:: DIRORT semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
theorem Th1: :: DIRORT:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
x,
y being
VECTOR of
V st
Gen x,
y holds
( ( for
u,
u1,
v,
v1,
w being
Element of
(CESpace V,x,y) holds
(
u,
u '//' v,
w &
u,
v '//' w,
w & (
u,
v '//' u1,
v1 &
u,
v '//' v1,
u1 & not
u = v implies
u1 = v1 ) & (
u,
v '//' u1,
v1 &
u,
v '//' u1,
w & not
u,
v '//' v1,
w implies
u,
v '//' w,
v1 ) & (
u,
v '//' u1,
v1 implies
v,
u '//' v1,
u1 ) & (
u,
v '//' u1,
v1 &
u,
v '//' v1,
w implies
u,
v '//' u1,
w ) & ( not
u,
u1 '//' v,
v1 or
v,
v1 '//' u,
u1 or
v,
v1 '//' u1,
u ) ) ) & ( for
u,
v,
w being
Element of
(CESpace V,x,y) ex
u1 being
Element of
(CESpace V,x,y) st
(
w <> u1 &
w,
u1 '//' u,
v ) ) & ( for
u,
v,
w being
Element of
(CESpace V,x,y) ex
u1 being
Element of
(CESpace V,x,y) st
(
w <> u1 &
u,
v '//' w,
u1 ) ) )
theorem Th2: :: DIRORT:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
V being
RealLinearSpace for
x,
y being
VECTOR of
V st
Gen x,
y holds
( ( for
u,
u1,
v,
v1,
w being
Element of
(CMSpace V,x,y) holds
(
u,
u '//' v,
w &
u,
v '//' w,
w & (
u,
v '//' u1,
v1 &
u,
v '//' v1,
u1 & not
u = v implies
u1 = v1 ) & (
u,
v '//' u1,
v1 &
u,
v '//' u1,
w & not
u,
v '//' v1,
w implies
u,
v '//' w,
v1 ) & (
u,
v '//' u1,
v1 implies
v,
u '//' v1,
u1 ) & (
u,
v '//' u1,
v1 &
u,
v '//' v1,
w implies
u,
v '//' u1,
w ) & ( not
u,
u1 '//' v,
v1 or
v,
v1 '//' u,
u1 or
v,
v1 '//' u1,
u ) ) ) & ( for
u,
v,
w being
Element of
(CMSpace V,x,y) ex
u1 being
Element of
(CMSpace V,x,y) st
(
w <> u1 &
w,
u1 '//' u,
v ) ) & ( for
u,
v,
w being
Element of
(CMSpace V,x,y) ex
u1 being
Element of
(CMSpace V,x,y) st
(
w <> u1 &
u,
v '//' w,
u1 ) ) )
definition
let IT be non
empty AffinStruct ;
attr IT is
Oriented_Orthogonality_Space-like means :
Def1:
:: DIRORT:def 1
( ( for
u,
u1,
v,
v1,
w being
Element of
IT holds
(
u,
u '//' v,
w &
u,
v '//' w,
w & (
u,
v '//' u1,
v1 &
u,
v '//' v1,
u1 & not
u = v implies
u1 = v1 ) & (
u,
v '//' u1,
v1 &
u,
v '//' u1,
w & not
u,
v '//' v1,
w implies
u,
v '//' w,
v1 ) & (
u,
v '//' u1,
v1 implies
v,
u '//' v1,
u1 ) & (
u,
v '//' u1,
v1 &
u,
v '//' v1,
w implies
u,
v '//' u1,
w ) & ( not
u,
u1 '//' v,
v1 or
v,
v1 '//' u,
u1 or
v,
v1 '//' u1,
u ) ) ) & ( for
u,
v,
w being
Element of
IT ex
u1 being
Element of
IT st
(
w <> u1 &
w,
u1 '//' u,
v ) ) & ( for
u,
v,
w being
Element of
IT ex
u1 being
Element of
IT st
(
w <> u1 &
u,
v '//' w,
u1 ) ) );
end;
:: deftheorem Def1 defines Oriented_Orthogonality_Space-like DIRORT:def 1 :
for
IT being non
empty AffinStruct holds
(
IT is
Oriented_Orthogonality_Space-like iff ( ( for
u,
u1,
v,
v1,
w being
Element of
IT holds
(
u,
u '//' v,
w &
u,
v '//' w,
w & (
u,
v '//' u1,
v1 &
u,
v '//' v1,
u1 & not
u = v implies
u1 = v1 ) & (
u,
v '//' u1,
v1 &
u,
v '//' u1,
w & not
u,
v '//' v1,
w implies
u,
v '//' w,
v1 ) & (
u,
v '//' u1,
v1 implies
v,
u '//' v1,
u1 ) & (
u,
v '//' u1,
v1 &
u,
v '//' v1,
w implies
u,
v '//' u1,
w ) & ( not
u,
u1 '//' v,
v1 or
v,
v1 '//' u,
u1 or
v,
v1 '//' u1,
u ) ) ) & ( for
u,
v,
w being
Element of
IT ex
u1 being
Element of
IT st
(
w <> u1 &
w,
u1 '//' u,
v ) ) & ( for
u,
v,
w being
Element of
IT ex
u1 being
Element of
IT st
(
w <> u1 &
u,
v '//' w,
u1 ) ) ) );
theorem :: DIRORT:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th4: :: DIRORT:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th5: :: DIRORT:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: DIRORT:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: DIRORT:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: DIRORT:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
:: deftheorem defines _|_ DIRORT:def 2 :
definition
let AS be
Oriented_Orthogonality_Space;
let a,
b,
c,
d be
Element of
AS;
pred a,
b // c,
d means :
Def3:
:: DIRORT:def 3
ex
e,
f being
Element of
AS st
(
e <> f &
e,
f '//' a,
b &
e,
f '//' c,
d );
end;
:: deftheorem Def3 defines // DIRORT:def 3 :
for
AS being
Oriented_Orthogonality_Space for
a,
b,
c,
d being
Element of
AS holds
(
a,
b // c,
d iff ex
e,
f being
Element of
AS st
(
e <> f &
e,
f '//' a,
b &
e,
f '//' c,
d ) );
definition
let IT be
Oriented_Orthogonality_Space;
attr IT is
bach_transitive means :
Def4:
:: DIRORT:def 4
for
u,
u1,
u2,
v,
v1,
v2,
w,
w1 being
Element of
IT st
u,
u1 '//' v,
v1 &
w,
w1 '//' v,
v1 &
w,
w1 '//' u2,
v2 & not
w = w1 & not
v = v1 holds
u,
u1 '//' u2,
v2;
end;
:: deftheorem Def4 defines bach_transitive DIRORT:def 4 :
for
IT being
Oriented_Orthogonality_Space holds
(
IT is
bach_transitive iff for
u,
u1,
u2,
v,
v1,
v2,
w,
w1 being
Element of
IT st
u,
u1 '//' v,
v1 &
w,
w1 '//' v,
v1 &
w,
w1 '//' u2,
v2 & not
w = w1 & not
v = v1 holds
u,
u1 '//' u2,
v2 );
definition
let IT be
Oriented_Orthogonality_Space;
attr IT is
right_transitive means :
Def5:
:: DIRORT:def 5
for
u,
u1,
u2,
v,
v1,
v2,
w,
w1 being
Element of
IT st
u,
u1 '//' v,
v1 &
v,
v1 '//' w,
w1 &
u2,
v2 '//' w,
w1 & not
w = w1 & not
v = v1 holds
u,
u1 '//' u2,
v2;
end;
:: deftheorem Def5 defines right_transitive DIRORT:def 5 :
for
IT being
Oriented_Orthogonality_Space holds
(
IT is
right_transitive iff for
u,
u1,
u2,
v,
v1,
v2,
w,
w1 being
Element of
IT st
u,
u1 '//' v,
v1 &
v,
v1 '//' w,
w1 &
u2,
v2 '//' w,
w1 & not
w = w1 & not
v = v1 holds
u,
u1 '//' u2,
v2 );
definition
let IT be
Oriented_Orthogonality_Space;
attr IT is
left_transitive means :
Def6:
:: DIRORT:def 6
for
u,
u1,
u2,
v,
v1,
v2,
w,
w1 being
Element of
IT st
u,
u1 '//' v,
v1 &
v,
v1 '//' w,
w1 &
u,
u1 '//' u2,
v2 & not
u = u1 & not
v = v1 holds
u2,
v2 '//' w,
w1;
end;
:: deftheorem Def6 defines left_transitive DIRORT:def 6 :
for
IT being
Oriented_Orthogonality_Space holds
(
IT is
left_transitive iff for
u,
u1,
u2,
v,
v1,
v2,
w,
w1 being
Element of
IT st
u,
u1 '//' v,
v1 &
v,
v1 '//' w,
w1 &
u,
u1 '//' u2,
v2 & not
u = u1 & not
v = v1 holds
u2,
v2 '//' w,
w1 );
:: deftheorem Def7 defines Euclidean_like DIRORT:def 7 :
:: deftheorem Def8 defines Minkowskian_like DIRORT:def 8 :
theorem :: DIRORT:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: DIRORT:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: DIRORT:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: DIRORT:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
AS being
Oriented_Orthogonality_Space holds
(
AS is
left_transitive iff for
v,
v1,
w,
w1,
u2,
v2 being
Element of
AS st
v,
v1 // u2,
v2 &
v,
v1 '//' w,
w1 &
v <> v1 holds
u2,
v2 '//' w,
w1 )
theorem Th13: :: DIRORT:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
AS being
Oriented_Orthogonality_Space holds
(
AS is
bach_transitive iff for
u,
u1,
u2,
v,
v1,
v2 being
Element of
AS st
u,
u1 '//' v,
v1 &
v,
v1 // u2,
v2 &
v <> v1 holds
u,
u1 '//' u2,
v2 )
theorem :: DIRORT:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
AS being
Oriented_Orthogonality_Space st
AS is
bach_transitive holds
for
u,
u1,
v,
v1,
w,
w1 being
Element of
AS st
u,
u1 // v,
v1 &
v,
v1 // w,
w1 &
v <> v1 holds
u,
u1 // w,
w1
theorem Th15: :: DIRORT:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th16: :: DIRORT:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th17: :: DIRORT:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: DIRORT:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: DIRORT:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
AS being
Oriented_Orthogonality_Space st
AS is
bach_transitive holds
(
AS is
right_transitive iff for
u,
u1,
v,
v1,
u2,
v2 being
Element of
AS st
u,
u1 '//' u2,
v2 &
v,
v1 '//' u2,
v2 &
u2 <> v2 holds
u,
u1 // v,
v1 )
theorem :: DIRORT:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)