:: FREEALG semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
:: deftheorem Def1 defines missing_with_Nat FREEALG:def 1 :
Lm1:
( not 0 in rng <*1*> & 0 in rng <*0*> )
:: deftheorem Def2 defines with_zero FREEALG:def 2 :
:: deftheorem FREEALG:def 3 :
canceled;
:: deftheorem Def4 defines oper FREEALG:def 4 :
:: deftheorem Def5 defines GeneratorSet FREEALG:def 5 :
:: deftheorem Def6 defines free FREEALG:def 6 :
:: deftheorem Def7 defines free FREEALG:def 7 :
theorem :: FREEALG:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def8 defines REL FREEALG:def 8 :
:: deftheorem defines DTConUA FREEALG:def 9 :
theorem Th2: :: FREEALG:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th3: :: FREEALG:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def10 defines Sym FREEALG:def 10 :
definition
let f be non
empty FinSequence of
NAT ;
let D be non
empty missing_with_Nat set ;
let n be
Nat;
assume A1:
n in dom f
;
func FreeOpNSG n,
f,
D -> non
empty homogeneous quasi_total PartFunc of
(TS (DTConUA f,D)) * ,
TS (DTConUA f,D) means :
Def11:
:: FREEALG:def 11
(
dom it = (f /. n) -tuples_on (TS (DTConUA f,D)) & ( for
p being
FinSequence of
TS (DTConUA f,D) st
p in dom it holds
it . p = (Sym n,f,D) -tree p ) );
existence
ex b1 being non empty homogeneous quasi_total PartFunc of (TS (DTConUA f,D)) * , TS (DTConUA f,D) st
( dom b1 = (f /. n) -tuples_on (TS (DTConUA f,D)) & ( for p being FinSequence of TS (DTConUA f,D) st p in dom b1 holds
b1 . p = (Sym n,f,D) -tree p ) )
uniqueness
for b1, b2 being non empty homogeneous quasi_total PartFunc of (TS (DTConUA f,D)) * , TS (DTConUA f,D) st dom b1 = (f /. n) -tuples_on (TS (DTConUA f,D)) & ( for p being FinSequence of TS (DTConUA f,D) st p in dom b1 holds
b1 . p = (Sym n,f,D) -tree p ) & dom b2 = (f /. n) -tuples_on (TS (DTConUA f,D)) & ( for p being FinSequence of TS (DTConUA f,D) st p in dom b2 holds
b2 . p = (Sym n,f,D) -tree p ) holds
b1 = b2
end;
:: deftheorem Def11 defines FreeOpNSG FREEALG:def 11 :
definition
let f be non
empty FinSequence of
NAT ;
let D be non
empty missing_with_Nat set ;
func FreeOpSeqNSG f,
D -> PFuncFinSequence of
(TS (DTConUA f,D)) means :
Def12:
:: FREEALG:def 12
(
len it = len f & ( for
n being
Nat st
n in dom it holds
it . n = FreeOpNSG n,
f,
D ) );
existence
ex b1 being PFuncFinSequence of (TS (DTConUA f,D)) st
( len b1 = len f & ( for n being Nat st n in dom b1 holds
b1 . n = FreeOpNSG n,f,D ) )
uniqueness
for b1, b2 being PFuncFinSequence of (TS (DTConUA f,D)) st len b1 = len f & ( for n being Nat st n in dom b1 holds
b1 . n = FreeOpNSG n,f,D ) & len b2 = len f & ( for n being Nat st n in dom b2 holds
b2 . n = FreeOpNSG n,f,D ) holds
b1 = b2
end;
:: deftheorem Def12 defines FreeOpSeqNSG FREEALG:def 12 :
:: deftheorem defines FreeUnivAlgNSG FREEALG:def 13 :
theorem Th4: :: FREEALG:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem defines FreeGenSetNSG FREEALG:def 14 :
theorem Th5: :: FREEALG:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem Def15 defines pi FREEALG:def 15 :
:: deftheorem Def16 defines @ FREEALG:def 16 :
theorem Th6: :: FREEALG:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
definition
let f be non
empty with_zero FinSequence of
NAT ;
let D be
missing_with_Nat set ;
let n be
Nat;
assume A1:
n in dom f
;
func FreeOpZAO n,
f,
D -> non
empty homogeneous quasi_total PartFunc of
(TS (DTConUA f,D)) * ,
TS (DTConUA f,D) means :
Def17:
:: FREEALG:def 17
(
dom it = (f /. n) -tuples_on (TS (DTConUA f,D)) & ( for
p being
FinSequence of
TS (DTConUA f,D) st
p in dom it holds
it . p = (Sym n,f,D) -tree p ) );
existence
ex b1 being non empty homogeneous quasi_total PartFunc of (TS (DTConUA f,D)) * , TS (DTConUA f,D) st
( dom b1 = (f /. n) -tuples_on (TS (DTConUA f,D)) & ( for p being FinSequence of TS (DTConUA f,D) st p in dom b1 holds
b1 . p = (Sym n,f,D) -tree p ) )
uniqueness
for b1, b2 being non empty homogeneous quasi_total PartFunc of (TS (DTConUA f,D)) * , TS (DTConUA f,D) st dom b1 = (f /. n) -tuples_on (TS (DTConUA f,D)) & ( for p being FinSequence of TS (DTConUA f,D) st p in dom b1 holds
b1 . p = (Sym n,f,D) -tree p ) & dom b2 = (f /. n) -tuples_on (TS (DTConUA f,D)) & ( for p being FinSequence of TS (DTConUA f,D) st p in dom b2 holds
b2 . p = (Sym n,f,D) -tree p ) holds
b1 = b2
end;
:: deftheorem Def17 defines FreeOpZAO FREEALG:def 17 :
definition
let f be non
empty with_zero FinSequence of
NAT ;
let D be
missing_with_Nat set ;
func FreeOpSeqZAO f,
D -> PFuncFinSequence of
(TS (DTConUA f,D)) means :
Def18:
:: FREEALG:def 18
(
len it = len f & ( for
n being
Nat st
n in dom it holds
it . n = FreeOpZAO n,
f,
D ) );
existence
ex b1 being PFuncFinSequence of (TS (DTConUA f,D)) st
( len b1 = len f & ( for n being Nat st n in dom b1 holds
b1 . n = FreeOpZAO n,f,D ) )
uniqueness
for b1, b2 being PFuncFinSequence of (TS (DTConUA f,D)) st len b1 = len f & ( for n being Nat st n in dom b1 holds
b1 . n = FreeOpZAO n,f,D ) & len b2 = len f & ( for n being Nat st n in dom b2 holds
b2 . n = FreeOpZAO n,f,D ) holds
b1 = b2
end;
:: deftheorem Def18 defines FreeOpSeqZAO FREEALG:def 18 :
:: deftheorem defines FreeUnivAlgZAO FREEALG:def 19 :
theorem Th7: :: FREEALG:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th8: :: FREEALG:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th9: :: FREEALG:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem defines FreeGenSetZAO FREEALG:def 20 :
:: deftheorem Def21 defines pi FREEALG:def 21 :
theorem Th10: :: FREEALG:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)