:: CONAFFM semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
definition
let X be
OrtAfPl;
attr X is
satisfying_DES means :: CONAFFM:def 1
for
o,
a,
a1,
b,
b1,
c,
c1 being
Element of
X st
o <> a &
o <> a1 &
o <> b &
o <> b1 &
o <> c &
o <> c1 & not
LIN b,
b1,
a & not
LIN a,
a1,
c &
LIN o,
a,
a1 &
LIN o,
b,
b1 &
LIN o,
c,
c1 &
a,
b // a1,
b1 &
a,
c // a1,
c1 holds
b,
c // b1,
c1;
attr X is
satisfying_AH means :: CONAFFM:def 2
for
o,
a,
a1,
b,
b1,
c,
c1 being
Element of
X st
o,
a _|_ o,
a1 &
o,
b _|_ o,
b1 &
o,
c _|_ o,
c1 &
a,
b _|_ a1,
b1 &
o,
a // b,
c &
a,
c _|_ a1,
c1 & not
o,
c // o,
a & not
o,
a // o,
b holds
b,
c _|_ b1,
c1;
attr X is
satisfying_3H means :: CONAFFM:def 3
for
a,
b,
c being
Element of
X st not
LIN a,
b,
c holds
ex
d being
Element of
X st
(
d,
a _|_ b,
c &
d,
b _|_ a,
c &
d,
c _|_ a,
b );
attr X is
satisfying_ODES means :
Def4:
:: CONAFFM:def 4
for
o,
a,
a1,
b,
b1,
c,
c1 being
Element of
X st
o,
a _|_ o,
a1 &
o,
b _|_ o,
b1 &
o,
c _|_ o,
c1 &
a,
b _|_ a1,
b1 &
a,
c _|_ a1,
c1 & not
o,
c // o,
a & not
o,
a // o,
b holds
b,
c _|_ b1,
c1;
attr X is
satisfying_LIN means :
Def5:
:: CONAFFM:def 5
for
o,
a,
a1,
b,
b1,
c,
c1 being
Element of
X st
o <> a &
o <> a1 &
o <> b &
o <> b1 &
o <> c &
o <> c1 &
a <> b &
o,
c _|_ o,
c1 &
o,
a _|_ o,
a1 &
o,
b _|_ o,
b1 & not
LIN o,
c,
a &
LIN o,
a,
b &
LIN o,
a1,
b1 &
a,
c _|_ a1,
c1 &
b,
c _|_ b1,
c1 holds
a,
a1 // b,
b1;
attr X is
satisfying_LIN1 means :
Def6:
:: CONAFFM:def 6
for
o,
a,
a1,
b,
b1,
c,
c1 being
Element of
X st
o <> a &
o <> a1 &
o <> b &
o <> b1 &
o <> c &
o <> c1 &
a <> b &
o,
c _|_ o,
c1 &
o,
a _|_ o,
a1 &
o,
b _|_ o,
b1 & not
LIN o,
c,
a &
LIN o,
a,
b &
LIN o,
a1,
b1 &
a,
c _|_ a1,
c1 &
a,
a1 // b,
b1 holds
b,
c _|_ b1,
c1;
attr X is
satisfying_LIN2 means :: CONAFFM:def 7
for
o,
a,
a1,
b,
b1,
c,
c1 being
Element of
X st
o <> a &
o <> a1 &
o <> b &
o <> b1 &
o <> c &
o <> c1 &
a <> b &
a,
a1 // b,
b1 &
o,
a _|_ o,
a1 &
o,
b _|_ o,
b1 & not
LIN o,
c,
a &
LIN o,
a,
b &
LIN o,
a1,
b1 &
a,
c _|_ a1,
c1 &
b,
c _|_ b1,
c1 holds
o,
c _|_ o,
c1;
end;
:: deftheorem defines satisfying_DES CONAFFM:def 1 :
for
X being
OrtAfPl holds
(
X is
satisfying_DES iff for
o,
a,
a1,
b,
b1,
c,
c1 being
Element of
X st
o <> a &
o <> a1 &
o <> b &
o <> b1 &
o <> c &
o <> c1 & not
LIN b,
b1,
a & not
LIN a,
a1,
c &
LIN o,
a,
a1 &
LIN o,
b,
b1 &
LIN o,
c,
c1 &
a,
b // a1,
b1 &
a,
c // a1,
c1 holds
b,
c // b1,
c1 );
:: deftheorem defines satisfying_AH CONAFFM:def 2 :
for
X being
OrtAfPl holds
(
X is
satisfying_AH iff for
o,
a,
a1,
b,
b1,
c,
c1 being
Element of
X st
o,
a _|_ o,
a1 &
o,
b _|_ o,
b1 &
o,
c _|_ o,
c1 &
a,
b _|_ a1,
b1 &
o,
a // b,
c &
a,
c _|_ a1,
c1 & not
o,
c // o,
a & not
o,
a // o,
b holds
b,
c _|_ b1,
c1 );
:: deftheorem defines satisfying_3H CONAFFM:def 3 :
for
X being
OrtAfPl holds
(
X is
satisfying_3H iff for
a,
b,
c being
Element of
X st not
LIN a,
b,
c holds
ex
d being
Element of
X st
(
d,
a _|_ b,
c &
d,
b _|_ a,
c &
d,
c _|_ a,
b ) );
:: deftheorem Def4 defines satisfying_ODES CONAFFM:def 4 :
for
X being
OrtAfPl holds
(
X is
satisfying_ODES iff for
o,
a,
a1,
b,
b1,
c,
c1 being
Element of
X st
o,
a _|_ o,
a1 &
o,
b _|_ o,
b1 &
o,
c _|_ o,
c1 &
a,
b _|_ a1,
b1 &
a,
c _|_ a1,
c1 & not
o,
c // o,
a & not
o,
a // o,
b holds
b,
c _|_ b1,
c1 );
:: deftheorem Def5 defines satisfying_LIN CONAFFM:def 5 :
for
X being
OrtAfPl holds
(
X is
satisfying_LIN iff for
o,
a,
a1,
b,
b1,
c,
c1 being
Element of
X st
o <> a &
o <> a1 &
o <> b &
o <> b1 &
o <> c &
o <> c1 &
a <> b &
o,
c _|_ o,
c1 &
o,
a _|_ o,
a1 &
o,
b _|_ o,
b1 & not
LIN o,
c,
a &
LIN o,
a,
b &
LIN o,
a1,
b1 &
a,
c _|_ a1,
c1 &
b,
c _|_ b1,
c1 holds
a,
a1 // b,
b1 );
:: deftheorem Def6 defines satisfying_LIN1 CONAFFM:def 6 :
for
X being
OrtAfPl holds
(
X is
satisfying_LIN1 iff for
o,
a,
a1,
b,
b1,
c,
c1 being
Element of
X st
o <> a &
o <> a1 &
o <> b &
o <> b1 &
o <> c &
o <> c1 &
a <> b &
o,
c _|_ o,
c1 &
o,
a _|_ o,
a1 &
o,
b _|_ o,
b1 & not
LIN o,
c,
a &
LIN o,
a,
b &
LIN o,
a1,
b1 &
a,
c _|_ a1,
c1 &
a,
a1 // b,
b1 holds
b,
c _|_ b1,
c1 );
:: deftheorem defines satisfying_LIN2 CONAFFM:def 7 :
for
X being
OrtAfPl holds
(
X is
satisfying_LIN2 iff for
o,
a,
a1,
b,
b1,
c,
c1 being
Element of
X st
o <> a &
o <> a1 &
o <> b &
o <> b1 &
o <> c &
o <> c1 &
a <> b &
a,
a1 // b,
b1 &
o,
a _|_ o,
a1 &
o,
b _|_ o,
b1 & not
LIN o,
c,
a &
LIN o,
a,
b &
LIN o,
a1,
b1 &
a,
c _|_ a1,
c1 &
b,
c _|_ b1,
c1 holds
o,
c _|_ o,
c1 );
theorem :: CONAFFM:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CONAFFM:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th3: :: CONAFFM:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CONAFFM:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CONAFFM:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: CONAFFM:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)