:: BORSUK_3 semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
theorem Th1: :: BORSUK_3:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th2: :: BORSUK_3:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm1:
for S being non empty TopStruct holds S,S are_homeomorphic
Lm2:
for S, T being non empty TopStruct st S,T are_homeomorphic holds
T,S are_homeomorphic
theorem :: BORSUK_3:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th4: :: BORSUK_3:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th5: :: BORSUK_3:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th6: :: BORSUK_3:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th7: :: BORSUK_3:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th8: :: BORSUK_3:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th9: :: BORSUK_3:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BORSUK_3:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th11: :: BORSUK_3:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BORSUK_3:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th13: :: BORSUK_3:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th14: :: BORSUK_3:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th15: :: BORSUK_3:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm3:
for X, Y being non empty TopSpace
for x being Point of X
for Z being non empty Subset of X st Z = {x} holds
[:Y,(X | Z):],Y are_homeomorphic
theorem Th16: :: BORSUK_3:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th17: :: BORSUK_3:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm4:
for X, Y being TopSpace
for Z being Subset of [:Y,X:]
for V being Subset of X st Z = [:([#] Y),V:] holds
TopStruct(# the carrier of [:Y,(X | V):],the topology of [:Y,(X | V):] #) = TopStruct(# the carrier of ([:Y,X:] | Z),the topology of ([:Y,X:] | Z) #)
theorem Th18: :: BORSUK_3:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BORSUK_3:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BORSUK_3:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th21: :: BORSUK_3:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th22: :: BORSUK_3:22 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th23: :: BORSUK_3:23 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm5:
for T1, T2 being non empty compact TopSpace holds [:T1,T2:] is compact
theorem Th24: :: BORSUK_3:24 :: Showing IDV graph ... (Click the Palm Tree again to close it)
Lm6:
for X, Y being TopSpace
for XV being SubSpace of X holds [:XV,Y:] is SubSpace of [:X,Y:]
theorem Th25: :: BORSUK_3:25 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th26: :: BORSUK_3:26 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: BORSUK_3:27 :: Showing IDV graph ... (Click the Palm Tree again to close it)