:: BINARI_6 semantic presentation  Show TPTP formulae Show IDV graph for whole article:: Showing IDV graph ... (Click the Palm Trees again to close it)

theorem Th1: :: BINARI_6:1  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds TRUE 'imp' x = x
proof end;

theorem Th3: :: BINARI_6:2  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds FALSE 'imp' x = TRUE
proof end;

theorem Th8: :: BINARI_6:3  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds
( x 'imp' x = TRUE & 'not' (x 'imp' x) = FALSE )
proof end;

theorem :: BINARI_6:4  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds 'not' (x 'imp' y) = x '&' ('not' y)
proof end;

theorem Th9: :: BINARI_6:5  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds
( x 'imp' ('not' x) = 'not' x & 'not' (x 'imp' ('not' x)) = x )
proof end;

theorem Th10: :: BINARI_6:6  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds ('not' x) 'imp' x = x
proof end;

theorem :: BINARI_6:7  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds TRUE 'eqv' x = x
proof end;

theorem :: BINARI_6:8  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds FALSE 'eqv' x = 'not' x
proof end;

theorem :: BINARI_6:9  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds
( x 'eqv' x = TRUE & 'not' (x 'eqv' x) = FALSE )
proof end;

theorem :: BINARI_6:10  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds ('not' x) 'eqv' x = FALSE
proof end;

theorem :: BINARI_6:11  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x '&' (y 'eqv' z) = (x '&' (('not' y) 'or' z)) '&' (('not' z) 'or' y)
proof end;

theorem Th11: :: BINARI_6:12  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x '&' (y 'nand' z) = (x '&' ('not' y)) 'or' (x '&' ('not' z))
proof end;

theorem Th12: :: BINARI_6:13  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x '&' (y 'nor' z) = (x '&' ('not' y)) '&' ('not' z)
proof end;

theorem :: BINARI_6:14  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x '&' (x '&' y) = x '&' y
proof end;

theorem :: BINARI_6:15  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x '&' (x 'or' y) = x 'or' (x '&' y)
proof end;

theorem :: BINARI_6:16  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x '&' (x 'xor' y) = x '&' ('not' y)
proof end;

theorem :: BINARI_6:17  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x '&' (x 'imp' y) = x '&' y
proof end;

theorem Th55: :: BINARI_6:18  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x '&' (x 'eqv' y) = x '&' y
proof end;

theorem :: BINARI_6:19  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x '&' (x 'nand' y) = x '&' ('not' y)
proof end;

theorem :: BINARI_6:20  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x '&' (x 'nor' y) = FALSE
proof end;

theorem :: BINARI_6:21  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x 'or' (y 'xor' z) = (x 'or' (('not' y) '&' z)) 'or' (y '&' ('not' z))
proof end;

theorem Th17: :: BINARI_6:22  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x 'or' (y 'eqv' z) = ((x 'or' ('not' y)) 'or' z) '&' ((x 'or' ('not' z)) 'or' y)
proof end;

theorem Th15: :: BINARI_6:23  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x 'or' (y 'nand' z) = (x 'or' ('not' y)) 'or' ('not' z)
proof end;

theorem Th16: :: BINARI_6:24  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds
( x 'or' (y 'nor' z) = (x 'or' ('not' y)) '&' (x 'or' ('not' z)) & x 'or' (y 'nor' z) = (y 'imp' x) '&' (z 'imp' x) )
proof end;

theorem :: BINARI_6:25  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'or' (x 'or' y) = x 'or' y
proof end;

theorem :: BINARI_6:26  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'or' (x 'imp' y) = TRUE
proof end;

theorem :: BINARI_6:27  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'or' (x 'eqv' y) = y 'imp' x
proof end;

theorem :: BINARI_6:28  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'or' (x 'nand' y) = TRUE
proof end;

theorem :: BINARI_6:29  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'or' (x 'nor' y) = y 'imp' x
proof end;

theorem Th20: :: BINARI_6:30  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x 'imp' (y 'xor' z) = (('not' x) 'or' (('not' y) '&' z)) 'or' (y '&' ('not' z))
proof end;

theorem Th22: :: BINARI_6:31  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x 'imp' (y 'eqv' z) = ((('not' x) 'or' ('not' y)) 'or' z) '&' ((('not' x) 'or' y) 'or' ('not' z))
proof end;

theorem Th23: :: BINARI_6:32  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x 'imp' (y 'nand' z) = (('not' x) 'or' ('not' y)) 'or' ('not' z)
proof end;

theorem Th24: :: BINARI_6:33  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds
( x 'imp' (y 'nor' z) = (('not' x) 'or' ('not' y)) '&' (('not' x) 'or' ('not' z)) & x 'imp' (y 'nor' z) = (x 'imp' ('not' y)) '&' (x 'imp' ('not' z)) )
proof end;

theorem Th31: :: BINARI_6:34  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'imp' (x '&' y) = x 'imp' y
proof end;

theorem :: BINARI_6:35  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'imp' (x 'or' y) = TRUE
proof end;

theorem :: BINARI_6:36  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'imp' (x 'xor' y) = ('not' x) 'or' ('not' y)
proof end;

theorem Th25: :: BINARI_6:37  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'imp' (x 'imp' y) = x 'imp' y
proof end;

theorem :: BINARI_6:38  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds
( x 'imp' (x 'eqv' y) = x 'imp' y & x 'imp' (x 'eqv' y) = x 'imp' (x 'imp' y) )
proof end;

theorem :: BINARI_6:39  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'imp' (x 'nand' y) = 'not' (x '&' y)
proof end;

theorem :: BINARI_6:40  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'imp' (x 'nor' y) = 'not' x
proof end;

theorem Th27: :: BINARI_6:41  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds
( x 'nand' (y 'imp' z) = (('not' x) 'or' y) '&' (('not' x) 'or' ('not' z)) & x 'nand' (y 'imp' z) = (x 'imp' y) '&' (x 'imp' ('not' z)) )
proof end;

theorem Th28: :: BINARI_6:42  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x 'nand' (y 'eqv' z) = 'not' ((x '&' (('not' y) 'or' z)) '&' (('not' z) 'or' y))
proof end;

theorem Th29: :: BINARI_6:43  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds
( x 'nand' (y 'nand' z) = (('not' x) 'or' y) '&' (('not' x) 'or' z) & x 'nand' (y 'nand' z) = (x 'imp' y) '&' (x 'imp' z) )
proof end;

theorem Th30: :: BINARI_6:44  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x 'nand' (y 'nor' z) = (('not' x) 'or' y) 'or' z
proof end;

theorem :: BINARI_6:45  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'nand' (x '&' y) = 'not' (x '&' y)
proof end;

theorem :: BINARI_6:46  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'nand' (x 'xor' y) = x 'imp' y
proof end;

theorem :: BINARI_6:47  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'nand' (x 'imp' y) = 'not' (x '&' y)
proof end;

theorem :: BINARI_6:48  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'nand' (x 'eqv' y) = 'not' (x '&' y)
proof end;

theorem :: BINARI_6:49  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'nand' (x 'nand' y) = x 'imp' y
proof end;

theorem :: BINARI_6:50  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'nand' (x 'nor' y) = TRUE
proof end;

theorem Th32: :: BINARI_6:51  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x 'nor' (y 'xor' z) = 'not' ((x 'or' (('not' y) '&' z)) 'or' (y '&' ('not' z)))
proof end;

theorem Th34: :: BINARI_6:52  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x 'nor' (y 'eqv' z) = 'not' (((x 'or' ('not' y)) 'or' z) '&' ((x 'or' ('not' z)) 'or' y))
proof end;

theorem Th35: :: BINARI_6:53  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x 'nor' (y 'nand' z) = (('not' x) '&' y) '&' z
proof end;

theorem Th36: :: BINARI_6:54  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x 'nor' (y 'nor' z) = (('not' x) '&' y) 'or' (('not' x) '&' z)
proof end;

theorem :: BINARI_6:55  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'nor' (x '&' y) = 'not' x
proof end;

theorem :: BINARI_6:56  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'nor' (x 'or' y) = ('not' x) '&' ('not' y)
proof end;

theorem :: BINARI_6:57  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'nor' (x 'xor' y) = ('not' x) '&' ('not' y)
proof end;

theorem :: BINARI_6:58  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'nor' (x 'imp' y) = FALSE
proof end;

theorem :: BINARI_6:59  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'nor' (x 'eqv' y) = ('not' x) '&' y
proof end;

theorem :: BINARI_6:60  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'nor' (x 'nand' y) = FALSE
proof end;

theorem :: BINARI_6:61  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'nor' (x 'nor' y) = ('not' x) '&' y
proof end;

theorem Th37: :: BINARI_6:62  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x 'xor' (y '&' z) = (x 'or' (y '&' z)) '&' (('not' x) 'or' ('not' (y '&' z)))
proof end;

theorem :: BINARI_6:63  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'xor' (x '&' y) = x '&' ('not' y)
proof end;

theorem :: BINARI_6:64  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'xor' (x 'or' y) = ('not' x) '&' y
proof end;

theorem Th38: :: BINARI_6:65  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds ('not' x) '&' (x 'xor' y) = ('not' x) '&' y
proof end;

theorem Th39: :: BINARI_6:66  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x '&' ('not' (x 'xor' y)) = x '&' y
proof end;

theorem :: BINARI_6:67  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'xor' (x 'xor' y) = y
proof end;

theorem Th41: :: BINARI_6:68  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x '&' ('not' (x 'imp' y)) = x '&' ('not' y)
proof end;

theorem :: BINARI_6:69  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'xor' (x 'imp' y) = ('not' x) 'or' ('not' y)
proof end;

theorem Th42: :: BINARI_6:70  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds ('not' x) '&' (x 'eqv' y) = ('not' x) '&' ('not' y)
proof end;

theorem Th43: :: BINARI_6:71  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x '&' ('not' (x 'eqv' y)) = x '&' ('not' y)
proof end;

theorem :: BINARI_6:72  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'xor' (x 'eqv' y) = 'not' y
proof end;

theorem :: BINARI_6:73  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'xor' (x 'nand' y) = x 'imp' y
proof end;

theorem :: BINARI_6:74  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'xor' (x 'nor' y) = y 'imp' x
proof end;

theorem :: BINARI_6:75  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds ('not' x) '&' (x 'imp' y) = ('not' x) 'or' (('not' x) '&' y)
proof end;

theorem Th51: :: BINARI_6:76  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds ('not' x) '&' (y 'eqv' z) = (('not' x) '&' (('not' y) 'or' z)) '&' (('not' z) 'or' y)
proof end;

theorem :: BINARI_6:77  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds ('not' x) '&' (x 'eqv' y) = (('not' x) '&' ('not' y)) '&' (('not' x) 'or' y)
proof end;

theorem :: BINARI_6:78  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds ('not' x) '&' (x 'nand' y) = ('not' x) 'or' (('not' x) '&' ('not' y))
proof end;

theorem :: BINARI_6:79  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds ('not' x) '&' (x 'nor' y) = ('not' x) '&' ('not' y)
proof end;

theorem :: BINARI_6:80  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds ('not' x) 'or' (x 'imp' y) = ('not' x) 'or' y
proof end;

theorem :: BINARI_6:81  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds ('not' x) 'or' (x 'eqv' y) = ('not' x) 'or' y
proof end;

theorem :: BINARI_6:82  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds ('not' x) 'or' (x 'nand' y) = ('not' x) 'or' ('not' y)
proof end;

theorem :: BINARI_6:83  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds ('not' x) 'xor' (x 'imp' y) = x '&' y
proof end;

theorem :: BINARI_6:84  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds ('not' x) 'xor' (y 'imp' x) = (x '&' (x 'or' ('not' y))) 'or' (('not' x) '&' y)
proof end;

theorem Th57: :: BINARI_6:85  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds 'not' (x 'imp' y) = x '&' ('not' y)
proof end;

theorem Th56: :: BINARI_6:86  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds 'not' (x 'eqv' y) = (x '&' ('not' y)) 'or' (y '&' ('not' x))
proof end;

theorem :: BINARI_6:87  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds ('not' x) 'xor' (x 'eqv' y) = y
proof end;