:: BVFUNC24 semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
theorem Th1: :: BVFUNC24:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J being
a_partition of
Y st
G = {A,B,C,D,E,F,J} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J holds
CompF A,
G = ((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J
theorem Th2: :: BVFUNC24:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J being
a_partition of
Y st
G = {A,B,C,D,E,F,J} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J holds
CompF B,
G = ((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J
theorem Th3: :: BVFUNC24:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J being
a_partition of
Y st
G = {A,B,C,D,E,F,J} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J holds
CompF C,
G = ((((A '/\' B) '/\' D) '/\' E) '/\' F) '/\' J
theorem Th4: :: BVFUNC24:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J being
a_partition of
Y st
G = {A,B,C,D,E,F,J} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J holds
CompF D,
G = ((((A '/\' B) '/\' C) '/\' E) '/\' F) '/\' J
theorem Th5: :: BVFUNC24:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J being
a_partition of
Y st
G = {A,B,C,D,E,F,J} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J holds
CompF E,
G = ((((A '/\' B) '/\' C) '/\' D) '/\' F) '/\' J
theorem Th6: :: BVFUNC24:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J being
a_partition of
Y st
G = {A,B,C,D,E,F,J} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J holds
CompF F,
G = ((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' J
theorem :: BVFUNC24:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J being
a_partition of
Y st
G = {A,B,C,D,E,F,J} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J holds
CompF J,
G = ((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F
theorem Th8: :: BVFUNC24:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
A,
B,
C,
D,
E,
F,
J being
set for
h being
Function for
A',
B',
C',
D',
E',
F',
J' being
set st
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J &
h = ((((((B .--> B') +* (C .--> C')) +* (D .--> D')) +* (E .--> E')) +* (F .--> F')) +* (J .--> J')) +* (A .--> A') holds
(
h . A = A' &
h . B = B' &
h . C = C' &
h . D = D' &
h . E = E' &
h . F = F' &
h . J = J' )
theorem Th9: :: BVFUNC24:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
A,
B,
C,
D,
E,
F,
J being
set for
h being
Function for
A',
B',
C',
D',
E',
F',
J' being
set st
h = ((((((B .--> B') +* (C .--> C')) +* (D .--> D')) +* (E .--> E')) +* (F .--> F')) +* (J .--> J')) +* (A .--> A') holds
dom h = {A,B,C,D,E,F,J}
theorem Th10: :: BVFUNC24:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
A,
B,
C,
D,
E,
F,
J being
set for
h being
Function for
A',
B',
C',
D',
E',
F',
J' being
set st
h = ((((((B .--> B') +* (C .--> C')) +* (D .--> D')) +* (E .--> E')) +* (F .--> F')) +* (J .--> J')) +* (A .--> A') holds
rng h = {(h . A),(h . B),(h . C),(h . D),(h . E),(h . F),(h . J)}
theorem :: BVFUNC24:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J being
a_partition of
Y for
z,
u being
Element of
Y st
G is
independent &
G = {A,B,C,D,E,F,J} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J holds
EqClass u,
(((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) meets EqClass z,
A
theorem :: BVFUNC24:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J being
a_partition of
Y for
z,
u being
Element of
Y st
G is
independent &
G = {A,B,C,D,E,F,J} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J &
EqClass z,
((((C '/\' D) '/\' E) '/\' F) '/\' J) = EqClass u,
((((C '/\' D) '/\' E) '/\' F) '/\' J) holds
EqClass u,
(CompF A,G) meets EqClass z,
(CompF B,G)
theorem Th13: :: BVFUNC24:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M holds
CompF A,
G = (((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M
theorem Th14: :: BVFUNC24:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M holds
CompF B,
G = (((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M
theorem Th15: :: BVFUNC24:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M holds
CompF C,
G = (((((A '/\' B) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M
theorem Th16: :: BVFUNC24:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M holds
CompF D,
G = (((((A '/\' B) '/\' C) '/\' E) '/\' F) '/\' J) '/\' M
theorem Th17: :: BVFUNC24:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M holds
CompF E,
G = (((((A '/\' B) '/\' C) '/\' D) '/\' F) '/\' J) '/\' M
theorem Th18: :: BVFUNC24:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M holds
CompF F,
G = (((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' J) '/\' M
theorem Th19: :: BVFUNC24:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M holds
CompF J,
G = (((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' M
theorem :: BVFUNC24:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M holds
CompF M,
G = (((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' J
theorem Th21: :: BVFUNC24:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
A,
B,
C,
D,
E,
F,
J,
M being
set for
h being
Function for
A',
B',
C',
D',
E',
F',
J',
M' being
set st
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M &
h = (((((((B .--> B') +* (C .--> C')) +* (D .--> D')) +* (E .--> E')) +* (F .--> F')) +* (J .--> J')) +* (M .--> M')) +* (A .--> A') holds
(
h . B = B' &
h . C = C' &
h . D = D' &
h . E = E' &
h . F = F' &
h . J = J' )
theorem Th22: :: BVFUNC24:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
A,
B,
C,
D,
E,
F,
J,
M being
set for
h being
Function for
A',
B',
C',
D',
E',
F',
J',
M' being
set st
h = (((((((B .--> B') +* (C .--> C')) +* (D .--> D')) +* (E .--> E')) +* (F .--> F')) +* (J .--> J')) +* (M .--> M')) +* (A .--> A') holds
dom h = {A,B,C,D,E,F,J,M}
theorem Th23: :: BVFUNC24:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
A,
B,
C,
D,
E,
F,
J,
M being
set for
h being
Function for
A',
B',
C',
D',
E',
F',
J',
M' being
set st
h = (((((((B .--> B') +* (C .--> C')) +* (D .--> D')) +* (E .--> E')) +* (F .--> F')) +* (J .--> J')) +* (M .--> M')) +* (A .--> A') holds
rng h = {(h . A),(h . B),(h . C),(h . D),(h . E),(h . F),(h . J),(h . M)}
theorem :: BVFUNC24:24 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y for
z,
u being
Element of
Y st
G is
independent &
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M holds
(EqClass u,((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)) /\ (EqClass z,A) <> {}
theorem :: BVFUNC24:25 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y for
z,
u being
Element of
Y st
G is
independent &
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M &
EqClass z,
(((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) = EqClass u,
(((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) holds
EqClass u,
(CompF A,G) meets EqClass z,
(CompF B,G)
Lm1:
for x, X, y being set holds
( x in union {X,{y}} iff ( x in X or x = y ) )
definition
let x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8,
x9 be
set ;
func {x1,x2,x3,x4,x5,x6,x7,x8,x9} -> set means :
Def1:
:: BVFUNC24:def 1
for
x being
set holds
(
x in it iff (
x = x1 or
x = x2 or
x = x3 or
x = x4 or
x = x5 or
x = x6 or
x = x7 or
x = x8 or
x = x9 ) );
existence
ex b1 being set st
for x being set holds
( x in b1 iff ( x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8 or x = x9 ) )
uniqueness
for b1, b2 being set st ( for x being set holds
( x in b1 iff ( x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8 or x = x9 ) ) ) & ( for x being set holds
( x in b2 iff ( x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8 or x = x9 ) ) ) holds
b1 = b2
end;
:: deftheorem Def1 defines { BVFUNC24:def 1 :
for
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8,
x9,
b10 being
set holds
(
b10 = {x1,x2,x3,x4,x5,x6,x7,x8,x9} iff for
x being
set holds
(
x in b10 iff (
x = x1 or
x = x2 or
x = x3 or
x = x4 or
x = x5 or
x = x6 or
x = x7 or
x = x8 or
x = x9 ) ) );
Lm2:
for x1, x2, x3, x4, x5, x6, x7, x8, x9 being set holds {x1,x2,x3,x4,x5,x6,x7,x8,x9} = {x1,x2,x3,x4} \/ {x5,x6,x7,x8,x9}
theorem :: BVFUNC24:26 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th27: :: BVFUNC24:27 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8,
x9 being
set holds
{x1,x2,x3,x4,x5,x6,x7,x8,x9} = {x1} \/ {x2,x3,x4,x5,x6,x7,x8,x9}
theorem Th28: :: BVFUNC24:28 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8,
x9 being
set holds
{x1,x2,x3,x4,x5,x6,x7,x8,x9} = {x1,x2} \/ {x3,x4,x5,x6,x7,x8,x9}
theorem Th29: :: BVFUNC24:29 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8,
x9 being
set holds
{x1,x2,x3,x4,x5,x6,x7,x8,x9} = {x1,x2,x3} \/ {x4,x5,x6,x7,x8,x9}
theorem :: BVFUNC24:30 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8,
x9 being
set holds
{x1,x2,x3,x4,x5,x6,x7,x8,x9} = {x1,x2,x3,x4} \/ {x5,x6,x7,x8,x9} by Lm2;
theorem Th31: :: BVFUNC24:31 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8,
x9 being
set holds
{x1,x2,x3,x4,x5,x6,x7,x8,x9} = {x1,x2,x3,x4,x5} \/ {x6,x7,x8,x9}
theorem Th32: :: BVFUNC24:32 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8,
x9 being
set holds
{x1,x2,x3,x4,x5,x6,x7,x8,x9} = {x1,x2,x3,x4,x5,x6} \/ {x7,x8,x9}
theorem Th33: :: BVFUNC24:33 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8,
x9 being
set holds
{x1,x2,x3,x4,x5,x6,x7,x8,x9} = {x1,x2,x3,x4,x5,x6,x7} \/ {x8,x9}
theorem :: BVFUNC24:34 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8,
x9 being
set holds
{x1,x2,x3,x4,x5,x6,x7,x8,x9} = {x1,x2,x3,x4,x5,x6,x7,x8} \/ {x9}
theorem Th35: :: BVFUNC24:35 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
CompF A,
G = ((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N
theorem Th36: :: BVFUNC24:36 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
CompF B,
G = ((((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N
theorem Th37: :: BVFUNC24:37 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
CompF C,
G = ((((((A '/\' B) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N
theorem Th38: :: BVFUNC24:38 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
CompF D,
G = ((((((A '/\' B) '/\' C) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N
theorem Th39: :: BVFUNC24:39 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
CompF E,
G = ((((((A '/\' B) '/\' C) '/\' D) '/\' F) '/\' J) '/\' M) '/\' N
theorem Th40: :: BVFUNC24:40 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
CompF F,
G = ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' J) '/\' M) '/\' N
theorem Th41: :: BVFUNC24:41 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
CompF J,
G = ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' M) '/\' N
theorem Th42: :: BVFUNC24:42 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
CompF M,
G = ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' N
theorem :: BVFUNC24:43 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
CompF N,
G = ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M
theorem Th44: :: BVFUNC24:44 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
A,
B,
C,
D,
E,
F,
J,
M,
N being
set for
h being
Function for
A',
B',
C',
D',
E',
F',
J',
M',
N' being
set st
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N &
h = ((((((((B .--> B') +* (C .--> C')) +* (D .--> D')) +* (E .--> E')) +* (F .--> F')) +* (J .--> J')) +* (M .--> M')) +* (N .--> N')) +* (A .--> A') holds
(
h . A = A' &
h . B = B' &
h . C = C' &
h . D = D' &
h . E = E' &
h . F = F' &
h . J = J' &
h . M = M' &
h . N = N' )
theorem Th45: :: BVFUNC24:45 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
A,
B,
C,
D,
E,
F,
J,
M,
N being
set for
h being
Function for
A',
B',
C',
D',
E',
F',
J',
M',
N' being
set st
h = ((((((((B .--> B') +* (C .--> C')) +* (D .--> D')) +* (E .--> E')) +* (F .--> F')) +* (J .--> J')) +* (M .--> M')) +* (N .--> N')) +* (A .--> A') holds
dom h = {A,B,C,D,E,F,J,M,N}
theorem Th46: :: BVFUNC24:46 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
A,
B,
C,
D,
E,
F,
J,
M,
N being
set for
h being
Function for
A',
B',
C',
D',
E',
F',
J',
M',
N' being
set st
h = ((((((((B .--> B') +* (C .--> C')) +* (D .--> D')) +* (E .--> E')) +* (F .--> F')) +* (J .--> J')) +* (M .--> M')) +* (N .--> N')) +* (A .--> A') holds
rng h = {(h . A),(h . B),(h . C),(h . D),(h . E),(h . F),(h . J),(h . M),(h . N)}
theorem :: BVFUNC24:47 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y for
z,
u being
Element of
Y st
G is
independent &
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
(EqClass u,(((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)) /\ (EqClass z,A) <> {}
theorem :: BVFUNC24:48 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y for
z,
u being
Element of
Y st
G is
independent &
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N &
EqClass z,
((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N) = EqClass u,
((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N) holds
EqClass u,
(CompF A,G) meets EqClass z,
(CompF B,G)