:: BVFUNC_9 semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
Lm1:
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds a '&' b '<' a
Lm2:
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN holds
( (a '&' b) '&' c '<' a & (a '&' b) '&' c '<' b )
Lm3:
for Y being non empty set
for a, b, c, d being Element of Funcs Y,BOOLEAN holds
( ((a '&' b) '&' c) '&' d '<' a & ((a '&' b) '&' c) '&' d '<' b )
Lm4:
for Y being non empty set
for a, b, c, d, e being Element of Funcs Y,BOOLEAN holds
( (((a '&' b) '&' c) '&' d) '&' e '<' a & (((a '&' b) '&' c) '&' d) '&' e '<' b )
Lm5:
for Y being non empty set
for a, b, c, d, e, f being Element of Funcs Y,BOOLEAN holds
( ((((a '&' b) '&' c) '&' d) '&' e) '&' f '<' a & ((((a '&' b) '&' c) '&' d) '&' e) '&' f '<' b )
Lm6:
for Y being non empty set
for a, b, c, d, e, f, g being Element of Funcs Y,BOOLEAN holds
( (((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g '<' a & (((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g '<' b )
Lm7:
for Y being non empty set
for a, b, c, d, e, f, g being Element of Funcs Y,BOOLEAN holds
( ((((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g) 'imp' a = I_el Y & ((((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g) 'imp' b = I_el Y & ((((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g) 'imp' c = I_el Y & ((((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g) 'imp' d = I_el Y & ((((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g) 'imp' e = I_el Y & ((((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g) 'imp' f = I_el Y & ((((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g) 'imp' g = I_el Y )
theorem Th1: :: BVFUNC_9:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th2: :: BVFUNC_9:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th19: :: BVFUNC_9:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th21: :: BVFUNC_9:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th22: :: BVFUNC_9:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th24: :: BVFUNC_9:24 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm8:
for Y being non empty set
for a1, b1, c1, a2, b2, c2 being Element of Funcs Y,BOOLEAN holds (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (c2 '&' a2))) '&' ('not' (c2 '&' b2))) = I_el Y
Lm9:
for Y being non empty set
for a1, b1, c1, a2, b2, c2 being Element of Funcs Y,BOOLEAN holds (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (b2 '&' a2))) '&' ('not' (b2 '&' c2))) = I_el Y
Lm10:
for Y being non empty set
for a1, b1, c1, a2, b2, c2 being Element of Funcs Y,BOOLEAN holds (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) = I_el Y
theorem :: BVFUNC_9:25 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th26: :: BVFUNC_9:26 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:27 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:28 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:29 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:30 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:31 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:32 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:33 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th34: :: BVFUNC_9:34 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:35 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:36 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:37 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:38 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th39: :: BVFUNC_9:39 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BVFUNC_9:40 :: Showing IDV graph ... (Click the Palm Tree again to close it)