:: LIMFUNC2 semantic presentation  Show TPTP formulae Show IDV graph for whole article:: Showing IDV graph ... (Click the Palm Trees again to close it)

Lm1: for r, g, r1 being real number st 0 < g & r <= r1 holds
( r - g < r1 & r < r1 + g )
proof end;

Lm2: for seq being Real_Sequence
for f1, f2 being PartFunc of REAL , REAL
for X being Subset of REAL st rng seq c= (dom (f1 (#) f2)) /\ X holds
( rng seq c= dom (f1 (#) f2) & rng seq c= X & dom (f1 (#) f2) = (dom f1) /\ (dom f2) & rng seq c= dom f1 & rng seq c= dom f2 & rng seq c= (dom f1) /\ X & rng seq c= (dom f2) /\ X )
proof end;

Lm3: for r being Real
for n being Nat holds
( r - (1 / (n + 1)) < r & r < r + (1 / (n + 1)) )
proof end;

Lm4: for seq being Real_Sequence
for f1, f2 being PartFunc of REAL , REAL
for X being Subset of REAL st rng seq c= (dom (f1 + f2)) /\ X holds
( rng seq c= dom (f1 + f2) & rng seq c= X & dom (f1 + f2) = (dom f1) /\ (dom f2) & rng seq c= (dom f1) /\ X & rng seq c= (dom f2) /\ X )
proof end;

theorem Th1: :: LIMFUNC2:1  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for r being Real
for seq being Real_Sequence st seq is convergent & r < lim seq holds
ex n being Nat st
for k being Nat st n <= k holds
r < seq . k
proof end;

theorem Th2: :: LIMFUNC2:2  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for r being Real
for seq being Real_Sequence st seq is convergent & lim seq < r holds
ex n being Nat st
for k being Nat st n <= k holds
seq . k < r
proof end;

Lm5: for x0 being Real
for seq being Real_Sequence
for f being PartFunc of REAL , REAL st ( for g1 being Real ex r being Real st
( x0 < r & ( for r1 being Real st r1 < r & x0 < r1 & r1 in dom f holds
f . r1 < g1 ) ) ) & seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (right_open_halfline x0) holds
f * seq is divergent_to-infty
proof end;

theorem Th3: :: LIMFUNC2:3  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for r2, r1 being Real
for f being PartFunc of REAL , REAL st 0 < r2 & ].(r1 - r2),r1.[ c= dom f holds
for r being Real st r < r1 holds
ex g being Real st
( r < g & g < r1 & g in dom f )
proof end;

theorem Th4: :: LIMFUNC2:4  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for r2, r1 being Real
for f being PartFunc of REAL , REAL st 0 < r2 & ].r1,(r1 + r2).[ c= dom f holds
for r being Real st r1 < r holds
ex g being Real st
( g < r & r1 < g & g in dom f )
proof end;

theorem Th5: :: LIMFUNC2:5  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for seq being Real_Sequence
for f being PartFunc of REAL , REAL st ( for n being Nat holds
( x0 - (1 / (n + 1)) < seq . n & seq . n < x0 & seq . n in dom f ) ) holds
( seq is convergent & lim seq = x0 & rng seq c= dom f & rng seq c= (dom f) /\ (left_open_halfline x0) )
proof end;

theorem Th6: :: LIMFUNC2:6  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for seq being Real_Sequence
for f being PartFunc of REAL , REAL st ( for n being Nat holds
( x0 < seq . n & seq . n < x0 + (1 / (n + 1)) & seq . n in dom f ) ) holds
( seq is convergent & lim seq = x0 & rng seq c= dom f & rng seq c= (dom f) /\ (right_open_halfline x0) )
proof end;

definition
let f be PartFunc of REAL , REAL ;
let x0 be Real;
pred f is_left_convergent_in x0 means :Def1: :: LIMFUNC2:def 1
( ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f ) ) & ex g being Real st
for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (left_open_halfline x0) holds
( f * seq is convergent & lim (f * seq) = g ) );
pred f is_left_divergent_to+infty_in x0 means :Def2: :: LIMFUNC2:def 2
( ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f ) ) & ( for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (left_open_halfline x0) holds
f * seq is divergent_to+infty ) );
pred f is_left_divergent_to-infty_in x0 means :Def3: :: LIMFUNC2:def 3
( ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f ) ) & ( for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (left_open_halfline x0) holds
f * seq is divergent_to-infty ) );
pred f is_right_convergent_in x0 means :Def4: :: LIMFUNC2:def 4
( ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f ) ) & ex g being Real st
for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (right_open_halfline x0) holds
( f * seq is convergent & lim (f * seq) = g ) );
pred f is_right_divergent_to+infty_in x0 means :Def5: :: LIMFUNC2:def 5
( ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f ) ) & ( for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (right_open_halfline x0) holds
f * seq is divergent_to+infty ) );
pred f is_right_divergent_to-infty_in x0 means :Def6: :: LIMFUNC2:def 6
( ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f ) ) & ( for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (right_open_halfline x0) holds
f * seq is divergent_to-infty ) );
end;

:: deftheorem Def1 defines is_left_convergent_in LIMFUNC2:def 1 :
for f being PartFunc of REAL , REAL
for x0 being Real holds
( f is_left_convergent_in x0 iff ( ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f ) ) & ex g being Real st
for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (left_open_halfline x0) holds
( f * seq is convergent & lim (f * seq) = g ) ) );

:: deftheorem Def2 defines is_left_divergent_to+infty_in LIMFUNC2:def 2 :
for f being PartFunc of REAL , REAL
for x0 being Real holds
( f is_left_divergent_to+infty_in x0 iff ( ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f ) ) & ( for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (left_open_halfline x0) holds
f * seq is divergent_to+infty ) ) );

:: deftheorem Def3 defines is_left_divergent_to-infty_in LIMFUNC2:def 3 :
for f being PartFunc of REAL , REAL
for x0 being Real holds
( f is_left_divergent_to-infty_in x0 iff ( ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f ) ) & ( for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (left_open_halfline x0) holds
f * seq is divergent_to-infty ) ) );

:: deftheorem Def4 defines is_right_convergent_in LIMFUNC2:def 4 :
for f being PartFunc of REAL , REAL
for x0 being Real holds
( f is_right_convergent_in x0 iff ( ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f ) ) & ex g being Real st
for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (right_open_halfline x0) holds
( f * seq is convergent & lim (f * seq) = g ) ) );

:: deftheorem Def5 defines is_right_divergent_to+infty_in LIMFUNC2:def 5 :
for f being PartFunc of REAL , REAL
for x0 being Real holds
( f is_right_divergent_to+infty_in x0 iff ( ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f ) ) & ( for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (right_open_halfline x0) holds
f * seq is divergent_to+infty ) ) );

:: deftheorem Def6 defines is_right_divergent_to-infty_in LIMFUNC2:def 6 :
for f being PartFunc of REAL , REAL
for x0 being Real holds
( f is_right_divergent_to-infty_in x0 iff ( ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f ) ) & ( for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (right_open_halfline x0) holds
f * seq is divergent_to-infty ) ) );

theorem :: LIMFUNC2:7  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
canceled;

theorem :: LIMFUNC2:8  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
canceled;

theorem :: LIMFUNC2:9  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
canceled;

theorem :: LIMFUNC2:10  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
canceled;

theorem :: LIMFUNC2:11  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
canceled;

theorem :: LIMFUNC2:12  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
canceled;

theorem :: LIMFUNC2:13  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL holds
( f is_left_convergent_in x0 iff ( ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f ) ) & ex g being Real st
for g1 being Real st 0 < g1 holds
ex r being Real st
( r < x0 & ( for r1 being Real st r < r1 & r1 < x0 & r1 in dom f holds
abs ((f . r1) - g) < g1 ) ) ) )
proof end;

theorem :: LIMFUNC2:14  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL holds
( f is_left_divergent_to+infty_in x0 iff ( ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f ) ) & ( for g1 being Real ex r being Real st
( r < x0 & ( for r1 being Real st r < r1 & r1 < x0 & r1 in dom f holds
g1 < f . r1 ) ) ) ) )
proof end;

theorem :: LIMFUNC2:15  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL holds
( f is_left_divergent_to-infty_in x0 iff ( ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f ) ) & ( for g1 being Real ex r being Real st
( r < x0 & ( for r1 being Real st r < r1 & r1 < x0 & r1 in dom f holds
f . r1 < g1 ) ) ) ) )
proof end;

theorem :: LIMFUNC2:16  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL holds
( f is_right_convergent_in x0 iff ( ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f ) ) & ex g being Real st
for g1 being Real st 0 < g1 holds
ex r being Real st
( x0 < r & ( for r1 being Real st r1 < r & x0 < r1 & r1 in dom f holds
abs ((f . r1) - g) < g1 ) ) ) )
proof end;

theorem :: LIMFUNC2:17  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL holds
( f is_right_divergent_to+infty_in x0 iff ( ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f ) ) & ( for g1 being Real ex r being Real st
( x0 < r & ( for r1 being Real st r1 < r & x0 < r1 & r1 in dom f holds
g1 < f . r1 ) ) ) ) )
proof end;

theorem :: LIMFUNC2:18  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL holds
( f is_right_divergent_to-infty_in x0 iff ( ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f ) ) & ( for g1 being Real ex r being Real st
( x0 < r & ( for r1 being Real st r1 < r & x0 < r1 & r1 in dom f holds
f . r1 < g1 ) ) ) ) )
proof end;

theorem :: LIMFUNC2:19  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_left_divergent_to+infty_in x0 & f2 is_left_divergent_to+infty_in x0 & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in (dom f1) /\ (dom f2) ) ) holds
( f1 + f2 is_left_divergent_to+infty_in x0 & f1 (#) f2 is_left_divergent_to+infty_in x0 )
proof end;

theorem :: LIMFUNC2:20  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_left_divergent_to-infty_in x0 & f2 is_left_divergent_to-infty_in x0 & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in (dom f1) /\ (dom f2) ) ) holds
( f1 + f2 is_left_divergent_to-infty_in x0 & f1 (#) f2 is_left_divergent_to+infty_in x0 )
proof end;

theorem :: LIMFUNC2:21  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_right_divergent_to+infty_in x0 & f2 is_right_divergent_to+infty_in x0 & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in (dom f1) /\ (dom f2) ) ) holds
( f1 + f2 is_right_divergent_to+infty_in x0 & f1 (#) f2 is_right_divergent_to+infty_in x0 )
proof end;

theorem :: LIMFUNC2:22  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_right_divergent_to-infty_in x0 & f2 is_right_divergent_to-infty_in x0 & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in (dom f1) /\ (dom f2) ) ) holds
( f1 + f2 is_right_divergent_to-infty_in x0 & f1 (#) f2 is_right_divergent_to+infty_in x0 )
proof end;

theorem :: LIMFUNC2:23  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_left_divergent_to+infty_in x0 & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom (f1 + f2) ) ) & ex r being Real st
( 0 < r & f2 is_bounded_below_on ].(x0 - r),x0.[ ) holds
f1 + f2 is_left_divergent_to+infty_in x0
proof end;

theorem :: LIMFUNC2:24  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_left_divergent_to+infty_in x0 & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom (f1 (#) f2) ) ) & ex r, r1 being Real st
( 0 < r & 0 < r1 & ( for g being Real st g in (dom f2) /\ ].(x0 - r),x0.[ holds
r1 <= f2 . g ) ) holds
f1 (#) f2 is_left_divergent_to+infty_in x0
proof end;

theorem :: LIMFUNC2:25  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_right_divergent_to+infty_in x0 & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom (f1 + f2) ) ) & ex r being Real st
( 0 < r & f2 is_bounded_below_on ].x0,(x0 + r).[ ) holds
f1 + f2 is_right_divergent_to+infty_in x0
proof end;

theorem :: LIMFUNC2:26  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_right_divergent_to+infty_in x0 & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom (f1 (#) f2) ) ) & ex r, r1 being Real st
( 0 < r & 0 < r1 & ( for g being Real st g in (dom f2) /\ ].x0,(x0 + r).[ holds
r1 <= f2 . g ) ) holds
f1 (#) f2 is_right_divergent_to+infty_in x0
proof end;

theorem :: LIMFUNC2:27  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0, r being Real
for f being PartFunc of REAL , REAL holds
( ( f is_left_divergent_to+infty_in x0 & r > 0 implies r (#) f is_left_divergent_to+infty_in x0 ) & ( f is_left_divergent_to+infty_in x0 & r < 0 implies r (#) f is_left_divergent_to-infty_in x0 ) & ( f is_left_divergent_to-infty_in x0 & r > 0 implies r (#) f is_left_divergent_to-infty_in x0 ) & ( f is_left_divergent_to-infty_in x0 & r < 0 implies r (#) f is_left_divergent_to+infty_in x0 ) )
proof end;

theorem :: LIMFUNC2:28  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0, r being Real
for f being PartFunc of REAL , REAL holds
( ( f is_right_divergent_to+infty_in x0 & r > 0 implies r (#) f is_right_divergent_to+infty_in x0 ) & ( f is_right_divergent_to+infty_in x0 & r < 0 implies r (#) f is_right_divergent_to-infty_in x0 ) & ( f is_right_divergent_to-infty_in x0 & r > 0 implies r (#) f is_right_divergent_to-infty_in x0 ) & ( f is_right_divergent_to-infty_in x0 & r < 0 implies r (#) f is_right_divergent_to+infty_in x0 ) )
proof end;

theorem :: LIMFUNC2:29  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st ( f is_left_divergent_to+infty_in x0 or f is_left_divergent_to-infty_in x0 ) holds
abs f is_left_divergent_to+infty_in x0
proof end;

theorem :: LIMFUNC2:30  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st ( f is_right_divergent_to+infty_in x0 or f is_right_divergent_to-infty_in x0 ) holds
abs f is_right_divergent_to+infty_in x0
proof end;

theorem Th31: :: LIMFUNC2:31  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st ex r being Real st
( 0 < r & f is_non_decreasing_on ].(x0 - r),x0.[ & not f is_bounded_above_on ].(x0 - r),x0.[ ) & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f ) ) holds
f is_left_divergent_to+infty_in x0
proof end;

theorem :: LIMFUNC2:32  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st ex r being Real st
( 0 < r & f is_increasing_on ].(x0 - r),x0.[ & not f is_bounded_above_on ].(x0 - r),x0.[ ) & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f ) ) holds
f is_left_divergent_to+infty_in x0
proof end;

theorem Th33: :: LIMFUNC2:33  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st ex r being Real st
( 0 < r & f is_non_increasing_on ].(x0 - r),x0.[ & not f is_bounded_below_on ].(x0 - r),x0.[ ) & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f ) ) holds
f is_left_divergent_to-infty_in x0
proof end;

theorem :: LIMFUNC2:34  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st ex r being Real st
( 0 < r & f is_decreasing_on ].(x0 - r),x0.[ & not f is_bounded_below_on ].(x0 - r),x0.[ ) & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f ) ) holds
f is_left_divergent_to-infty_in x0
proof end;

theorem Th35: :: LIMFUNC2:35  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st ex r being Real st
( 0 < r & f is_non_increasing_on ].x0,(x0 + r).[ & not f is_bounded_above_on ].x0,(x0 + r).[ ) & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f ) ) holds
f is_right_divergent_to+infty_in x0
proof end;

theorem :: LIMFUNC2:36  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st ex r being Real st
( 0 < r & f is_decreasing_on ].x0,(x0 + r).[ & not f is_bounded_above_on ].x0,(x0 + r).[ ) & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f ) ) holds
f is_right_divergent_to+infty_in x0
proof end;

theorem Th37: :: LIMFUNC2:37  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st ex r being Real st
( 0 < r & f is_non_decreasing_on ].x0,(x0 + r).[ & not f is_bounded_below_on ].x0,(x0 + r).[ ) & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f ) ) holds
f is_right_divergent_to-infty_in x0
proof end;

theorem :: LIMFUNC2:38  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st ex r being Real st
( 0 < r & f is_increasing_on ].x0,(x0 + r).[ & not f is_bounded_below_on ].x0,(x0 + r).[ ) & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f ) ) holds
f is_right_divergent_to-infty_in x0
proof end;

theorem Th39: :: LIMFUNC2:39  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f being PartFunc of REAL , REAL st f1 is_left_divergent_to+infty_in x0 & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f ) ) & ex r being Real st
( 0 < r & (dom f) /\ ].(x0 - r),x0.[ c= (dom f1) /\ ].(x0 - r),x0.[ & ( for g being Real st g in (dom f) /\ ].(x0 - r),x0.[ holds
f1 . g <= f . g ) ) holds
f is_left_divergent_to+infty_in x0
proof end;

theorem Th40: :: LIMFUNC2:40  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f being PartFunc of REAL , REAL st f1 is_left_divergent_to-infty_in x0 & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f ) ) & ex r being Real st
( 0 < r & (dom f) /\ ].(x0 - r),x0.[ c= (dom f1) /\ ].(x0 - r),x0.[ & ( for g being Real st g in (dom f) /\ ].(x0 - r),x0.[ holds
f . g <= f1 . g ) ) holds
f is_left_divergent_to-infty_in x0
proof end;

theorem Th41: :: LIMFUNC2:41  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f being PartFunc of REAL , REAL st f1 is_right_divergent_to+infty_in x0 & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f ) ) & ex r being Real st
( 0 < r & (dom f) /\ ].x0,(x0 + r).[ c= (dom f1) /\ ].x0,(x0 + r).[ & ( for g being Real st g in (dom f) /\ ].x0,(x0 + r).[ holds
f1 . g <= f . g ) ) holds
f is_right_divergent_to+infty_in x0
proof end;

theorem Th42: :: LIMFUNC2:42  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f being PartFunc of REAL , REAL st f1 is_right_divergent_to-infty_in x0 & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f ) ) & ex r being Real st
( 0 < r & (dom f) /\ ].x0,(x0 + r).[ c= (dom f1) /\ ].x0,(x0 + r).[ & ( for g being Real st g in (dom f) /\ ].x0,(x0 + r).[ holds
f . g <= f1 . g ) ) holds
f is_right_divergent_to-infty_in x0
proof end;

theorem :: LIMFUNC2:43  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f being PartFunc of REAL , REAL st f1 is_left_divergent_to+infty_in x0 & ex r being Real st
( 0 < r & ].(x0 - r),x0.[ c= (dom f) /\ (dom f1) & ( for g being Real st g in ].(x0 - r),x0.[ holds
f1 . g <= f . g ) ) holds
f is_left_divergent_to+infty_in x0
proof end;

theorem :: LIMFUNC2:44  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f being PartFunc of REAL , REAL st f1 is_left_divergent_to-infty_in x0 & ex r being Real st
( 0 < r & ].(x0 - r),x0.[ c= (dom f) /\ (dom f1) & ( for g being Real st g in ].(x0 - r),x0.[ holds
f . g <= f1 . g ) ) holds
f is_left_divergent_to-infty_in x0
proof end;

theorem :: LIMFUNC2:45  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f being PartFunc of REAL , REAL st f1 is_right_divergent_to+infty_in x0 & ex r being Real st
( 0 < r & ].x0,(x0 + r).[ c= (dom f) /\ (dom f1) & ( for g being Real st g in ].x0,(x0 + r).[ holds
f1 . g <= f . g ) ) holds
f is_right_divergent_to+infty_in x0
proof end;

theorem :: LIMFUNC2:46  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f being PartFunc of REAL , REAL st f1 is_right_divergent_to-infty_in x0 & ex r being Real st
( 0 < r & ].x0,(x0 + r).[ c= (dom f) /\ (dom f1) & ( for g being Real st g in ].x0,(x0 + r).[ holds
f . g <= f1 . g ) ) holds
f is_right_divergent_to-infty_in x0
proof end;

definition
let f be PartFunc of REAL , REAL ;
let x0 be Real;
assume A1: f is_left_convergent_in x0 ;
func lim_left f,x0 -> Real means :Def7: :: LIMFUNC2:def 7
for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (left_open_halfline x0) holds
( f * seq is convergent & lim (f * seq) = it );
existence
ex b1 being Real st
for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (left_open_halfline x0) holds
( f * seq is convergent & lim (f * seq) = b1 )
by A1, Def1;
uniqueness
for b1, b2 being Real st ( for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (left_open_halfline x0) holds
( f * seq is convergent & lim (f * seq) = b1 ) ) & ( for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (left_open_halfline x0) holds
( f * seq is convergent & lim (f * seq) = b2 ) ) holds
b1 = b2
proof end;
end;

:: deftheorem Def7 defines lim_left LIMFUNC2:def 7 :
for f being PartFunc of REAL , REAL
for x0 being Real st f is_left_convergent_in x0 holds
for b3 being Real holds
( b3 = lim_left f,x0 iff for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (left_open_halfline x0) holds
( f * seq is convergent & lim (f * seq) = b3 ) );

definition
let f be PartFunc of REAL , REAL ;
let x0 be Real;
assume A1: f is_right_convergent_in x0 ;
func lim_right f,x0 -> Real means :Def8: :: LIMFUNC2:def 8
for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (right_open_halfline x0) holds
( f * seq is convergent & lim (f * seq) = it );
existence
ex b1 being Real st
for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (right_open_halfline x0) holds
( f * seq is convergent & lim (f * seq) = b1 )
by A1, Def4;
uniqueness
for b1, b2 being Real st ( for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (right_open_halfline x0) holds
( f * seq is convergent & lim (f * seq) = b1 ) ) & ( for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (right_open_halfline x0) holds
( f * seq is convergent & lim (f * seq) = b2 ) ) holds
b1 = b2
proof end;
end;

:: deftheorem Def8 defines lim_right LIMFUNC2:def 8 :
for f being PartFunc of REAL , REAL
for x0 being Real st f is_right_convergent_in x0 holds
for b3 being Real holds
( b3 = lim_right f,x0 iff for seq being Real_Sequence st seq is convergent & lim seq = x0 & rng seq c= (dom f) /\ (right_open_halfline x0) holds
( f * seq is convergent & lim (f * seq) = b3 ) );

theorem :: LIMFUNC2:47  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
canceled;

theorem :: LIMFUNC2:48  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
canceled;

theorem :: LIMFUNC2:49  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0, g being Real
for f being PartFunc of REAL , REAL st f is_left_convergent_in x0 holds
( lim_left f,x0 = g iff for g1 being Real st 0 < g1 holds
ex r being Real st
( r < x0 & ( for r1 being Real st r < r1 & r1 < x0 & r1 in dom f holds
abs ((f . r1) - g) < g1 ) ) )
proof end;

theorem :: LIMFUNC2:50  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0, g being Real
for f being PartFunc of REAL , REAL st f is_right_convergent_in x0 holds
( lim_right f,x0 = g iff for g1 being Real st 0 < g1 holds
ex r being Real st
( x0 < r & ( for r1 being Real st r1 < r & x0 < r1 & r1 in dom f holds
abs ((f . r1) - g) < g1 ) ) )
proof end;

theorem Th51: :: LIMFUNC2:51  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0, r being Real
for f being PartFunc of REAL , REAL st f is_left_convergent_in x0 holds
( r (#) f is_left_convergent_in x0 & lim_left (r (#) f),x0 = r * (lim_left f,x0) )
proof end;

theorem Th52: :: LIMFUNC2:52  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st f is_left_convergent_in x0 holds
( - f is_left_convergent_in x0 & lim_left (- f),x0 = - (lim_left f,x0) )
proof end;

theorem Th53: :: LIMFUNC2:53  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom (f1 + f2) ) ) holds
( f1 + f2 is_left_convergent_in x0 & lim_left (f1 + f2),x0 = (lim_left f1,x0) + (lim_left f2,x0) )
proof end;

theorem :: LIMFUNC2:54  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom (f1 - f2) ) ) holds
( f1 - f2 is_left_convergent_in x0 & lim_left (f1 - f2),x0 = (lim_left f1,x0) - (lim_left f2,x0) )
proof end;

theorem :: LIMFUNC2:55  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st f is_left_convergent_in x0 & f " {0} = {} & lim_left f,x0 <> 0 holds
( f ^ is_left_convergent_in x0 & lim_left (f ^ ),x0 = (lim_left f,x0) " )
proof end;

theorem :: LIMFUNC2:56  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st f is_left_convergent_in x0 holds
( abs f is_left_convergent_in x0 & lim_left (abs f),x0 = abs (lim_left f,x0) )
proof end;

theorem Th57: :: LIMFUNC2:57  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st f is_left_convergent_in x0 & lim_left f,x0 <> 0 & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f & f . g <> 0 ) ) holds
( f ^ is_left_convergent_in x0 & lim_left (f ^ ),x0 = (lim_left f,x0) " )
proof end;

theorem Th58: :: LIMFUNC2:58  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom (f1 (#) f2) ) ) holds
( f1 (#) f2 is_left_convergent_in x0 & lim_left (f1 (#) f2),x0 = (lim_left f1,x0) * (lim_left f2,x0) )
proof end;

theorem :: LIMFUNC2:59  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & lim_left f2,x0 <> 0 & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom (f1 / f2) ) ) holds
( f1 / f2 is_left_convergent_in x0 & lim_left (f1 / f2),x0 = (lim_left f1,x0) / (lim_left f2,x0) )
proof end;

theorem Th60: :: LIMFUNC2:60  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0, r being Real
for f being PartFunc of REAL , REAL st f is_right_convergent_in x0 holds
( r (#) f is_right_convergent_in x0 & lim_right (r (#) f),x0 = r * (lim_right f,x0) )
proof end;

theorem Th61: :: LIMFUNC2:61  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st f is_right_convergent_in x0 holds
( - f is_right_convergent_in x0 & lim_right (- f),x0 = - (lim_right f,x0) )
proof end;

theorem Th62: :: LIMFUNC2:62  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom (f1 + f2) ) ) holds
( f1 + f2 is_right_convergent_in x0 & lim_right (f1 + f2),x0 = (lim_right f1,x0) + (lim_right f2,x0) )
proof end;

theorem :: LIMFUNC2:63  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom (f1 - f2) ) ) holds
( f1 - f2 is_right_convergent_in x0 & lim_right (f1 - f2),x0 = (lim_right f1,x0) - (lim_right f2,x0) )
proof end;

theorem :: LIMFUNC2:64  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st f is_right_convergent_in x0 & f " {0} = {} & lim_right f,x0 <> 0 holds
( f ^ is_right_convergent_in x0 & lim_right (f ^ ),x0 = (lim_right f,x0) " )
proof end;

theorem :: LIMFUNC2:65  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st f is_right_convergent_in x0 holds
( abs f is_right_convergent_in x0 & lim_right (abs f),x0 = abs (lim_right f,x0) )
proof end;

theorem Th66: :: LIMFUNC2:66  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st f is_right_convergent_in x0 & lim_right f,x0 <> 0 & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f & f . g <> 0 ) ) holds
( f ^ is_right_convergent_in x0 & lim_right (f ^ ),x0 = (lim_right f,x0) " )
proof end;

theorem Th67: :: LIMFUNC2:67  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom (f1 (#) f2) ) ) holds
( f1 (#) f2 is_right_convergent_in x0 & lim_right (f1 (#) f2),x0 = (lim_right f1,x0) * (lim_right f2,x0) )
proof end;

theorem :: LIMFUNC2:68  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & lim_right f2,x0 <> 0 & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom (f1 / f2) ) ) holds
( f1 / f2 is_right_convergent_in x0 & lim_right (f1 / f2),x0 = (lim_right f1,x0) / (lim_right f2,x0) )
proof end;

theorem :: LIMFUNC2:69  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_left_convergent_in x0 & lim_left f1,x0 = 0 & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom (f1 (#) f2) ) ) & ex r being Real st
( 0 < r & f2 is_bounded_on ].(x0 - r),x0.[ ) holds
( f1 (#) f2 is_left_convergent_in x0 & lim_left (f1 (#) f2),x0 = 0 )
proof end;

theorem :: LIMFUNC2:70  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_right_convergent_in x0 & lim_right f1,x0 = 0 & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom (f1 (#) f2) ) ) & ex r being Real st
( 0 < r & f2 is_bounded_on ].x0,(x0 + r).[ ) holds
( f1 (#) f2 is_right_convergent_in x0 & lim_right (f1 (#) f2),x0 = 0 )
proof end;

theorem Th71: :: LIMFUNC2:71  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2, f being PartFunc of REAL , REAL st f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & lim_left f1,x0 = lim_left f2,x0 & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f ) ) & ex r being Real st
( 0 < r & ( for g being Real st g in (dom f) /\ ].(x0 - r),x0.[ holds
( f1 . g <= f . g & f . g <= f2 . g ) ) & ( ( (dom f1) /\ ].(x0 - r),x0.[ c= (dom f2) /\ ].(x0 - r),x0.[ & (dom f) /\ ].(x0 - r),x0.[ c= (dom f1) /\ ].(x0 - r),x0.[ ) or ( (dom f2) /\ ].(x0 - r),x0.[ c= (dom f1) /\ ].(x0 - r),x0.[ & (dom f) /\ ].(x0 - r),x0.[ c= (dom f2) /\ ].(x0 - r),x0.[ ) ) ) holds
( f is_left_convergent_in x0 & lim_left f,x0 = lim_left f1,x0 )
proof end;

theorem :: LIMFUNC2:72  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2, f being PartFunc of REAL , REAL st f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & lim_left f1,x0 = lim_left f2,x0 & ex r being Real st
( 0 < r & ].(x0 - r),x0.[ c= ((dom f1) /\ (dom f2)) /\ (dom f) & ( for g being Real st g in ].(x0 - r),x0.[ holds
( f1 . g <= f . g & f . g <= f2 . g ) ) ) holds
( f is_left_convergent_in x0 & lim_left f,x0 = lim_left f1,x0 )
proof end;

theorem Th73: :: LIMFUNC2:73  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2, f being PartFunc of REAL , REAL st f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & lim_right f1,x0 = lim_right f2,x0 & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f ) ) & ex r being Real st
( 0 < r & ( for g being Real st g in (dom f) /\ ].x0,(x0 + r).[ holds
( f1 . g <= f . g & f . g <= f2 . g ) ) & ( ( (dom f1) /\ ].x0,(x0 + r).[ c= (dom f2) /\ ].x0,(x0 + r).[ & (dom f) /\ ].x0,(x0 + r).[ c= (dom f1) /\ ].x0,(x0 + r).[ ) or ( (dom f2) /\ ].x0,(x0 + r).[ c= (dom f1) /\ ].x0,(x0 + r).[ & (dom f) /\ ].x0,(x0 + r).[ c= (dom f2) /\ ].x0,(x0 + r).[ ) ) ) holds
( f is_right_convergent_in x0 & lim_right f,x0 = lim_right f1,x0 )
proof end;

theorem :: LIMFUNC2:74  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2, f being PartFunc of REAL , REAL st f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & lim_right f1,x0 = lim_right f2,x0 & ex r being Real st
( 0 < r & ].x0,(x0 + r).[ c= ((dom f1) /\ (dom f2)) /\ (dom f) & ( for g being Real st g in ].x0,(x0 + r).[ holds
( f1 . g <= f . g & f . g <= f2 . g ) ) ) holds
( f is_right_convergent_in x0 & lim_right f,x0 = lim_right f1,x0 )
proof end;

theorem :: LIMFUNC2:75  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & ex r being Real st
( 0 < r & ( ( (dom f1) /\ ].(x0 - r),x0.[ c= (dom f2) /\ ].(x0 - r),x0.[ & ( for g being Real st g in (dom f1) /\ ].(x0 - r),x0.[ holds
f1 . g <= f2 . g ) ) or ( (dom f2) /\ ].(x0 - r),x0.[ c= (dom f1) /\ ].(x0 - r),x0.[ & ( for g being Real st g in (dom f2) /\ ].(x0 - r),x0.[ holds
f1 . g <= f2 . g ) ) ) ) holds
lim_left f1,x0 <= lim_left f2,x0
proof end;

theorem :: LIMFUNC2:76  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f1, f2 being PartFunc of REAL , REAL st f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & ex r being Real st
( 0 < r & ( ( (dom f1) /\ ].x0,(x0 + r).[ c= (dom f2) /\ ].x0,(x0 + r).[ & ( for g being Real st g in (dom f1) /\ ].x0,(x0 + r).[ holds
f1 . g <= f2 . g ) ) or ( (dom f2) /\ ].x0,(x0 + r).[ c= (dom f1) /\ ].x0,(x0 + r).[ & ( for g being Real st g in (dom f2) /\ ].x0,(x0 + r).[ holds
f1 . g <= f2 . g ) ) ) ) holds
lim_right f1,x0 <= lim_right f2,x0
proof end;

theorem :: LIMFUNC2:77  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st ( f is_left_divergent_to+infty_in x0 or f is_left_divergent_to-infty_in x0 ) & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f & f . g <> 0 ) ) holds
( f ^ is_left_convergent_in x0 & lim_left (f ^ ),x0 = 0 )
proof end;

theorem :: LIMFUNC2:78  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st ( f is_right_divergent_to+infty_in x0 or f is_right_divergent_to-infty_in x0 ) & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f & f . g <> 0 ) ) holds
( f ^ is_right_convergent_in x0 & lim_right (f ^ ),x0 = 0 )
proof end;

theorem :: LIMFUNC2:79  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st f is_left_convergent_in x0 & lim_left f,x0 = 0 & ex r being Real st
( 0 < r & ( for g being Real st g in (dom f) /\ ].(x0 - r),x0.[ holds
0 < f . g ) ) holds
f ^ is_left_divergent_to+infty_in x0
proof end;

theorem :: LIMFUNC2:80  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st f is_left_convergent_in x0 & lim_left f,x0 = 0 & ex r being Real st
( 0 < r & ( for g being Real st g in (dom f) /\ ].(x0 - r),x0.[ holds
f . g < 0 ) ) holds
f ^ is_left_divergent_to-infty_in x0
proof end;

theorem :: LIMFUNC2:81  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st f is_right_convergent_in x0 & lim_right f,x0 = 0 & ex r being Real st
( 0 < r & ( for g being Real st g in (dom f) /\ ].x0,(x0 + r).[ holds
0 < f . g ) ) holds
f ^ is_right_divergent_to+infty_in x0
proof end;

theorem :: LIMFUNC2:82  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st f is_right_convergent_in x0 & lim_right f,x0 = 0 & ex r being Real st
( 0 < r & ( for g being Real st g in (dom f) /\ ].x0,(x0 + r).[ holds
f . g < 0 ) ) holds
f ^ is_right_divergent_to-infty_in x0
proof end;

theorem :: LIMFUNC2:83  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st f is_left_convergent_in x0 & lim_left f,x0 = 0 & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f & f . g <> 0 ) ) & ex r being Real st
( 0 < r & ( for g being Real st g in (dom f) /\ ].(x0 - r),x0.[ holds
0 <= f . g ) ) holds
f ^ is_left_divergent_to+infty_in x0
proof end;

theorem :: LIMFUNC2:84  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st f is_left_convergent_in x0 & lim_left f,x0 = 0 & ( for r being Real st r < x0 holds
ex g being Real st
( r < g & g < x0 & g in dom f & f . g <> 0 ) ) & ex r being Real st
( 0 < r & ( for g being Real st g in (dom f) /\ ].(x0 - r),x0.[ holds
f . g <= 0 ) ) holds
f ^ is_left_divergent_to-infty_in x0
proof end;

theorem :: LIMFUNC2:85  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st f is_right_convergent_in x0 & lim_right f,x0 = 0 & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f & f . g <> 0 ) ) & ex r being Real st
( 0 < r & ( for g being Real st g in (dom f) /\ ].x0,(x0 + r).[ holds
0 <= f . g ) ) holds
f ^ is_right_divergent_to+infty_in x0
proof end;

theorem :: LIMFUNC2:86  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for x0 being Real
for f being PartFunc of REAL , REAL st f is_right_convergent_in x0 & lim_right f,x0 = 0 & ( for r being Real st x0 < r holds
ex g being Real st
( g < r & x0 < g & g in dom f & f . g <> 0 ) ) & ex r being Real st
( 0 < r & ( for g being Real st g in (dom f) /\ ].x0,(x0 + r).[ holds
f . g <= 0 ) ) holds
f ^ is_right_divergent_to-infty_in x0
proof end;