:: BINARI_5 semantic presentation  Show TPTP formulae Show IDV graph for whole article:: Showing IDV graph ... (Click the Palm Trees again to close it)

definition
let x, y be boolean set ;
func x 'nand' y -> set equals :: BINARI_5:def 1
'not' (x '&' y);
correctness
coherence
'not' (x '&' y) is set
;
;
commutativity
for b1 being set
for x, y being boolean set st b1 = 'not' (x '&' y) holds
b1 = 'not' (y '&' x)
;
end;

:: deftheorem defines 'nand' BINARI_5:def 1 :
for x, y being boolean set holds x 'nand' y = 'not' (x '&' y);

registration
let x, y be boolean set ;
cluster x 'nand' y -> boolean ;
correctness
coherence
x 'nand' y is boolean
;
;
end;

definition
let x, y be Element of BOOLEAN ;
:: original: 'nand'
redefine func x 'nand' y -> Element of BOOLEAN ;
correctness
coherence
x 'nand' y is Element of BOOLEAN
;
by MARGREL1:def 15;
end;

definition
let x, y be boolean set ;
func x 'nor' y -> set equals :: BINARI_5:def 2
'not' (x 'or' y);
correctness
coherence
'not' (x 'or' y) is set
;
;
commutativity
for b1 being set
for x, y being boolean set st b1 = 'not' (x 'or' y) holds
b1 = 'not' (y 'or' x)
;
end;

:: deftheorem defines 'nor' BINARI_5:def 2 :
for x, y being boolean set holds x 'nor' y = 'not' (x 'or' y);

registration
let x, y be boolean set ;
cluster x 'nor' y -> boolean ;
correctness
coherence
x 'nor' y is boolean
;
;
end;

definition
let x, y be Element of BOOLEAN ;
:: original: 'nor'
redefine func x 'nor' y -> Element of BOOLEAN ;
correctness
coherence
x 'nor' y is Element of BOOLEAN
;
by MARGREL1:def 15;
end;

definition
let x, y be boolean set ;
func x 'xnor' y -> set equals :: BINARI_5:def 3
'not' (x 'xor' y);
correctness
coherence
'not' (x 'xor' y) is set
;
;
commutativity
for b1 being set
for x, y being boolean set st b1 = 'not' (x 'xor' y) holds
b1 = 'not' (y 'xor' x)
;
end;

:: deftheorem defines 'xnor' BINARI_5:def 3 :
for x, y being boolean set holds x 'xnor' y = 'not' (x 'xor' y);

registration
let x, y be boolean set ;
cluster x 'xnor' y -> boolean ;
correctness
coherence
x 'xnor' y is boolean
;
;
end;

definition
let x, y be Element of BOOLEAN ;
:: original: 'xnor'
redefine func x 'xnor' y -> Element of BOOLEAN ;
correctness
coherence
x 'xnor' y is Element of BOOLEAN
;
by MARGREL1:def 15;
end;

theorem :: BINARI_5:1  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds TRUE 'nand' x = 'not' x by MARGREL1:50;

theorem :: BINARI_5:2  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds FALSE 'nand' x = TRUE
proof end;

theorem :: BINARI_5:3  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds
( x 'nand' x = 'not' x & 'not' (x 'nand' x) = x )
proof end;

theorem :: BINARI_5:4  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds 'not' (x 'nand' y) = x '&' y by MARGREL1:40;

theorem :: BINARI_5:5  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds
( x 'nand' ('not' x) = TRUE & 'not' (x 'nand' ('not' x)) = FALSE )
proof end;

theorem :: BINARI_5:6  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x 'nand' (y '&' z) = 'not' ((x '&' y) '&' z) by MARGREL1:52;

theorem :: BINARI_5:7  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x 'nand' (y '&' z) = (x '&' y) 'nand' z by MARGREL1:52;

theorem :: BINARI_5:8  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x 'nand' (y 'or' z) = ('not' (x '&' y)) '&' ('not' (x '&' z))
proof end;

theorem :: BINARI_5:9  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x 'nand' (y 'xor' z) = (x '&' y) 'eqv' (x '&' z)
proof end;

theorem :: BINARI_5:10  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds TRUE 'nor' x = FALSE
proof end;

theorem :: BINARI_5:11  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds FALSE 'nor' x = 'not' x by BINARITH:7;

theorem :: BINARI_5:12  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds
( x 'nor' x = 'not' x & 'not' (x 'nor' x) = x )
proof end;

theorem :: BINARI_5:13  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds 'not' (x 'nor' y) = x 'or' y by MARGREL1:40;

theorem :: BINARI_5:14  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds
( x 'nor' ('not' x) = FALSE & 'not' (x 'nor' ('not' x)) = TRUE )
proof end;

theorem :: BINARI_5:15  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x 'nor' (y '&' z) = ('not' (x 'or' y)) 'or' ('not' (x 'or' z))
proof end;

theorem :: BINARI_5:16  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds x 'nor' (y 'or' z) = 'not' ((x 'or' y) 'or' z) by BINARITH:20;

theorem :: BINARI_5:17  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds TRUE 'xnor' x = x
proof end;

theorem :: BINARI_5:18  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds FALSE 'xnor' x = 'not' x by BINARITH:14;

theorem :: BINARI_5:19  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds
( x 'xnor' x = TRUE & 'not' (x 'xnor' x) = FALSE )
proof end;

theorem :: BINARI_5:20  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds 'not' (x 'xnor' y) = x 'xor' y by MARGREL1:40;

theorem :: BINARI_5:21  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds
( x 'xnor' ('not' x) = FALSE & 'not' (x 'xnor' ('not' x)) = TRUE )
proof end;

theorem :: BINARI_5:22  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds
( x '<' y 'imp' z iff x '&' y '<' z )
proof end;

theorem Th23: :: BINARI_5:23  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'eqv' y = (x 'imp' y) '&' (y 'imp' x)
proof end;

theorem Th24: :: BINARI_5:24  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds
( x 'eqv' y = TRUE iff ( x 'imp' y = TRUE & y 'imp' x = TRUE ) )
proof end;

theorem Th25: :: BINARI_5:25  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set st x 'imp' y = TRUE & y 'imp' x = TRUE holds
x = y
proof end;

theorem Th26: :: BINARI_5:26  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set st x 'imp' y = TRUE & y 'imp' z = TRUE holds
x 'imp' z = TRUE
proof end;

theorem :: BINARI_5:27  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set st x 'eqv' y = TRUE & y 'eqv' z = TRUE holds
x 'eqv' z = TRUE
proof end;

theorem Th28: :: BINARI_5:28  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'imp' y = ('not' y) 'imp' ('not' x)
proof end;

theorem :: BINARI_5:29  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set holds x 'eqv' y = ('not' x) 'eqv' ('not' y)
proof end;

theorem :: BINARI_5:30  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z, w being boolean set st x 'eqv' y = TRUE & z 'eqv' w = TRUE holds
(x '&' z) 'eqv' (y '&' w) = TRUE
proof end;

theorem :: BINARI_5:31  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z, w being boolean set st x 'eqv' y = TRUE & z 'eqv' w = TRUE holds
(x 'imp' z) 'eqv' (y 'imp' w) = TRUE
proof end;

theorem :: BINARI_5:32  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z, w being boolean set st x 'eqv' y = TRUE & z 'eqv' w = TRUE holds
(x 'or' z) 'eqv' (y 'or' w) = TRUE
proof end;

theorem :: BINARI_5:33  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z, w being boolean set st x 'eqv' y = TRUE & z 'eqv' w = TRUE holds
(x 'eqv' z) 'eqv' (y 'eqv' w) = TRUE
proof end;

theorem :: BINARI_5:34  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set st x = TRUE & x 'imp' y = TRUE holds
y = TRUE
proof end;

theorem :: BINARI_5:35  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for y, x being boolean set st y = TRUE holds
x 'imp' y = TRUE
proof end;

theorem :: BINARI_5:36  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set st 'not' x = TRUE holds
x 'imp' y = TRUE
proof end;

theorem :: BINARI_5:37  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds x 'imp' x = TRUE
proof end;

theorem :: BINARI_5:38  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set st x 'imp' y = TRUE & x 'imp' ('not' y) = TRUE holds
'not' x = TRUE
proof end;

theorem :: BINARI_5:39  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x being boolean set holds (('not' x) 'imp' x) 'imp' x = TRUE
proof end;

theorem :: BINARI_5:40  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds (x 'imp' y) 'imp' (('not' (y '&' z)) 'imp' ('not' (x '&' z))) = TRUE
proof end;

theorem :: BINARI_5:41  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds (x 'imp' y) 'imp' ((y 'imp' z) 'imp' (x 'imp' z)) = TRUE
proof end;

theorem :: BINARI_5:42  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set st x 'imp' y = TRUE holds
(y 'imp' z) 'imp' (x 'imp' z) = TRUE
proof end;

theorem :: BINARI_5:43  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for y, x being boolean set holds y 'imp' (x 'imp' y) = TRUE
proof end;

theorem :: BINARI_5:44  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds ((x 'imp' y) 'imp' z) 'imp' (y 'imp' z) = TRUE
proof end;

theorem :: BINARI_5:45  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for y, x being boolean set holds y 'imp' ((y 'imp' x) 'imp' x) = TRUE
proof end;

theorem :: BINARI_5:46  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for z, y, x being boolean set holds (z 'imp' (y 'imp' x)) 'imp' (y 'imp' (z 'imp' x)) = TRUE
proof end;

theorem :: BINARI_5:47  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for y, z, x being boolean set holds (y 'imp' z) 'imp' ((x 'imp' y) 'imp' (x 'imp' z)) = TRUE
proof end;

theorem :: BINARI_5:48  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for y, z being boolean set holds (y 'imp' (y 'imp' z)) 'imp' (y 'imp' z) = TRUE
proof end;

theorem :: BINARI_5:49  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set holds (x 'imp' (y 'imp' z)) 'imp' ((x 'imp' y) 'imp' (x 'imp' z)) = TRUE
proof end;

theorem :: BINARI_5:50  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y being boolean set st x = TRUE holds
(x 'imp' y) 'imp' y = TRUE
proof end;

theorem :: BINARI_5:51  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for z, y, x being boolean set st z 'imp' (y 'imp' x) = TRUE holds
y 'imp' (z 'imp' x) = TRUE
proof end;

theorem :: BINARI_5:52  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for z, y, x being boolean set st z 'imp' (y 'imp' x) = TRUE & y = TRUE holds
z 'imp' x = TRUE
proof end;

theorem :: BINARI_5:53  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for z, y, x being boolean set st z 'imp' (y 'imp' x) = TRUE & y = TRUE & z = TRUE holds
x = TRUE
proof end;

theorem :: BINARI_5:54  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for y, z being boolean set st y 'imp' (y 'imp' z) = TRUE holds
y 'imp' z = TRUE
proof end;

theorem :: BINARI_5:55  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x, y, z being boolean set st x 'imp' (y 'imp' z) = TRUE holds
(x 'imp' y) 'imp' (x 'imp' z) = TRUE
proof end;