
$ b ) or (
$ b &
$ c ) or (
$ c &
$ a ) ) implies
MAJ3 a,
b,
c = NOT1 {} ) & ( (
$ a &
$ b ) or (
$ b &
$ c ) or (
$ c &
$ a ) or
MAJ3 a,
b,
c = {} ) );
theorem Th19: :: GATE_1:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c being
set holds
( ( (
$ a &
$ b ) or (
$ b &
$ c ) or (
$ c &
$ a ) ) iff
$ MAJ3 a,
b,
c )
by Def11, Th5;
:: deftheorem Def12 defines NAND3 GATE_1:def 12 :
for
a,
b,
c being
set holds
( ( ( not
$ a or not
$ b or not
$ c ) implies
NAND3 a,
b,
c = NOT1 {} ) & (
$ a &
$ b &
$ c implies
NAND3 a,
b,
c = {} ) );
theorem :: GATE_1:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def13 defines NOR3 GATE_1:def 13 :
theorem :: GATE_1:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c being
set holds
(
$ NOR3 a,
b,
c iff ( not
$ a & not
$ b & not
$ c ) )
by Def13, Th5;
:: deftheorem Def14 defines AND4 GATE_1:def 14 :
for
a,
b,
c,
d being
set holds
( (
$ a &
$ b &
$ c &
$ d implies
AND4 a,
b,
c,
d = NOT1 {} ) & ( ( not
$ a or not
$ b or not
$ c or not
$ d ) implies
AND4 a,
b,
c,
d = {} ) );
theorem :: GATE_1:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def15 defines OR4 GATE_1:def 15 :
for
a,
b,
c,
d being
set holds
( ( (
$ a or
$ b or
$ c or
$ d ) implies
OR4 a,
b,
c,
d = NOT1 {} ) & (
$ a or
$ b or
$ c or
$ d or
OR4 a,
b,
c,
d = {} ) );
theorem :: GATE_1:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c,
d being
set holds
( (
$ a or
$ b or
$ c or
$ d ) iff
$ OR4 a,
b,
c,
d )
by Def15, Th5;
:: deftheorem Def16 defines NAND4 GATE_1:def 16 :
for
a,
b,
c,
d being
set holds
( ( ( not
$ a or not
$ b or not
$ c or not
$ d ) implies
NAND4 a,
b,
c,
d = NOT1 {} ) & (
$ a &
$ b &
$ c &
$ d implies
NAND4 a,
b,
c,
d = {} ) );
theorem :: GATE_1:24 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def17 defines NOR4 GATE_1:def 17 :
for
a,
b,
c,
d being
set holds
( (
$ a or
$ b or
$ c or
$ d or
NOR4 a,
b,
c,
d = NOT1 {} ) & ( (
$ a or
$ b or
$ c or
$ d ) implies
NOR4 a,
b,
c,
d = {} ) );
theorem :: GATE_1:25 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c,
d being
set holds
(
$ NOR4 a,
b,
c,
d iff ( not
$ a & not
$ b & not
$ c & not
$ d ) )
by Def17, Th5;
:: deftheorem Def18 defines AND5 GATE_1:def 18 :
for
a,
b,
c,
d,
e being
set holds
( (
$ a &
$ b &
$ c &
$ d &
$ e implies
AND5 a,
b,
c,
d,
e = NOT1 {} ) & ( ( not
$ a or not
$ b or not
$ c or not
$ d or not
$ e ) implies
AND5 a,
b,
c,
d,
e = {} ) );
theorem :: GATE_1:26 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c,
d,
e being
set holds
(
$ AND5 a,
b,
c,
d,
e iff (
$ a &
$ b &
$ c &
$ d &
$ e ) )
by Def18, Th5;
:: deftheorem Def19 defines OR5 GATE_1:def 19 :
for
a,
b,
c,
d,
e being
set holds
( ( (
$ a or
$ b or
$ c or
$ d or
$ e ) implies
OR5 a,
b,
c,
d,
e = NOT1 {} ) & (
$ a or
$ b or
$ c or
$ d or
$ e or
OR5 a,
b,
c,
d,
e = {} ) );
theorem :: GATE_1:27 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c,
d,
e being
set holds
( (
$ a or
$ b or
$ c or
$ d or
$ e ) iff
$ OR5 a,
b,
c,
d,
e )
by Def19, Th5;
:: deftheorem Def20 defines NAND5 GATE_1:def 20 :
for
a,
b,
c,
d,
e being
set holds
( ( ( not
$ a or not
$ b or not
$ c or not
$ d or not
$ e ) implies
NAND5 a,
b,
c,
d,
e = NOT1 {} ) & (
$ a &
$ b &
$ c &
$ d &
$ e implies
NAND5 a,
b,
c,
d,
e = {} ) );
theorem :: GATE_1:28 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def21 defines NOR5 GATE_1:def 21 :
for
a,
b,
c,
d,
e being
set holds
( (
$ a or
$ b or
$ c or
$ d or
$ e or
NOR5 a,
b,
c,
d,
e = NOT1 {} ) & ( (
$ a or
$ b or
$ c or
$ d or
$ e ) implies
NOR5 a,
b,
c,
d,
e = {} ) );
theorem :: GATE_1:29 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c,
d,
e being
set holds
(
$ NOR5 a,
b,
c,
d,
e iff ( not
$ a & not
$ b & not
$ c & not
$ d & not
$ e ) )
by Def21, Th5;
definition
let a,
b,
c,
d,
e,
f be
set ;
func AND6 a,
b,
c,
d,
e,
f -> set equals :
Def22:
:: GATE_1:def 22
NOT1 {} if (
$ a &
$ b &
$ c &
$ d &
$ e &
$ f )
otherwise {} ;
correctness
coherence
( ( $ a & $ b & $ c & $ d & $ e & $ f implies NOT1 {} is set ) & ( ( not $ a or not $ b or not $ c or not $ d or not $ e or not $ f ) implies {} is set ) );
consistency
for b1 being set holds verum;
;
end;
:: deftheorem Def22 defines AND6 GATE_1:def 22 :
for
a,
b,
c,
d,
e,
f being
set holds
( (
$ a &
$ b &
$ c &
$ d &
$ e &
$ f implies
AND6 a,
b,
c,
d,
e,
f = NOT1 {} ) & ( ( not
$ a or not
$ b or not
$ c or not
$ d or not
$ e or not
$ f ) implies
AND6 a,
b,
c,
d,
e,
f = {} ) );
theorem :: GATE_1:30 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c,
d,
e,
f being
set holds
(
$ AND6 a,
b,
c,
d,
e,
f iff (
$ a &
$ b &
$ c &
$ d &
$ e &
$ f ) )
by Def22, Th5;
definition
let a,
b,
c,
d,
e,
f be
set ;
func OR6 a,
b,
c,
d,
e,
f -> set equals :
Def23:
:: GATE_1:def 23
NOT1 {} if (
$ a or
$ b or
$ c or
$ d or
$ e or
$ f )
otherwise {} ;
correctness
coherence
( ( ( $ a or $ b or $ c or $ d or $ e or $ f ) implies NOT1 {} is set ) & ( $ a or $ b or $ c or $ d or $ e or $ f or {} is set ) );
consistency
for b1 being set holds verum;
;
end;
:: deftheorem Def23 defines OR6 GATE_1:def 23 :
for
a,
b,
c,
d,
e,
f being
set holds
( ( (
$ a or
$ b or
$ c or
$ d or
$ e or
$ f ) implies
OR6 a,
b,
c,
d,
e,
f = NOT1 {} ) & (
$ a or
$ b or
$ c or
$ d or
$ e or
$ f or
OR6 a,
b,
c,
d,
e,
f = {} ) );
theorem :: GATE_1:31 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c,
d,
e,
f being
set holds
( (
$ a or
$ b or
$ c or
$ d or
$ e or
$ f ) iff
$ OR6 a,
b,
c,
d,
e,
f )
by Def23, Th5;
definition
let a,
b,
c,
d,
e,
f be
set ;
func NAND6 a,
b,
c,
d,
e,
f -> set equals :
Def24:
:: GATE_1:def 24
NOT1 {} if ( not
$ a or not
$ b or not
$ c or not
$ d or not
$ e or not
$ f )
otherwise {} ;
correctness
coherence
( ( ( not $ a or not $ b or not $ c or not $ d or not $ e or not $ f ) implies NOT1 {} is set ) & ( $ a & $ b & $ c & $ d & $ e & $ f implies {} is set ) );
consistency
for b1 being set holds verum;
;
end;
:: deftheorem Def24 defines NAND6 GATE_1:def 24 :
for
a,
b,
c,
d,
e,
f being
set holds
( ( ( not
$ a or not
$ b or not
$ c or not
$ d or not
$ e or not
$ f ) implies
NAND6 a,
b,
c,
d,
e,
f = NOT1 {} ) & (
$ a &
$ b &
$ c &
$ d &
$ e &
$ f implies
NAND6 a,
b,
c,
d,
e,
f = {} ) );
theorem :: GATE_1:32 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c,
d,
e,
f being
set holds
(
$ NAND6 a,
b,
c,
d,
e,
f &
$ a &
$ b &
$ c &
$ d &
$ e iff not
$ f )
by Def24, Th5;
definition
let a,
b,
c,
d,
e,
f be
set ;
func NOR6 a,
b,
c,
d,
e,
f -> set equals :
Def25:
:: GATE_1:def 25
NOT1 {} if ( not
$ a & not
$ b & not
$ c & not
$ d & not
$ e & not
$ f )
otherwise {} ;
correctness
coherence
( ( $ a or $ b or $ c or $ d or $ e or $ f or NOT1 {} is set ) & ( ( $ a or $ b or $ c or $ d or $ e or $ f ) implies {} is set ) );
consistency
for b1 being set holds verum;
;
end;
:: deftheorem Def25 defines NOR6 GATE_1:def 25 :
for
a,
b,
c,
d,
e,
f being
set holds
( (
$ a or
$ b or
$ c or
$ d or
$ e or
$ f or
NOR6 a,
b,
c,
d,
e,
f = NOT1 {} ) & ( (
$ a or
$ b or
$ c or
$ d or
$ e or
$ f ) implies
NOR6 a,
b,
c,
d,
e,
f = {} ) );
theorem :: GATE_1:33 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c,
d,
e,
f being
set holds
(
$ NOR6 a,
b,
c,
d,
e,
f iff ( not
$ a & not
$ b & not
$ c & not
$ d & not
$ e & not
$ f ) )
by Def25, Th5;
definition
let a,
b,
c,
d,
e,
f,
g be
set ;
func AND7 a,
b,
c,
d,
e,
f,
g -> set equals :
Def26:
:: GATE_1:def 26
NOT1 {} if (
$ a &
$ b &
$ c &
$ d &
$ e &
$ f &
$ g )
otherwise {} ;
correctness
coherence
( ( $ a & $ b & $ c & $ d & $ e & $ f & $ g implies NOT1 {} is set ) & ( ( not $ a or not $ b or not $ c or not $ d or not $ e or not $ f or not $ g ) implies {} is set ) );
consistency
for b1 being set holds verum;
;
end;
:: deftheorem Def26 defines AND7 GATE_1:def 26 :
for
a,
b,
c,
d,
e,
f,
g being
set holds
( (
$ a &
$ b &
$ c &
$ d &
$ e &
$ f &
$ g implies
AND7 a,
b,
c,
d,
e,
f,
g = NOT1 {} ) & ( ( not
$ a or not
$ b or not
$ c or not
$ d or not
$ e or not
$ f or not
$ g ) implies
AND7 a,
b,
c,
d,
e,
f,
g = {} ) );
theorem :: GATE_1:34 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c,
d,
e,
f,
g being
set holds
(
$ AND7 a,
b,
c,
d,
e,
f,
g iff (
$ a &
$ b &
$ c &
$ d &
$ e &
$ f &
$ g ) )
by Def26, Th5;
definition
let a,
b,
c,
d,
e,
f,
g be
set ;
func OR7 a,
b,
c,
d,
e,
f,
g -> set equals :
Def27:
:: GATE_1:def 27
NOT1 {} if (
$ a or
$ b or
$ c or
$ d or
$ e or
$ f or
$ g )
otherwise {} ;
correctness
coherence
( ( ( $ a or $ b or $ c or $ d or $ e or $ f or $ g ) implies NOT1 {} is set ) & ( $ a or $ b or $ c or $ d or $ e or $ f or $ g or {} is set ) );
consistency
for b1 being set holds verum;
;
end;
:: deftheorem Def27 defines OR7 GATE_1:def 27 :
for
a,
b,
c,
d,
e,
f,
g being
set holds
( ( (
$ a or
$ b or
$ c or
$ d or
$ e or
$ f or
$ g ) implies
OR7 a,
b,
c,
d,
e,
f,
g = NOT1 {} ) & (
$ a or
$ b or
$ c or
$ d or
$ e or
$ f or
$ g or
OR7 a,
b,
c,
d,
e,
f,
g = {} ) );
theorem :: GATE_1:35 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c,
d,
e,
f,
g being
set holds
( (
$ a or
$ b or
$ c or
$ d or
$ e or
$ f or
$ g ) iff
$ OR7 a,
b,
c,
d,
e,
f,
g )
by Def27, Th5;
definition
let a,
b,
c,
d,
e,
f,
g be
set ;
func NAND7 a,
b,
c,
d,
e,
f,
g -> set equals :
Def28:
:: GATE_1:def 28
NOT1 {} if ( not
$ a or not
$ b or not
$ c or not
$ d or not
$ e or not
$ f or not
$ g )
otherwise {} ;
correctness
coherence
( ( ( not $ a or not $ b or not $ c or not $ d or not $ e or not $ f or not $ g ) implies NOT1 {} is set ) & ( $ a & $ b & $ c & $ d & $ e & $ f & $ g implies {} is set ) );
consistency
for b1 being set holds verum;
;
end;
:: deftheorem Def28 defines NAND7 GATE_1:def 28 :
for
a,
b,
c,
d,
e,
f,
g being
set holds
( ( ( not
$ a or not
$ b or not
$ c or not
$ d or not
$ e or not
$ f or not
$ g ) implies
NAND7 a,
b,
c,
d,
e,
f,
g = NOT1 {} ) & (
$ a &
$ b &
$ c &
$ d &
$ e &
$ f &
$ g implies
NAND7 a,
b,
c,
d,
e,
f,
g = {} ) );
theorem :: GATE_1:36 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c,
d,
e,
f,
g being
set holds
(
$ NAND7 a,
b,
c,
d,
e,
f,
g &
$ a &
$ b &
$ c &
$ d &
$ e &
$ f iff not
$ g )
by Def28, Th5;
definition
let a,
b,
c,
d,
e,
f,
g be
set ;
func NOR7 a,
b,
c,
d,
e,
f,
g -> set equals :
Def29:
:: GATE_1:def 29
NOT1 {} if ( not
$ a & not
$ b & not
$ c & not
$ d & not
$ e & not
$ f & not
$ g )
otherwise {} ;
correctness
coherence
( ( $ a or $ b or $ c or $ d or $ e or $ f or $ g or NOT1 {} is set ) & ( ( $ a or $ b or $ c or $ d or $ e or $ f or $ g ) implies {} is set ) );
consistency
for b1 being set holds verum;
;
end;
:: deftheorem Def29 defines NOR7 GATE_1:def 29 :
for
a,
b,
c,
d,
e,
f,
g being
set holds
( (
$ a or
$ b or
$ c or
$ d or
$ e or
$ f or
$ g or
NOR7 a,
b,
c,
d,
e,
f,
g = NOT1 {} ) & ( (
$ a or
$ b or
$ c or
$ d or
$ e or
$ f or
$ g ) implies
NOR7 a,
b,
c,
d,
e,
f,
g = {} ) );
theorem :: GATE_1:37 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c,
d,
e,
f,
g being
set holds
(
$ NOR7 a,
b,
c,
d,
e,
f,
g iff ( not
$ a & not
$ b & not
$ c & not
$ d & not
$ e & not
$ f & not
$ g ) )
by Def29, Th5;
definition
let a,
b,
c,
d,
e,
f,
g,
h be
set ;
func AND8 a,
b,
c,
d,
e,
f,
g,
h -> set equals :
Def30:
:: GATE_1:def 30
NOT1 {} if (
$ a &
$ b &
$ c &
$ d &
$ e &
$ f &
$ g &
$ h )
otherwise {} ;
correctness
coherence
( ( $ a & $ b & $ c & $ d & $ e & $ f & $ g & $ h implies NOT1 {} is set ) & ( ( not $ a or not $ b or not $ c or not $ d or not $ e or not $ f or not $ g or not $ h ) implies {} is set ) );
consistency
for b1 being set holds verum;
;
end;
:: deftheorem Def30 defines AND8 GATE_1:def 30 :
for
a,
b,
c,
d,
e,
f,
g,
h being
set holds
( (
$ a &
$ b &
$ c &
$ d &
$ e &
$ f &
$ g &
$ h implies
AND8 a,
b,
c,
d,
e,
f,
g,
h = NOT1 {} ) & ( ( not
$ a or not
$ b or not
$ c or not
$ d or not
$ e or not
$ f or not
$ g or not
$ h ) implies
AND8 a,
b,
c,
d,
e,
f,
g,
h = {} ) );
theorem :: GATE_1:38 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c,
d,
e,
f,
g,
h being
set holds
(
$ AND8 a,
b,
c,
d,
e,
f,
g,
h iff (
$ a &
$ b &
$ c &
$ d &
$ e &
$ f &
$ g &
$ h ) )
by Def30, Th5;
definition
let a,
b,
c,
d,
e,
f,
g,
h be
set ;
func OR8 a,
b,
c,
d,
e,
f,
g,
h -> set equals :
Def31:
:: GATE_1:def 31
NOT1 {} if (
$ a or
$ b or
$ c or
$ d or
$ e or
$ f or
$ g or
$ h )
otherwise {} ;
correctness
coherence
( ( ( $ a or $ b or $ c or $ d or $ e or $ f or $ g or $ h ) implies NOT1 {} is set ) & ( $ a or $ b or $ c or $ d or $ e or $ f or $ g or $ h or {} is set ) );
consistency
for b1 being set holds verum;
;
end;
:: deftheorem Def31 defines OR8 GATE_1:def 31 :
for
a,
b,
c,
d,
e,
f,
g,
h being
set holds
( ( (
$ a or
$ b or
$ c or
$ d or
$ e or
$ f or
$ g or
$ h ) implies
OR8 a,
b,
c,
d,
e,
f,
g,
h = NOT1 {} ) & (
$ a or
$ b or
$ c or
$ d or
$ e or
$ f or
$ g or
$ h or
OR8 a,
b,
c,
d,
e,
f,
g,
h = {} ) );
theorem :: GATE_1:39 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c,
d,
e,
f,
g,
h being
set holds
( (
$ a or
$ b or
$ c or
$ d or
$ e or
$ f or
$ g or
$ h ) iff
$ OR8 a,
b,
c,
d,
e,
f,
g,
h )
by Def31, Th5;
definition
let a,
b,
c,
d,
e,
f,
g,
h be
set ;
func NAND8 a,
b,
c,
d,
e,
f,
g,
h -> set equals :
Def32:
:: GATE_1:def 32
NOT1 {} if ( not
$ a or not
$ b or not
$ c or not
$ d or not
$ e or not
$ f or not
$ g or not
$ h )
otherwise {} ;
correctness
coherence
( ( ( not $ a or not $ b or not $ c or not $ d or not $ e or not $ f or not $ g or not $ h ) implies NOT1 {} is set ) & ( $ a & $ b & $ c & $ d & $ e & $ f & $ g & $ h implies {} is set ) );
consistency
for b1 being set holds verum;
;
end;
:: deftheorem Def32 defines NAND8 GATE_1:def 32 :
for
a,
b,
c,
d,
e,
f,
g,
h being
set holds
( ( ( not
$ a or not
$ b or not
$ c or not
$ d or not
$ e or not
$ f or not
$ g or not
$ h ) implies
NAND8 a,
b,
c,
d,
e,
f,
g,
h = NOT1 {} ) & (
$ a &
$ b &
$ c &
$ d &
$ e &
$ f &
$ g &
$ h implies
NAND8 a,
b,
c,
d,
e,
f,
g,
h = {} ) );
theorem :: GATE_1:40 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c,
d,
e,
f,
g,
h being
set holds
(
$ NAND8 a,
b,
c,
d,
e,
f,
g,
h &
$ a &
$ b &
$ c &
$ d &
$ e &
$ f &
$ g iff not
$ h )
by Def32, Th5;
definition
let a,
b,
c,
d,
e,
f,
g,
h be
set ;
func NOR8 a,
b,
c,
d,
e,
f,
g,
h -> set equals :
Def33:
:: GATE_1:def 33
NOT1 {} if ( not
$ a & not
$ b & not
$ c & not
$ d & not
$ e & not
$ f & not
$ g & not
$ h )
otherwise {} ;
correctness
coherence
( ( $ a or $ b or $ c or $ d or $ e or $ f or $ g or $ h or NOT1 {} is set ) & ( ( $ a or $ b or $ c or $ d or $ e or $ f or $ g or $ h ) implies {} is set ) );
consistency
for b1 being set holds verum;
;
end;
:: deftheorem Def33 defines NOR8 GATE_1:def 33 :
for
a,
b,
c,
d,
e,
f,
g,
h being
set holds
( (
$ a or
$ b or
$ c or
$ d or
$ e or
$ f or
$ g or
$ h or
NOR8 a,
b,
c,
d,
e,
f,
g,
h = NOT1 {} ) & ( (
$ a or
$ b or
$ c or
$ d or
$ e or
$ f or
$ g or
$ h ) implies
NOR8 a,
b,
c,
d,
e,
f,
g,
h = {} ) );
theorem :: GATE_1:41 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
a,
b,
c,
d,
e,
f,
g,
h being
set holds
(
$ NOR8 a,
b,
c,
d,
e,
f,
g,
h iff ( not
$ a & not
$ b & not
$ c & not
$ d & not
$ e & not
$ f & not
$ g & not
$ h ) )
by Def33, Th5;
theorem :: GATE_1:42 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
c1,
x1,
x2,
x3,
x4,
y1,
y2,
y3,
y4,
c2,
c3,
c4,
c5,
n1,
n2,
n3,
n4,
n,
c5b being
set st (
$ MAJ3 x1,
y1,
c1 implies
$ c2 ) & (
$ MAJ3 x2,
y2,
c2 implies
$ c3 ) & (
$ MAJ3 x3,
y3,
c3 implies
$ c4 ) & (
$ MAJ3 x4,
y4,
c4 implies
$ c5 ) & (
$ n1 implies
$ OR2 x1,
y1 ) & (
$ n2 implies
$ OR2 x2,
y2 ) & (
$ n3 implies
$ OR2 x3,
y3 ) & (
$ n4 implies
$ OR2 x4,
y4 ) & (
$ n implies
$ AND5 c1,
n1,
n2,
n3,
n4 ) & (
$ c5b implies
$ OR2 c5,
n ) & (
$ OR2 c5,
n implies
$ c5b ) holds
(
$ c5 iff
$ c5b )
:: deftheorem Def34 defines MODADD2 GATE_1:def 34 :
for
a,
b being
set holds
( ( (
$ a or
$ b ) & ( not
$ a or not
$ b ) implies
MODADD2 a,
b = NOT1 {} ) & ( ( ( not
$ a & not
$ b ) or (
$ a &
$ b ) ) implies
MODADD2 a,
b = {} ) );
theorem :: GATE_1:43 :: Showing IDV graph ... (Click the Palm Tree again to close it)
notation
let a,
b,
c be
set ;
synonym ADD1 a,
b,
c for XOR3 a,
b,
c;
synonym CARR1 a,
b,
c for MAJ3 a,
b,
c;
end;
definition
let a1,
b1,
a2,
b2,
c be
set ;
canceled;canceled;func ADD2 a2,
b2,
a1,
b1,
c -> set equals :: GATE_1:def 37
XOR3 a2,
b2,
(CARR1 a1,b1,c);
correctness
coherence
XOR3 a2,b2,(CARR1 a1,b1,c) is set ;
;
end;
:: deftheorem GATE_1:def 35 :
canceled;
:: deftheorem GATE_1:def 36 :
canceled;
:: deftheorem defines ADD2 GATE_1:def 37 :
for
a1,
b1,
a2,
b2,
c being
set holds
ADD2 a2,
b2,
a1,
b1,
c = XOR3 a2,
b2,
(CARR1 a1,b1,c);
definition
let a1,
b1,
a2,
b2,
c be
set ;
func CARR2 a2,
b2,
a1,
b1,
c -> set equals :: GATE_1:def 38
MAJ3 a2,
b2,
(CARR1 a1,b1,c);
correctness
coherence
MAJ3 a2,b2,(CARR1 a1,b1,c) is set ;
;
end;
:: deftheorem defines CARR2 GATE_1:def 38 :
for
a1,
b1,
a2,
b2,
c being
set holds
CARR2 a2,
b2,
a1,
b1,
c = MAJ3 a2,
b2,
(CARR1 a1,b1,c);
definition
let a1,
b1,
a2,
b2,
a3,
b3,
c be
set ;
func ADD3 a3,
b3,
a2,
b2,
a1,
b1,
c -> set equals :: GATE_1:def 39
XOR3 a3,
b3,
(CARR2 a2,b2,a1,b1,c);
correctness
coherence
XOR3 a3,b3,(CARR2 a2,b2,a1,b1,c) is set ;
;
end;
:: deftheorem defines ADD3 GATE_1:def 39 :
for
a1,
b1,
a2,
b2,
a3,
b3,
c being
set holds
ADD3 a3,
b3,
a2,
b2,
a1,
b1,
c = XOR3 a3,
b3,
(CARR2 a2,b2,a1,b1,c);
definition
let a1,
b1,
a2,
b2,
a3,
b3,
c be
set ;
func CARR3 a3,
b3,
a2,
b2,
a1,
b1,
c -> set equals :: GATE_1:def 40
MAJ3 a3,
b3,
(CARR2 a2,b2,a1,b1,c);
correctness
coherence
MAJ3 a3,b3,(CARR2 a2,b2,a1,b1,c) is set ;
;
end;
:: deftheorem defines CARR3 GATE_1:def 40 :
for
a1,
b1,
a2,
b2,
a3,
b3,
c being
set holds
CARR3 a3,
b3,
a2,
b2,
a1,
b1,
c = MAJ3 a3,
b3,
(CARR2 a2,b2,a1,b1,c);
definition
let a1,
b1,
a2,
b2,
a3,
b3,
a4,
b4,
c be
set ;
func ADD4 a4,
b4,
a3,
b3,
a2,
b2,
a1,
b1,
c -> set equals :: GATE_1:def 41
XOR3 a4,
b4,
(CARR3 a3,b3,a2,b2,a1,b1,c);
correctness
coherence
XOR3 a4,b4,(CARR3 a3,b3,a2,b2,a1,b1,c) is set ;
;
end;
:: deftheorem defines ADD4 GATE_1:def 41 :
for
a1,
b1,
a2,
b2,
a3,
b3,
a4,
b4,
c being
set holds
ADD4 a4,
b4,
a3,
b3,
a2,
b2,
a1,
b1,
c = XOR3 a4,
b4,
(CARR3 a3,b3,a2,b2,a1,b1,c);
definition
let a1,
b1,
a2,
b2,
a3,
b3,
a4,
b4,
c be
set ;
func CARR4 a4,
b4,
a3,
b3,
a2,
b2,
a1,
b1,
c -> set equals :: GATE_1:def 42
MAJ3 a4,
b4,
(CARR3 a3,b3,a2,b2,a1,b1,c);
correctness
coherence
MAJ3 a4,b4,(CARR3 a3,b3,a2,b2,a1,b1,c) is set ;
;
end;
:: deftheorem defines CARR4 GATE_1:def 42 :
for
a1,
b1,
a2,
b2,
a3,
b3,
a4,
b4,
c being
set holds
CARR4 a4,
b4,
a3,
b3,
a2,
b2,
a1,
b1,
c = MAJ3 a4,
b4,
(CARR3 a3,b3,a2,b2,a1,b1,c);
theorem :: GATE_1:44 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
c1,
x1,
y1,
x2,
y2,
x3,
y3,
x4,
y4,
c4,
q1,
p1,
sd1,
q2,
p2,
sd2,
q3,
p3,
sd3,
q4,
p4,
sd4,
cb1,
cb2,
l2,
t2,
l3,
m3,
t3,
l4,
m4,
n4,
t4,
l5,
m5,
n5,
o5,
s1,
s2,
s3,
s4 being
set holds
not ( (
$ q1 implies
$ NOR2 x1,
y1 ) & (
$ NOR2 x1,
y1 implies
$ q1 ) & (
$ p1 implies
$ NAND2 x1,
y1 ) & (
$ NAND2 x1,
y1 implies
$ p1 ) & (
$ sd1 implies
$ MODADD2 x1,
y1 ) & (
$ MODADD2 x1,
y1 implies
$ sd1 ) & (
$ q2 implies
$ NOR2 x2,
y2 ) & (
$ NOR2 x2,
y2 implies
$ q2 ) & (
$ p2 implies
$ NAND2 x2,
y2 ) & (
$ NAND2 x2,
y2 implies
$ p2 ) & (
$ sd2 implies
$ MODADD2 x2,
y2 ) & (
$ MODADD2 x2,
y2 implies
$ sd2 ) & (
$ q3 implies
$ NOR2 x3,
y3 ) & (
$ NOR2 x3,
y3 implies
$ q3 ) & (
$ p3 implies
$ NAND2 x3,
y3 ) & (
$ NAND2 x3,
y3 implies
$ p3 ) & (
$ sd3 implies
$ MODADD2 x3,
y3 ) & (
$ MODADD2 x3,
y3 implies
$ sd3 ) & (
$ q4 implies
$ NOR2 x4,
y4 ) & (
$ NOR2 x4,
y4 implies
$ q4 ) & (
$ p4 implies
$ NAND2 x4,
y4 ) & (
$ NAND2 x4,
y4 implies
$ p4 ) & (
$ sd4 implies
$ MODADD2 x4,
y4 ) & (
$ MODADD2 x4,
y4 implies
$ sd4 ) & (
$ cb1 implies
$ NOT1 c1 ) & (
$ NOT1 c1 implies
$ cb1 ) & (
$ cb2 implies
$ NOT1 cb1 ) & (
$ NOT1 cb1 implies
$ cb2 ) & (
$ s1 implies
$ XOR2 cb2,
sd1 ) & (
$ XOR2 cb2,
sd1 implies
$ s1 ) & (
$ l2 implies
$ AND2 cb1,
p1 ) & (
$ AND2 cb1,
p1 implies
$ l2 ) & (
$ t2 implies
$ NOR2 l2,
q1 ) & (
$ NOR2 l2,
q1 implies
$ t2 ) & (
$ s2 implies
$ XOR2 t2,
sd2 ) & (
$ XOR2 t2,
sd2 implies
$ s2 ) & (
$ l3 implies
$ AND2 q1,
p2 ) & (
$ AND2 q1,
p2 implies
$ l3 ) & (
$ m3 implies
$ AND3 p2,
p1,
cb1 ) & (
$ AND3 p2,
p1,
cb1 implies
$ m3 ) & (
$ t3 implies
$ NOR3 l3,
m3,
q2 ) & (
$ NOR3 l3,
m3,
q2 implies
$ t3 ) & (
$ s3 implies
$ XOR2 t3,
sd3 ) & (
$ XOR2 t3,
sd3 implies
$ s3 ) & (
$ l4 implies
$ AND2 q2,
p3 ) & (
$ AND2 q2,
p3 implies
$ l4 ) & (
$ m4 implies
$ AND3 q1,
p3,
p2 ) & (
$ AND3 q1,
p3,
p2 implies
$ m4 ) & (
$ n4 implies
$ AND4 p3,
p2,
p1,
cb1 ) & (
$ AND4 p3,
p2,
p1,
cb1 implies
$ n4 ) & (
$ t4 implies
$ NOR4 l4,
m4,
n4,
q3 ) & (
$ NOR4 l4,
m4,
n4,
q3 implies
$ t4 ) & (
$ s4 implies
$ XOR2 t4,
sd4 ) & (
$ XOR2 t4,
sd4 implies
$ s4 ) & (
$ l5 implies
$ AND2 q3,
p4 ) & (
$ AND2 q3,
p4 implies
$ l5 ) & (
$ m5 implies
$ AND3 q2,
p4,
p3 ) & (
$ AND3 q2,
p4,
p3 implies
$ m5 ) & (
$ n5 implies
$ AND4 q1,
p4,
p3,
p2 ) & (
$ AND4 q1,
p4,
p3,
p2 implies
$ n5 ) & (
$ o5 implies
$ AND5 p4,
p3,
p2,
p1,
cb1 ) & (
$ AND5 p4,
p3,
p2,
p1,
cb1 implies
$ o5 ) & (
$ c4 implies
$ NOR5 q4,
l5,
m5,
n5,
o5 ) & (
$ NOR5 q4,
l5,
m5,
n5,
o5 implies
$ c4 ) & not ( (
$ s1 implies
$ ADD1 x1,
y1,
c1 ) & (
$ ADD1 x1,
y1,
c1 implies
$ s1 ) & (
$ s2 implies
$ ADD2 x2,
y2,
x1,
y1,
c1 ) & (
$ ADD2 x2,
y2,
x1,
y1,
c1 implies
$ s2 ) & (
$ s3 implies
$ ADD3 x3,
y3,
x2,
y2,
x1,
y1,
c1 ) & (
$ ADD3 x3,
y3,
x2,
y2,
x1,
y1,
c1 implies
$ s3 ) & (
$ s4 implies
$ ADD4 x4,
y4,
x3,
y3,
x2,
y2,
x1,
y1,
c1 ) & (
$ ADD4 x4,
y4,
x3,
y3,
x2,
y2,
x1,
y1,
c1 implies
$ s4 ) & (
$ c4 implies
$ CARR4 x4,
y4,
x3,
y3,
x2,
y2,
x1,
y1,
c1 ) & (
$ CARR4 x4,
y4,
x3,
y3,
x2,
y2,
x1,
y1,
c1 implies
$ c4 ) ) )