:: AFVECT01 semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
Lm1:
for AFV being WeakAffVect
for a, b, c being Element of AFV st a,b '||' b,c & a <> c holds
a,b // b,c
Lm2:
for AFV being WeakAffVect
for a, b being Element of AFV holds
( a,b // b,a iff ex p, q being Element of AFV st
( a,b '||' p,q & a,p '||' p,b & a,q '||' q,b ) )
Lm3:
for AFV being WeakAffVect
for a, b, c, d being Element of AFV st a,b '||' c,d holds
b,a '||' c,d
Lm4:
for AFV being WeakAffVect
for a, b being Element of AFV holds a,b '||' b,a
Lm5:
for AFV being WeakAffVect
for a, b, p being Element of AFV st a,b '||' p,p holds
a = b
Lm6:
for AFV being WeakAffVect
for a, b, c, d, p, q being Element of AFV st a,b '||' p,q & c,d '||' p,q holds
a,b '||' c,d
Lm7:
for AFV being WeakAffVect
for a, c being Element of AFV ex b being Element of AFV st a,b '||' b,c
Lm8:
for AFV being WeakAffVect
for a, a', b, b', p being Element of AFV st a <> a' & b <> b' & p,a '||' p,a' & p,b '||' p,b' holds
a,b '||' a',b'
Lm9:
for AFV being WeakAffVect
for a, b being Element of AFV holds
( a = b or ex c being Element of AFV st
( ( a <> c & a,b '||' b,c ) or ex p, p' being Element of AFV st
( p <> p' & a,b '||' p,p' & a,p '||' p,b & a,p' '||' p',b ) ) )
Lm10:
for AFV being WeakAffVect
for a, b, b', p, p', c being Element of AFV st a,b '||' b,c & b,b' '||' p,p' & b,p '||' p,b' & b,p' '||' p',b' holds
a,b' '||' b',c
Lm11:
for AFV being WeakAffVect
for a, b, b', c being Element of AFV st a <> c & b <> b' & a,b '||' b,c & a,b' '||' b',c holds
ex p, p' being Element of AFV st
( p <> p' & b,b' '||' p,p' & b,p '||' p,b' & b,p' '||' p',b' )
Lm12:
for AFV being WeakAffVect
for a, b, c, p, p', q, q' being Element of AFV st a,b '||' p,p' & a,c '||' q,q' & a,p '||' p,b & a,q '||' q,c & a,p' '||' p',b & a,q' '||' q',c holds
ex r, r' being Element of AFV st
( b,c '||' r,r' & b,r '||' r,c & b,r' '||' r',c )
consider AFV0 being WeakAffVect;
set X = the carrier of AFV0;
set XX = [:the carrier of AFV0,the carrier of AFV0:];
defpred S1[ set , set ] means ex a, b, c, d being Element of the carrier of AFV0 st
( $1 = [a,b] & $2 = [c,d] & a,b '||' c,d );
consider P being Relation of [:the carrier of AFV0,the carrier of AFV0:],[:the carrier of AFV0,the carrier of AFV0:] such that
Lm13:
for x, y being set holds
( [x,y] in P iff ( x in [:the carrier of AFV0,the carrier of AFV0:] & y in [:the carrier of AFV0,the carrier of AFV0:] & S1[x,y] ) )
from RELSET_1:sch 1(
[:the carrier of AFV0,the carrier of AFV0:]
[:the carrier of AFV0,the carrier of AFV0:]
);
Lm14:
for a, b, c, d being Element of the carrier of AFV0 holds
( [[a,b],[c,d]] in P iff a,b '||' c,d )
set WAS = AffinStruct(# the carrier of AFV0,P #);
Lm15:
for a, b, c, d being Element of AFV0
for a', b', c', d' being Element of the carrier of AffinStruct(# the carrier of AFV0,P #) st a = a' & b = b' & c = c' & d = d' holds
( a,b '||' c,d iff a',b' // c',d' )
Lm16:
now
thus
ex
a',
b' being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) st
a' <> b'
by REALSET2:def 7;
:: thesis: ( ( for a', b' being Element of AffinStruct(# the carrier of AFV0,P #) holds a',b' // b',a' ) & ( for a', b' being Element of AffinStruct(# the carrier of AFV0,P #) st a',b' // a',a' holds
a' = b' ) & ( for a, b, c, d, p, q being Element of AffinStruct(# the carrier of AFV0,P #) st a,b // p,q & c,d // p,q holds
a,b // c,d ) & ( for a, c being Element of AffinStruct(# the carrier of AFV0,P #) ex b being Element of the carrier of AffinStruct(# the carrier of AFV0,P #) st a,b // b,c ) & ( for a, a', b, b', p being Element of AffinStruct(# the carrier of AFV0,P #) st a <> a' & b <> b' & p,a // p,a' & p,b // p,b' holds
a,b // a',b' ) & ( for a, b being Element of AffinStruct(# the carrier of AFV0,P #) holds
( a = b or ex c being Element of AffinStruct(# the carrier of AFV0,P #) st
( ( a <> c & a,b // b,c ) or ex p, p' being Element of AffinStruct(# the carrier of AFV0,P #) st
( p <> p' & a,b // p,p' & a,p // p,b & a,p' // p',b ) ) ) ) & ( for a, b, b', p, p', c being Element of AffinStruct(# the carrier of AFV0,P #) st a,b // b,c & b,b' // p,p' & b,p // p,b' & b,p' // p',b' holds
a,b' // b',c ) & ( for a, b, b', c being Element of AffinStruct(# the carrier of AFV0,P #) st a <> c & b <> b' & a,b // b,c & a,b' // b',c holds
ex p, p' being Element of AffinStruct(# the carrier of AFV0,P #) st
( p <> p' & b,b' // p,p' & b,p // p,b' & b,p' // p',b' ) ) & ( for a, b, c, p, p', q, q' being Element of AffinStruct(# the carrier of AFV0,P #) st a,b // p,p' & a,c // q,q' & a,p // p,b & a,q // q,c & a,p' // p',b & a,q' // q',c holds
ex r, r' being Element of AffinStruct(# the carrier of AFV0,P #) st
( b,c // r,r' & b,r // r,c & b,r' // r',c ) ) )thus
for
a',
b' being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) holds
a',
b' // b',
a'
:: thesis: ( ( for a', b' being Element of AffinStruct(# the carrier of AFV0,P #) st a',b' // a',a' holds
a' = b' ) & ( for a, b, c, d, p, q being Element of AffinStruct(# the carrier of AFV0,P #) st a,b // p,q & c,d // p,q holds
a,b // c,d ) & ( for a, c being Element of AffinStruct(# the carrier of AFV0,P #) ex b being Element of the carrier of AffinStruct(# the carrier of AFV0,P #) st a,b // b,c ) & ( for a, a', b, b', p being Element of AffinStruct(# the carrier of AFV0,P #) st a <> a' & b <> b' & p,a // p,a' & p,b // p,b' holds
a,b // a',b' ) & ( for a, b being Element of AffinStruct(# the carrier of AFV0,P #) holds
( a = b or ex c being Element of AffinStruct(# the carrier of AFV0,P #) st
( ( a <> c & a,b // b,c ) or ex p, p' being Element of AffinStruct(# the carrier of AFV0,P #) st
( p <> p' & a,b // p,p' & a,p // p,b & a,p' // p',b ) ) ) ) & ( for a, b, b', p, p', c being Element of AffinStruct(# the carrier of AFV0,P #) st a,b // b,c & b,b' // p,p' & b,p // p,b' & b,p' // p',b' holds
a,b' // b',c ) & ( for a, b, b', c being Element of AffinStruct(# the carrier of AFV0,P #) st a <> c & b <> b' & a,b // b,c & a,b' // b',c holds
ex p, p' being Element of AffinStruct(# the carrier of AFV0,P #) st
( p <> p' & b,b' // p,p' & b,p // p,b' & b,p' // p',b' ) ) & ( for a, b, c, p, p', q, q' being Element of AffinStruct(# the carrier of AFV0,P #) st a,b // p,p' & a,c // q,q' & a,p // p,b & a,q // q,c & a,p' // p',b & a,q' // q',c holds
ex r, r' being Element of AffinStruct(# the carrier of AFV0,P #) st
( b,c // r,r' & b,r // r,c & b,r' // r',c ) ) )
thus
for
a',
b' being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) st
a',
b' // a',
a' holds
a' = b'
:: thesis: ( ( for a, b, c, d, p, q being Element of AffinStruct(# the carrier of AFV0,P #) st a,b // p,q & c,d // p,q holds
a,b // c,d ) & ( for a, c being Element of AffinStruct(# the carrier of AFV0,P #) ex b being Element of the carrier of AffinStruct(# the carrier of AFV0,P #) st a,b // b,c ) & ( for a, a', b, b', p being Element of AffinStruct(# the carrier of AFV0,P #) st a <> a' & b <> b' & p,a // p,a' & p,b // p,b' holds
a,b // a',b' ) & ( for a, b being Element of AffinStruct(# the carrier of AFV0,P #) holds
( a = b or ex c being Element of AffinStruct(# the carrier of AFV0,P #) st
( ( a <> c & a,b // b,c ) or ex p, p' being Element of AffinStruct(# the carrier of AFV0,P #) st
( p <> p' & a,b // p,p' & a,p // p,b & a,p' // p',b ) ) ) ) & ( for a, b, b', p, p', c being Element of AffinStruct(# the carrier of AFV0,P #) st a,b // b,c & b,b' // p,p' & b,p // p,b' & b,p' // p',b' holds
a,b' // b',c ) & ( for a, b, b', c being Element of AffinStruct(# the carrier of AFV0,P #) st a <> c & b <> b' & a,b // b,c & a,b' // b',c holds
ex p, p' being Element of AffinStruct(# the carrier of AFV0,P #) st
( p <> p' & b,b' // p,p' & b,p // p,b' & b,p' // p',b' ) ) & ( for a, b, c, p, p', q, q' being Element of AffinStruct(# the carrier of AFV0,P #) st a,b // p,p' & a,c // q,q' & a,p // p,b & a,q // q,c & a,p' // p',b & a,q' // q',c holds
ex r, r' being Element of AffinStruct(# the carrier of AFV0,P #) st
( b,c // r,r' & b,r // r,c & b,r' // r',c ) ) )
proof
let a',
b' be
Element of
AffinStruct(# the
carrier of
AFV0,
P #);
:: thesis: ( a',b' // a',a' implies a' = b' )
assume A1:
a',
b' // a',
a'
;
:: thesis: a' = b'
reconsider a =
a',
b =
b' as
Element of
AFV0 ;
a,
b '||' a,
a
by A1, Lm15;
hence
a' = b'
by Lm5;
:: thesis: verum
end;
thus
for
a,
b,
c,
d,
p,
q being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) st
a,
b // p,
q &
c,
d // p,
q holds
a,
b // c,
d
:: thesis: ( ( for a, c being Element of AffinStruct(# the carrier of AFV0,P #) ex b being Element of the carrier of AffinStruct(# the carrier of AFV0,P #) st a,b // b,c ) & ( for a, a', b, b', p being Element of AffinStruct(# the carrier of AFV0,P #) st a <> a' & b <> b' & p,a // p,a' & p,b // p,b' holds
a,b // a',b' ) & ( for a, b being Element of AffinStruct(# the carrier of AFV0,P #) holds
( a = b or ex c being Element of AffinStruct(# the carrier of AFV0,P #) st
( ( a <> c & a,b // b,c ) or ex p, p' being Element of AffinStruct(# the carrier of AFV0,P #) st
( p <> p' & a,b // p,p' & a,p // p,b & a,p' // p',b ) ) ) ) & ( for a, b, b', p, p', c being Element of AffinStruct(# the carrier of AFV0,P #) st a,b // b,c & b,b' // p,p' & b,p // p,b' & b,p' // p',b' holds
a,b' // b',c ) & ( for a, b, b', c being Element of AffinStruct(# the carrier of AFV0,P #) st a <> c & b <> b' & a,b // b,c & a,b' // b',c holds
ex p, p' being Element of AffinStruct(# the carrier of AFV0,P #) st
( p <> p' & b,b' // p,p' & b,p // p,b' & b,p' // p',b' ) ) & ( for a, b, c, p, p', q, q' being Element of AffinStruct(# the carrier of AFV0,P #) st a,b // p,p' & a,c // q,q' & a,p // p,b & a,q // q,c & a,p' // p',b & a,q' // q',c holds
ex r, r' being Element of AffinStruct(# the carrier of AFV0,P #) st
( b,c // r,r' & b,r // r,c & b,r' // r',c ) ) )
proof
let a,
b,
c,
d,
p,
q be
Element of
AffinStruct(# the
carrier of
AFV0,
P #);
:: thesis: ( a,b // p,q & c,d // p,q implies a,b // c,d )
assume A2:
(
a,
b // p,
q &
c,
d // p,
q )
;
:: thesis: a,b // c,d
reconsider a1 =
a,
b1 =
b,
c1 =
c,
d1 =
d,
p1 =
p,
q1 =
q as
Element of
AFV0 ;
(
a1,
b1 '||' p1,
q1 &
c1,
d1 '||' p1,
q1 )
by A2, Lm15;
then
a1,
b1 '||' c1,
d1
by Lm6;
hence
a,
b // c,
d
by Lm15;
:: thesis: verum
end;
thus
for
a,
c being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) ex
b being
Element of the
carrier of
AffinStruct(# the
carrier of
AFV0,
P #) st
a,
b // b,
c
:: thesis: ( ( for a, a', b, b', p being Element of AffinStruct(# the carrier of AFV0,P #) st a <> a' & b <> b' & p,a // p,a' & p,b // p,b' holds
a,b // a',b' ) & ( for a, b being Element of AffinStruct(# the carrier of AFV0,P #) holds
( a = b or ex c being Element of AffinStruct(# the carrier of AFV0,P #) st
( ( a <> c & a,b // b,c ) or ex p, p' being Element of AffinStruct(# the carrier of AFV0,P #) st
( p <> p' & a,b // p,p' & a,p // p,b & a,p' // p',b ) ) ) ) & ( for a, b, b', p, p', c being Element of AffinStruct(# the carrier of AFV0,P #) st a,b // b,c & b,b' // p,p' & b,p // p,b' & b,p' // p',b' holds
a,b' // b',c ) & ( for a, b, b', c being Element of AffinStruct(# the carrier of AFV0,P #) st a <> c & b <> b' & a,b // b,c & a,b' // b',c holds
ex p, p' being Element of AffinStruct(# the carrier of AFV0,P #) st
( p <> p' & b,b' // p,p' & b,p // p,b' & b,p' // p',b' ) ) & ( for a, b, c, p, p', q, q' being Element of AffinStruct(# the carrier of AFV0,P #) st a,b // p,p' & a,c // q,q' & a,p // p,b & a,q // q,c & a,p' // p',b & a,q' // q',c holds
ex r, r' being Element of AffinStruct(# the carrier of AFV0,P #) st
( b,c // r,r' & b,r // r,c & b,r' // r',c ) ) )
proof
let a,
c be
Element of
AffinStruct(# the
carrier of
AFV0,
P #);
:: thesis: ex b being Element of the carrier of AffinStruct(# the carrier of AFV0,P #) st a,b // b,c
reconsider a1 =
a,
c1 =
c as
Element of
AFV0 ;
consider b1 being
Element of
AFV0 such that A3:
a1,
b1 '||' b1,
c1
by Lm7;
reconsider b =
b1 as
Element of
AffinStruct(# the
carrier of
AFV0,
P #) ;
a,
b // b,
c
by A3, Lm15;
hence
ex
b being
Element of the
carrier of
AffinStruct(# the
carrier of
AFV0,
P #) st
a,
b // b,
c
;
:: thesis: verum
end;
thus
for
a,
a',
b,
b',
p being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) st
a <> a' &
b <> b' &
p,
a // p,
a' &
p,
b // p,
b' holds
a,
b // a',
b'
:: thesis: ( ( for a, b being Element of AffinStruct(# the carrier of AFV0,P #) holds
( a = b or ex c being Element of AffinStruct(# the carrier of AFV0,P #) st
( ( a <> c & a,b // b,c ) or ex p, p' being Element of AffinStruct(# the carrier of AFV0,P #) st
( p <> p' & a,b // p,p' & a,p // p,b & a,p' // p',b ) ) ) ) & ( for a, b, b', p, p', c being Element of AffinStruct(# the carrier of AFV0,P #) st a,b // b,c & b,b' // p,p' & b,p // p,b' & b,p' // p',b' holds
a,b' // b',c ) & ( for a, b, b', c being Element of AffinStruct(# the carrier of AFV0,P #) st a <> c & b <> b' & a,b // b,c & a,b' // b',c holds
ex p, p' being Element of AffinStruct(# the carrier of AFV0,P #) st
( p <> p' & b,b' // p,p' & b,p // p,b' & b,p' // p',b' ) ) & ( for a, b, c, p, p', q, q' being Element of AffinStruct(# the carrier of AFV0,P #) st a,b // p,p' & a,c // q,q' & a,p // p,b & a,q // q,c & a,p' // p',b & a,q' // q',c holds
ex r, r' being Element of AffinStruct(# the carrier of AFV0,P #) st
( b,c // r,r' & b,r // r,c & b,r' // r',c ) ) )
proof
let a,
a',
b,
b',
p be
Element of
AffinStruct(# the
carrier of
AFV0,
P #);
:: thesis: ( a <> a' & b <> b' & p,a // p,a' & p,b // p,b' implies a,b // a',b' )
assume that A4:
(
a <> a' &
b <> b' )
and A5:
(
p,
a // p,
a' &
p,
b // p,
b' )
;
:: thesis: a,b // a',b'
reconsider a1 =
a,
a1' =
a',
b1 =
b,
b1' =
b',
p1 =
p as
Element of
AFV0 ;
(
p1,
a1 '||' p1,
a1' &
p1,
b1 '||' p1,
b1' )
by A5, Lm15;
then
a1,
b1 '||' a1',
b1'
by A4, Lm8;
hence
a,
b // a',
b'
by Lm15;
:: thesis: verum
end;
thus
for
a,
b being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) holds
(
a = b or ex
c being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) st
( (
a <> c &
a,
b // b,
c ) or ex
p,
p' being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) st
(
p <> p' &
a,
b // p,
p' &
a,
p // p,
b &
a,
p' // p',
b ) ) )
:: thesis: ( ( for a, b, b', p, p', c being Element of AffinStruct(# the carrier of AFV0,P #) st a,b // b,c & b,b' // p,p' & b,p // p,b' & b,p' // p',b' holds
a,b' // b',c ) & ( for a, b, b', c being Element of AffinStruct(# the carrier of AFV0,P #) st a <> c & b <> b' & a,b // b,c & a,b' // b',c holds
ex p, p' being Element of AffinStruct(# the carrier of AFV0,P #) st
( p <> p' & b,b' // p,p' & b,p // p,b' & b,p' // p',b' ) ) & ( for a, b, c, p, p', q, q' being Element of AffinStruct(# the carrier of AFV0,P #) st a,b // p,p' & a,c // q,q' & a,p // p,b & a,q // q,c & a,p' // p',b & a,q' // q',c holds
ex r, r' being Element of AffinStruct(# the carrier of AFV0,P #) st
( b,c // r,r' & b,r // r,c & b,r' // r',c ) ) )
proof
let a,
b be
Element of
AffinStruct(# the
carrier of
AFV0,
P #);
:: thesis: ( a = b or ex c being Element of AffinStruct(# the carrier of AFV0,P #) st
( ( a <> c & a,b // b,c ) or ex p, p' being Element of AffinStruct(# the carrier of AFV0,P #) st
( p <> p' & a,b // p,p' & a,p // p,b & a,p' // p',b ) ) )
assume A6:
not
a = b
;
:: thesis: ex c being Element of AffinStruct(# the carrier of AFV0,P #) st
( ( a <> c & a,b // b,c ) or ex p, p' being Element of AffinStruct(# the carrier of AFV0,P #) st
( p <> p' & a,b // p,p' & a,p // p,b & a,p' // p',b ) )
reconsider a1 =
a,
b1 =
b as
Element of
AFV0 ;
A7:
now
given c1 being
Element of
AFV0 such that A8:
(
a1 <> c1 &
a1,
b1 '||' b1,
c1 )
;
:: thesis: ex c being Element of AffinStruct(# the carrier of AFV0,P #) st
( a <> c & a,b // b,c )reconsider c =
c1 as
Element of
AffinStruct(# the
carrier of
AFV0,
P #) ;
(
a <> c &
a,
b // b,
c )
by A8, Lm15;
hence
ex
c being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) st
(
a <> c &
a,
b // b,
c )
;
:: thesis: verum
end;
now
given p1,
p1' being
Element of
AFV0 such that A9:
(
p1 <> p1' &
a1,
b1 '||' p1,
p1' &
a1,
p1 '||' p1,
b1 &
a1,
p1' '||' p1',
b1 )
;
:: thesis: ex p, p' being Element of AffinStruct(# the carrier of AFV0,P #) st
( p <> p' & a,b // p,p' & a,p // p,b & a,p' // p',b )reconsider p =
p1,
p' =
p1' as
Element of
AffinStruct(# the
carrier of
AFV0,
P #) ;
(
p <> p' &
a,
b // p,
p' &
a,
p // p,
b &
a,
p' // p',
b )
by A9, Lm15;
hence
ex
p,
p' being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) st
(
p <> p' &
a,
b // p,
p' &
a,
p // p,
b &
a,
p' // p',
b )
;
:: thesis: verum
end;
hence
ex
c being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) st
( (
a <> c &
a,
b // b,
c ) or ex
p,
p' being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) st
(
p <> p' &
a,
b // p,
p' &
a,
p // p,
b &
a,
p' // p',
b ) )
by A6, A7, Lm9;
:: thesis: verum
end;
thus
for
a,
b,
b',
p,
p',
c being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) st
a,
b // b,
c &
b,
b' // p,
p' &
b,
p // p,
b' &
b,
p' // p',
b' holds
a,
b' // b',
c
:: thesis: ( ( for a, b, b', c being Element of AffinStruct(# the carrier of AFV0,P #) st a <> c & b <> b' & a,b // b,c & a,b' // b',c holds
ex p, p' being Element of AffinStruct(# the carrier of AFV0,P #) st
( p <> p' & b,b' // p,p' & b,p // p,b' & b,p' // p',b' ) ) & ( for a, b, c, p, p', q, q' being Element of AffinStruct(# the carrier of AFV0,P #) st a,b // p,p' & a,c // q,q' & a,p // p,b & a,q // q,c & a,p' // p',b & a,q' // q',c holds
ex r, r' being Element of AffinStruct(# the carrier of AFV0,P #) st
( b,c // r,r' & b,r // r,c & b,r' // r',c ) ) )
proof
let a,
b,
b',
p,
p',
c be
Element of
AffinStruct(# the
carrier of
AFV0,
P #);
:: thesis: ( a,b // b,c & b,b' // p,p' & b,p // p,b' & b,p' // p',b' implies a,b' // b',c )
assume A10:
(
a,
b // b,
c &
b,
b' // p,
p' &
b,
p // p,
b' &
b,
p' // p',
b' )
;
:: thesis: a,b' // b',c
reconsider a1 =
a,
b1 =
b,
b1' =
b',
p1 =
p,
p1' =
p',
c1 =
c as
Element of
AFV0 ;
(
a1,
b1 '||' b1,
c1 &
b1,
b1' '||' p1,
p1' &
b1,
p1 '||' p1,
b1' &
b1,
p1' '||' p1',
b1' )
by A10, Lm15;
then
a1,
b1' '||' b1',
c1
by Lm10;
hence
a,
b' // b',
c
by Lm15;
:: thesis: verum
end;
thus
for
a,
b,
b',
c being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) st
a <> c &
b <> b' &
a,
b // b,
c &
a,
b' // b',
c holds
ex
p,
p' being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) st
(
p <> p' &
b,
b' // p,
p' &
b,
p // p,
b' &
b,
p' // p',
b' )
:: thesis: for a, b, c, p, p', q, q' being Element of AffinStruct(# the carrier of AFV0,P #) st a,b // p,p' & a,c // q,q' & a,p // p,b & a,q // q,c & a,p' // p',b & a,q' // q',c holds
ex r, r' being Element of AffinStruct(# the carrier of AFV0,P #) st
( b,c // r,r' & b,r // r,c & b,r' // r',c )
proof
let a,
b,
b',
c be
Element of
AffinStruct(# the
carrier of
AFV0,
P #);
:: thesis: ( a <> c & b <> b' & a,b // b,c & a,b' // b',c implies ex p, p' being Element of AffinStruct(# the carrier of AFV0,P #) st
( p <> p' & b,b' // p,p' & b,p // p,b' & b,p' // p',b' ) )
assume that A11:
(
a <> c &
b <> b' )
and A12:
(
a,
b // b,
c &
a,
b' // b',
c )
;
:: thesis: ex p, p' being Element of AffinStruct(# the carrier of AFV0,P #) st
( p <> p' & b,b' // p,p' & b,p // p,b' & b,p' // p',b' )
reconsider a1 =
a,
b1 =
b,
b1' =
b',
c1 =
c as
Element of the
carrier of
AFV0 ;
(
a1,
b1 '||' b1,
c1 &
a1,
b1' '||' b1',
c1 )
by A12, Lm15;
then consider p1,
p1' being
Element of
AFV0 such that A13:
(
p1 <> p1' &
b1,
b1' '||' p1,
p1' &
b1,
p1 '||' p1,
b1' &
b1,
p1' '||' p1',
b1' )
by A11, Lm11;
reconsider p =
p1,
p' =
p1' as
Element of
AffinStruct(# the
carrier of
AFV0,
P #) ;
(
p <> p' &
b,
b' // p,
p' &
b,
p // p,
b' &
b,
p' // p',
b' )
by A13, Lm15;
hence
ex
p,
p' being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) st
(
p <> p' &
b,
b' // p,
p' &
b,
p // p,
b' &
b,
p' // p',
b' )
;
:: thesis: verum
end;
thus
for
a,
b,
c,
p,
p',
q,
q' being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) st
a,
b // p,
p' &
a,
c // q,
q' &
a,
p // p,
b &
a,
q // q,
c &
a,
p' // p',
b &
a,
q' // q',
c holds
ex
r,
r' being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) st
(
b,
c // r,
r' &
b,
r // r,
c &
b,
r' // r',
c )
:: thesis: verum
proof
let a,
b,
c,
p,
p',
q,
q' be
Element of
AffinStruct(# the
carrier of
AFV0,
P #);
:: thesis: ( a,b // p,p' & a,c // q,q' & a,p // p,b & a,q // q,c & a,p' // p',b & a,q' // q',c implies ex r, r' being Element of AffinStruct(# the carrier of AFV0,P #) st
( b,c // r,r' & b,r // r,c & b,r' // r',c ) )
assume A14:
(
a,
b // p,
p' &
a,
c // q,
q' &
a,
p // p,
b &
a,
q // q,
c &
a,
p' // p',
b &
a,
q' // q',
c )
;
:: thesis: ex r, r' being Element of AffinStruct(# the carrier of AFV0,P #) st
( b,c // r,r' & b,r // r,c & b,r' // r',c )
reconsider a1 =
a,
b1 =
b,
c1 =
c,
p1 =
p,
p1' =
p',
q1 =
q,
q1' =
q' as
Element of the
carrier of
AFV0 ;
(
a1,
b1 '||' p1,
p1' &
a1,
c1 '||' q1,
q1' &
a1,
p1 '||' p1,
b1 &
a1,
q1 '||' q1,
c1 &
a1,
p1' '||' p1',
b1 &
a1,
q1' '||' q1',
c1 )
by A14, Lm15;
then consider r1,
r1' being
Element of
AFV0 such that A15:
(
b1,
c1 '||' r1,
r1' &
b1,
r1 '||' r1,
c1 &
b1,
r1' '||' r1',
c1 )
by Lm12;
reconsider r =
r1,
r' =
r1' as
Element of
AffinStruct(# the
carrier of
AFV0,
P #) ;
(
b,
c // r,
r' &
b,
r // r,
c &
b,
r' // r',
c )
by A15, Lm15;
hence
ex
r,
r' being
Element of
AffinStruct(# the
carrier of
AFV0,
P #) st
(
b,
c // r,
r' &
b,
r // r,
c &
b,
r' // r',
c )
;
:: thesis: verum
end;
end;
definition
let IT be non
empty AffinStruct ;
canceled;attr IT is
WeakAffSegm-like means :
Def2:
:: AFVECT01:def 2
( ( for
a,
b being
Element of
IT holds
a,
b // b,
a ) & ( for
a,
b being
Element of
IT st
a,
b // a,
a holds
a = b ) & ( for
a,
b,
c,
d,
p,
q being
Element of
IT st
a,
b // p,
q &
c,
d // p,
q holds
a,
b // c,
d ) & ( for
a,
c being
Element of
IT ex
b being
Element of
IT st
a,
b // b,
c ) & ( for
a,
a',
b,
b',
p being
Element of
IT st
a <> a' &
b <> b' &
p,
a // p,
a' &
p,
b // p,
b' holds
a,
b // a',
b' ) & ( for
a,
b being
Element of
IT holds
(
a = b or ex
c being
Element of
IT st
( (
a <> c &
a,
b // b,
c ) or ex
p,
p' being
Element of
IT st
(
p <> p' &
a,
b // p,
p' &
a,
p // p,
b &
a,
p' // p',
b ) ) ) ) & ( for
a,
b,
b',
p,
p',
c being
Element of
IT st
a,
b // b,
c &
b,
b' // p,
p' &
b,
p // p,
b' &
b,
p' // p',
b' holds
a,
b' // b',
c ) & ( for
a,
b,
b',
c being
Element of
IT st
a <> c &
b <> b' &
a,
b // b,
c &
a,
b' // b',
c holds
ex
p,
p' being
Element of
IT st
(
p <> p' &
b,
b' // p,
p' &
b,
p // p,
b' &
b,
p' // p',
b' ) ) & ( for
a,
b,
c,
p,
p',
q,
q' being
Element of
IT st
a,
b // p,
p' &
a,
c // q,
q' &
a,
p // p,
b &
a,
q // q,
c &
a,
p' // p',
b &
a,
q' // q',
c holds
ex
r,
r' being
Element of
IT st
(
b,
c // r,
r' &
b,
r // r,
c &
b,
r' // r',
c ) ) );
end;
:: deftheorem AFVECT01:def 1 :
canceled;
:: deftheorem Def2 defines WeakAffSegm-like AFVECT01:def 2 :
for
IT being non
empty AffinStruct holds
(
IT is
WeakAffSegm-like iff ( ( for
a,
b being
Element of
IT holds
a,
b // b,
a ) & ( for
a,
b being
Element of
IT st
a,
b // a,
a holds
a = b ) & ( for
a,
b,
c,
d,
p,
q being
Element of
IT st
a,
b // p,
q &
c,
d // p,
q holds
a,
b // c,
d ) & ( for
a,
c being
Element of
IT ex
b being
Element of
IT st
a,
b // b,
c ) & ( for
a,
a',
b,
b',
p being
Element of
IT st
a <> a' &
b <> b' &
p,
a // p,
a' &
p,
b // p,
b' holds
a,
b // a',
b' ) & ( for
a,
b being
Element of
IT holds
(
a = b or ex
c being
Element of
IT st
( (
a <> c &
a,
b // b,
c ) or ex
p,
p' being
Element of
IT st
(
p <> p' &
a,
b // p,
p' &
a,
p // p,
b &
a,
p' // p',
b ) ) ) ) & ( for
a,
b,
b',
p,
p',
c being
Element of
IT st
a,
b // b,
c &
b,
b' // p,
p' &
b,
p // p,
b' &
b,
p' // p',
b' holds
a,
b' // b',
c ) & ( for
a,
b,
b',
c being
Element of
IT st
a <> c &
b <> b' &
a,
b // b,
c &
a,
b' // b',
c holds
ex
p,
p' being
Element of
IT st
(
p <> p' &
b,
b' // p,
p' &
b,
p // p,
b' &
b,
p' // p',
b' ) ) & ( for
a,
b,
c,
p,
p',
q,
q' being
Element of
IT st
a,
b // p,
p' &
a,
c // q,
q' &
a,
p // p,
b &
a,
q // q,
c &
a,
p' // p',
b &
a,
q' // q',
c holds
ex
r,
r' being
Element of
IT st
(
b,
c // r,
r' &
b,
r // r,
c &
b,
r' // r',
c ) ) ) );
theorem Th1: :: AFVECT01:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th2: :: AFVECT01:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th3: :: AFVECT01:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th4: :: AFVECT01:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th5: :: AFVECT01:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th6: :: AFVECT01:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th7: :: AFVECT01:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
AFV being
WeakAffSegm for
a,
b,
p,
p',
c being
Element of
AFV st
a,
b // p,
p' &
a,
b // b,
c &
a,
p // p,
b &
a,
p' // p',
b holds
a = c
theorem :: AFVECT01:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
AFV being
WeakAffSegm for
a,
b',
b'',
b being
Element of
AFV st
a,
b' // a,
b'' &
a,
b // a,
b'' & not
b = b' & not
b = b'' holds
b' = b''
:: deftheorem AFVECT01:def 3 :
canceled;
:: deftheorem Def4 defines MDist AFVECT01:def 4 :
:: deftheorem defines Mid AFVECT01:def 5 :
theorem :: AFVECT01:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: AFVECT01:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: AFVECT01:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: AFVECT01:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: AFVECT01:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)