TSTP Solution File: SYO462^4 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SYO462^4 : TPTP v7.5.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox2/benchmark/theBenchmark.p

% Computer : n007.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Tue Mar 29 00:51:40 EDT 2022

% Result   : Timeout 296.38s 296.71s
% Output   : None 
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----No solution output by system
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.04/0.12  % Problem    : SYO462^4 : TPTP v7.5.0. Released v4.0.0.
% 0.04/0.12  % Command    : python CASC.py /export/starexec/sandbox2/benchmark/theBenchmark.p
% 0.12/0.33  % Computer   : n007.cluster.edu
% 0.12/0.33  % Model      : x86_64 x86_64
% 0.12/0.33  % CPUModel   : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % RAMPerCPU  : 8042.1875MB
% 0.12/0.33  % OS         : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit   : 300
% 0.12/0.33  % DateTime   : Sat Mar 12 23:27:31 EST 2022
% 0.12/0.33  % CPUTime    : 
% 0.12/0.34  ModuleCmd_Load.c(213):ERROR:105: Unable to locate a modulefile for 'python/python27'
% 0.12/0.34  Python 2.7.5
% 0.38/0.62  Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox2/benchmark/', '/export/starexec/sandbox2/benchmark/']
% 0.38/0.62  Failed to open /home/cristobal/cocATP/CASC/TPTP/Axioms/LCL013^0.ax, trying next directory
% 0.38/0.62  FOF formula (<kernel.Constant object at 0x2acc820aad40>, <kernel.Type object at 0x2acc820aabd8>) of role type named mu_type
% 0.38/0.62  Using role type
% 0.38/0.62  Declaring mu:Type
% 0.38/0.62  FOF formula (<kernel.Constant object at 0x2acc820aae18>, <kernel.DependentProduct object at 0x2acc820aad40>) of role type named meq_ind_type
% 0.38/0.62  Using role type
% 0.38/0.62  Declaring meq_ind:(mu->(mu->(fofType->Prop)))
% 0.38/0.62  FOF formula (((eq (mu->(mu->(fofType->Prop)))) meq_ind) (fun (X:mu) (Y:mu) (W:fofType)=> (((eq mu) X) Y))) of role definition named meq_ind
% 0.38/0.62  A new definition: (((eq (mu->(mu->(fofType->Prop)))) meq_ind) (fun (X:mu) (Y:mu) (W:fofType)=> (((eq mu) X) Y)))
% 0.38/0.62  Defined: meq_ind:=(fun (X:mu) (Y:mu) (W:fofType)=> (((eq mu) X) Y))
% 0.38/0.62  FOF formula (<kernel.Constant object at 0x2acc820aad40>, <kernel.DependentProduct object at 0x2acc820aacf8>) of role type named meq_prop_type
% 0.38/0.62  Using role type
% 0.38/0.62  Declaring meq_prop:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% 0.38/0.62  FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) meq_prop) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W)))) of role definition named meq_prop
% 0.38/0.62  A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) meq_prop) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W))))
% 0.38/0.62  Defined: meq_prop:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W)))
% 0.38/0.62  FOF formula (<kernel.Constant object at 0x2acc820aad88>, <kernel.DependentProduct object at 0x2acc820aae18>) of role type named mnot_type
% 0.38/0.62  Using role type
% 0.38/0.62  Declaring mnot:((fofType->Prop)->(fofType->Prop))
% 0.38/0.62  FOF formula (((eq ((fofType->Prop)->(fofType->Prop))) mnot) (fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False))) of role definition named mnot
% 0.38/0.62  A new definition: (((eq ((fofType->Prop)->(fofType->Prop))) mnot) (fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False)))
% 0.38/0.62  Defined: mnot:=(fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False))
% 0.38/0.62  FOF formula (<kernel.Constant object at 0x2acc820aae18>, <kernel.DependentProduct object at 0x2acc820aa4d0>) of role type named mor_type
% 0.38/0.62  Using role type
% 0.38/0.62  Declaring mor:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% 0.38/0.62  FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W)))) of role definition named mor
% 0.38/0.62  A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W))))
% 0.38/0.62  Defined: mor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W)))
% 0.38/0.62  FOF formula (<kernel.Constant object at 0x2acc820aa4d0>, <kernel.DependentProduct object at 0x2acc820aa7e8>) of role type named mand_type
% 0.38/0.62  Using role type
% 0.38/0.62  Declaring mand:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% 0.38/0.62  FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mand) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi))))) of role definition named mand
% 0.38/0.62  A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mand) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi)))))
% 0.38/0.62  Defined: mand:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi))))
% 0.38/0.62  FOF formula (<kernel.Constant object at 0x2acc820aa7e8>, <kernel.DependentProduct object at 0x2acc820aa560>) of role type named mimplies_type
% 0.38/0.62  Using role type
% 0.38/0.62  Declaring mimplies:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% 0.38/0.62  FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplies) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi))) of role definition named mimplies
% 0.38/0.62  A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplies) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi)))
% 0.38/0.63  Defined: mimplies:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi))
% 0.38/0.63  FOF formula (<kernel.Constant object at 0x2acc820aa560>, <kernel.DependentProduct object at 0x2acc820aa998>) of role type named mimplied_type
% 0.38/0.63  Using role type
% 0.38/0.63  Declaring mimplied:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% 0.38/0.63  FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplied) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi))) of role definition named mimplied
% 0.38/0.63  A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplied) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi)))
% 0.38/0.63  Defined: mimplied:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi))
% 0.38/0.63  FOF formula (<kernel.Constant object at 0x2acc820aa998>, <kernel.DependentProduct object at 0x2acc820aae18>) of role type named mequiv_type
% 0.38/0.63  Using role type
% 0.38/0.63  Declaring mequiv:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% 0.38/0.63  FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mequiv) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi)))) of role definition named mequiv
% 0.38/0.63  A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mequiv) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi))))
% 0.38/0.63  Defined: mequiv:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi)))
% 0.38/0.63  FOF formula (<kernel.Constant object at 0x2acc820aae18>, <kernel.DependentProduct object at 0x2acc820aa4d0>) of role type named mxor_type
% 0.38/0.63  Using role type
% 0.38/0.63  Declaring mxor:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% 0.38/0.63  FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mxor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi)))) of role definition named mxor
% 0.38/0.63  A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mxor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi))))
% 0.38/0.63  Defined: mxor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi)))
% 0.38/0.63  FOF formula (<kernel.Constant object at 0x2acc820aad40>, <kernel.DependentProduct object at 0x2acc820aa998>) of role type named mforall_ind_type
% 0.38/0.63  Using role type
% 0.38/0.63  Declaring mforall_ind:((mu->(fofType->Prop))->(fofType->Prop))
% 0.38/0.63  FOF formula (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mforall_ind) (fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), ((Phi X) W)))) of role definition named mforall_ind
% 0.38/0.63  A new definition: (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mforall_ind) (fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), ((Phi X) W))))
% 0.38/0.63  Defined: mforall_ind:=(fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), ((Phi X) W)))
% 0.38/0.63  FOF formula (<kernel.Constant object at 0x2acc820aa998>, <kernel.DependentProduct object at 0x2acc820aa098>) of role type named mforall_prop_type
% 0.38/0.63  Using role type
% 0.38/0.63  Declaring mforall_prop:(((fofType->Prop)->(fofType->Prop))->(fofType->Prop))
% 0.38/0.63  FOF formula (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mforall_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W)))) of role definition named mforall_prop
% 0.38/0.63  A new definition: (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mforall_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W))))
% 0.38/0.63  Defined: mforall_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W)))
% 0.38/0.63  FOF formula (<kernel.Constant object at 0x2acc820aa098>, <kernel.DependentProduct object at 0x2acc820aa050>) of role type named mexists_ind_type
% 0.38/0.63  Using role type
% 0.38/0.63  Declaring mexists_ind:((mu->(fofType->Prop))->(fofType->Prop))
% 0.38/0.63  FOF formula (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mexists_ind) (fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X))))))) of role definition named mexists_ind
% 0.47/0.63  A new definition: (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mexists_ind) (fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X)))))))
% 0.47/0.63  Defined: mexists_ind:=(fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X))))))
% 0.47/0.63  FOF formula (<kernel.Constant object at 0x2acc820aa050>, <kernel.DependentProduct object at 0x2acc820aa128>) of role type named mexists_prop_type
% 0.47/0.63  Using role type
% 0.47/0.63  Declaring mexists_prop:(((fofType->Prop)->(fofType->Prop))->(fofType->Prop))
% 0.47/0.63  FOF formula (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mexists_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P))))))) of role definition named mexists_prop
% 0.47/0.63  A new definition: (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mexists_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P)))))))
% 0.47/0.63  Defined: mexists_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P))))))
% 0.47/0.63  FOF formula (<kernel.Constant object at 0x2acc820aa128>, <kernel.DependentProduct object at 0x2acc820aab48>) of role type named mtrue_type
% 0.47/0.63  Using role type
% 0.47/0.63  Declaring mtrue:(fofType->Prop)
% 0.47/0.63  FOF formula (((eq (fofType->Prop)) mtrue) (fun (W:fofType)=> True)) of role definition named mtrue
% 0.47/0.63  A new definition: (((eq (fofType->Prop)) mtrue) (fun (W:fofType)=> True))
% 0.47/0.63  Defined: mtrue:=(fun (W:fofType)=> True)
% 0.47/0.63  FOF formula (<kernel.Constant object at 0x2acc820aab48>, <kernel.DependentProduct object at 0x2acc820aabd8>) of role type named mfalse_type
% 0.47/0.63  Using role type
% 0.47/0.63  Declaring mfalse:(fofType->Prop)
% 0.47/0.63  FOF formula (((eq (fofType->Prop)) mfalse) (mnot mtrue)) of role definition named mfalse
% 0.47/0.63  A new definition: (((eq (fofType->Prop)) mfalse) (mnot mtrue))
% 0.47/0.63  Defined: mfalse:=(mnot mtrue)
% 0.47/0.63  FOF formula (<kernel.Constant object at 0x2acc820aa050>, <kernel.DependentProduct object at 0x2acc820aa440>) of role type named mbox_type
% 0.47/0.63  Using role type
% 0.47/0.63  Declaring mbox:((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))
% 0.47/0.63  FOF formula (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mbox) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V))))) of role definition named mbox
% 0.47/0.63  A new definition: (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mbox) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V)))))
% 0.47/0.63  Defined: mbox:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V))))
% 0.47/0.63  FOF formula (<kernel.Constant object at 0x2acc89b789e0>, <kernel.DependentProduct object at 0x2acc820aa440>) of role type named mdia_type
% 0.47/0.63  Using role type
% 0.47/0.63  Declaring mdia:((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))
% 0.47/0.63  FOF formula (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mdia) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi))))) of role definition named mdia
% 0.47/0.63  A new definition: (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mdia) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi)))))
% 0.47/0.63  Defined: mdia:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi))))
% 0.47/0.63  FOF formula (<kernel.Constant object at 0x2acc820aa050>, <kernel.DependentProduct object at 0x2acc820aabd8>) of role type named mreflexive_type
% 0.47/0.63  Using role type
% 0.47/0.63  Declaring mreflexive:((fofType->(fofType->Prop))->Prop)
% 0.47/0.63  FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mreflexive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S)))) of role definition named mreflexive
% 0.47/0.63  A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mreflexive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S))))
% 0.47/0.63  Defined: mreflexive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S)))
% 0.47/0.64  FOF formula (<kernel.Constant object at 0x2acc820aabd8>, <kernel.DependentProduct object at 0x2acc820aa128>) of role type named msymmetric_type
% 0.47/0.64  Using role type
% 0.47/0.64  Declaring msymmetric:((fofType->(fofType->Prop))->Prop)
% 0.47/0.64  FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) msymmetric) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S))))) of role definition named msymmetric
% 0.47/0.64  A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) msymmetric) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S)))))
% 0.47/0.64  Defined: msymmetric:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S))))
% 0.47/0.64  FOF formula (<kernel.Constant object at 0x1673e18>, <kernel.DependentProduct object at 0x2acc820aae18>) of role type named mserial_type
% 0.47/0.64  Using role type
% 0.47/0.64  Declaring mserial:((fofType->(fofType->Prop))->Prop)
% 0.47/0.64  FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mserial) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T)))))) of role definition named mserial
% 0.47/0.64  A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mserial) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T))))))
% 0.47/0.64  Defined: mserial:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T)))))
% 0.47/0.64  FOF formula (<kernel.Constant object at 0x1673ef0>, <kernel.DependentProduct object at 0x2acc820aabd8>) of role type named mtransitive_type
% 0.47/0.64  Using role type
% 0.47/0.64  Declaring mtransitive:((fofType->(fofType->Prop))->Prop)
% 0.47/0.64  FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mtransitive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U))))) of role definition named mtransitive
% 0.47/0.64  A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mtransitive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U)))))
% 0.47/0.64  Defined: mtransitive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U))))
% 0.47/0.64  FOF formula (<kernel.Constant object at 0x1673ef0>, <kernel.DependentProduct object at 0x2acc820aa3f8>) of role type named meuclidean_type
% 0.47/0.64  Using role type
% 0.47/0.64  Declaring meuclidean:((fofType->(fofType->Prop))->Prop)
% 0.47/0.64  FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) meuclidean) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U))))) of role definition named meuclidean
% 0.47/0.64  A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) meuclidean) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U)))))
% 0.47/0.64  Defined: meuclidean:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U))))
% 0.47/0.64  FOF formula (<kernel.Constant object at 0x1673cf8>, <kernel.DependentProduct object at 0x2acc820aa3f8>) of role type named mpartially_functional_type
% 0.47/0.64  Using role type
% 0.47/0.64  Declaring mpartially_functional:((fofType->(fofType->Prop))->Prop)
% 0.47/0.64  FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mpartially_functional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U))))) of role definition named mpartially_functional
% 0.47/0.64  A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mpartially_functional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U)))))
% 0.47/0.64  Defined: mpartially_functional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U))))
% 0.47/0.64  FOF formula (<kernel.Constant object at 0x2acc820aaab8>, <kernel.DependentProduct object at 0x2acc820aa3f8>) of role type named mfunctional_type
% 0.47/0.64  Using role type
% 0.47/0.64  Declaring mfunctional:((fofType->(fofType->Prop))->Prop)
% 0.47/0.65  FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mfunctional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U))))))))) of role definition named mfunctional
% 0.47/0.65  A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mfunctional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U)))))))))
% 0.47/0.65  Defined: mfunctional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U))))))))
% 0.47/0.65  FOF formula (<kernel.Constant object at 0x2acc820aa050>, <kernel.DependentProduct object at 0x167cd88>) of role type named mweakly_dense_type
% 0.47/0.65  Using role type
% 0.47/0.65  Declaring mweakly_dense:((fofType->(fofType->Prop))->Prop)
% 0.47/0.65  FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_dense) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T))))))))) of role definition named mweakly_dense
% 0.47/0.65  A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_dense) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T)))))))))
% 0.47/0.65  Defined: mweakly_dense:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T))))))))
% 0.47/0.65  FOF formula (<kernel.Constant object at 0x2acc820aab48>, <kernel.DependentProduct object at 0x167c710>) of role type named mweakly_connected_type
% 0.47/0.65  Using role type
% 0.47/0.65  Declaring mweakly_connected:((fofType->(fofType->Prop))->Prop)
% 0.47/0.65  FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_connected) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T)))))) of role definition named mweakly_connected
% 0.47/0.66  A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_connected) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T))))))
% 0.47/0.66  Defined: mweakly_connected:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T)))))
% 0.47/0.66  FOF formula (<kernel.Constant object at 0x2acc820aab48>, <kernel.DependentProduct object at 0x167c998>) of role type named mweakly_directed_type
% 0.47/0.66  Using role type
% 0.47/0.66  Declaring mweakly_directed:((fofType->(fofType->Prop))->Prop)
% 0.47/0.66  FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_directed) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V)))))))) of role definition named mweakly_directed
% 0.47/0.66  A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_directed) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V))))))))
% 0.47/0.66  Defined: mweakly_directed:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V)))))))
% 0.47/0.66  FOF formula (<kernel.Constant object at 0x167c8c0>, <kernel.DependentProduct object at 0x167c950>) of role type named mvalid_type
% 0.47/0.66  Using role type
% 0.47/0.66  Declaring mvalid:((fofType->Prop)->Prop)
% 0.47/0.66  FOF formula (((eq ((fofType->Prop)->Prop)) mvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W)))) of role definition named mvalid
% 0.47/0.66  A new definition: (((eq ((fofType->Prop)->Prop)) mvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W))))
% 0.47/0.66  Defined: mvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W)))
% 0.47/0.66  FOF formula (<kernel.Constant object at 0x167c908>, <kernel.DependentProduct object at 0x2acc820a8200>) of role type named minvalid_type
% 0.47/0.66  Using role type
% 0.47/0.66  Declaring minvalid:((fofType->Prop)->Prop)
% 0.47/0.66  FOF formula (((eq ((fofType->Prop)->Prop)) minvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False)))) of role definition named minvalid
% 0.47/0.66  A new definition: (((eq ((fofType->Prop)->Prop)) minvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False))))
% 0.47/0.66  Defined: minvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False)))
% 0.47/0.66  FOF formula (<kernel.Constant object at 0x167c908>, <kernel.DependentProduct object at 0x2acc820a8560>) of role type named msatisfiable_type
% 0.47/0.66  Using role type
% 0.47/0.66  Declaring msatisfiable:((fofType->Prop)->Prop)
% 0.47/0.66  FOF formula (((eq ((fofType->Prop)->Prop)) msatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W))))) of role definition named msatisfiable
% 0.47/0.66  A new definition: (((eq ((fofType->Prop)->Prop)) msatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W)))))
% 0.47/0.66  Defined: msatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W))))
% 0.47/0.66  FOF formula (<kernel.Constant object at 0x2acc820a83f8>, <kernel.DependentProduct object at 0x2acc820a8638>) of role type named mcountersatisfiable_type
% 0.47/0.66  Using role type
% 0.47/0.66  Declaring mcountersatisfiable:((fofType->Prop)->Prop)
% 0.47/0.66  FOF formula (((eq ((fofType->Prop)->Prop)) mcountersatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False))))) of role definition named mcountersatisfiable
% 0.47/0.66  A new definition: (((eq ((fofType->Prop)->Prop)) mcountersatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False)))))
% 0.47/0.66  Defined: mcountersatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False))))
% 0.47/0.66  Failed to open /home/cristobal/cocATP/CASC/TPTP/Axioms/LCL013^4.ax, trying next directory
% 0.47/0.66  FOF formula (<kernel.Constant object at 0x1673f80>, <kernel.DependentProduct object at 0x2acc820aaf80>) of role type named rel_b_type
% 0.47/0.66  Using role type
% 0.47/0.66  Declaring rel_b:(fofType->(fofType->Prop))
% 0.47/0.66  FOF formula (<kernel.Constant object at 0x1673c68>, <kernel.DependentProduct object at 0x2acc820aaef0>) of role type named mbox_b_type
% 0.47/0.66  Using role type
% 0.47/0.66  Declaring mbox_b:((fofType->Prop)->(fofType->Prop))
% 0.47/0.66  FOF formula (((eq ((fofType->Prop)->(fofType->Prop))) mbox_b) (fun (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((rel_b W) V)->False)) (Phi V))))) of role definition named mbox_b
% 0.47/0.66  A new definition: (((eq ((fofType->Prop)->(fofType->Prop))) mbox_b) (fun (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((rel_b W) V)->False)) (Phi V)))))
% 0.47/0.66  Defined: mbox_b:=(fun (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((rel_b W) V)->False)) (Phi V))))
% 0.47/0.66  FOF formula (<kernel.Constant object at 0x1673fc8>, <kernel.DependentProduct object at 0x2acc820aaf80>) of role type named mdia_b_type
% 0.47/0.66  Using role type
% 0.47/0.66  Declaring mdia_b:((fofType->Prop)->(fofType->Prop))
% 0.47/0.66  FOF formula (((eq ((fofType->Prop)->(fofType->Prop))) mdia_b) (fun (Phi:(fofType->Prop))=> (mnot (mbox_b (mnot Phi))))) of role definition named mdia_b
% 0.47/0.66  A new definition: (((eq ((fofType->Prop)->(fofType->Prop))) mdia_b) (fun (Phi:(fofType->Prop))=> (mnot (mbox_b (mnot Phi)))))
% 0.47/0.66  Defined: mdia_b:=(fun (Phi:(fofType->Prop))=> (mnot (mbox_b (mnot Phi))))
% 0.47/0.66  FOF formula (mreflexive rel_b) of role axiom named a1
% 0.47/0.66  A new axiom: (mreflexive rel_b)
% 0.47/0.66  FOF formula (msymmetric rel_b) of role axiom named a2
% 0.47/0.66  A new axiom: (msymmetric rel_b)
% 0.47/0.66  FOF formula (<kernel.Constant object at 0x1679c20>, <kernel.DependentProduct object at 0x2acc89b7b1b8>) of role type named p_type
% 0.47/0.66  Using role type
% 0.47/0.66  Declaring p:(fofType->Prop)
% 0.47/0.66  FOF formula (<kernel.Constant object at 0x1679950>, <kernel.DependentProduct object at 0x2acc89b7b758>) of role type named q_type
% 0.47/0.66  Using role type
% 0.47/0.66  Declaring q:(fofType->Prop)
% 0.47/0.66  FOF formula (mvalid ((mimplies (mbox_b ((mequiv p) q))) ((mequiv (mbox_b p)) (mbox_b q)))) of role conjecture named prove
% 0.47/0.66  Conjecture to prove = (mvalid ((mimplies (mbox_b ((mequiv p) q))) ((mequiv (mbox_b p)) (mbox_b q)))):Prop
% 0.47/0.67  Parameter mu_DUMMY:mu.
% 0.47/0.67  Parameter fofType_DUMMY:fofType.
% 0.47/0.67  We need to prove ['(mvalid ((mimplies (mbox_b ((mequiv p) q))) ((mequiv (mbox_b p)) (mbox_b q))))']
% 0.47/0.67  Parameter mu:Type.
% 0.47/0.67  Parameter fofType:Type.
% 0.47/0.67  Definition meq_ind:=(fun (X:mu) (Y:mu) (W:fofType)=> (((eq mu) X) Y)):(mu->(mu->(fofType->Prop))).
% 0.47/0.67  Definition meq_prop:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% 0.47/0.67  Definition mnot:=(fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False)):((fofType->Prop)->(fofType->Prop)).
% 0.47/0.67  Definition mor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% 0.47/0.67  Definition mand:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi)))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% 0.47/0.67  Definition mimplies:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi)):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% 0.47/0.67  Definition mimplied:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi)):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% 0.47/0.67  Definition mequiv:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% 0.47/0.67  Definition mxor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% 0.47/0.67  Definition mforall_ind:=(fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), ((Phi X) W))):((mu->(fofType->Prop))->(fofType->Prop)).
% 0.47/0.67  Definition mforall_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W))):(((fofType->Prop)->(fofType->Prop))->(fofType->Prop)).
% 0.47/0.67  Definition mexists_ind:=(fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X)))))):((mu->(fofType->Prop))->(fofType->Prop)).
% 0.47/0.67  Definition mexists_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P)))))):(((fofType->Prop)->(fofType->Prop))->(fofType->Prop)).
% 0.47/0.67  Definition mtrue:=(fun (W:fofType)=> True):(fofType->Prop).
% 0.47/0.67  Definition mfalse:=(mnot mtrue):(fofType->Prop).
% 0.47/0.67  Definition mbox:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V)))):((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop))).
% 0.47/0.67  Definition mdia:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi)))):((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop))).
% 0.47/0.67  Definition mreflexive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S))):((fofType->(fofType->Prop))->Prop).
% 0.47/0.67  Definition msymmetric:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S)))):((fofType->(fofType->Prop))->Prop).
% 0.47/0.67  Definition mserial:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T))))):((fofType->(fofType->Prop))->Prop).
% 0.47/0.67  Definition mtransitive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U)))):((fofType->(fofType->Prop))->Prop).
% 0.47/0.67  Definition meuclidean:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U)))):((fofType->(fofType->Prop))->Prop).
% 0.47/0.67  Definition mpartially_functional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U)))):((fofType->(fofType->Prop))->Prop).
% 0.47/0.67  Definition mfunctional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U)))))))):((fofType->(fofType->Prop))->Prop).
% 0.47/0.67  Definition mweakly_dense:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T)))))))):((fofType->(fofType->Prop))->Prop).
% 5.69/5.88  Definition mweakly_connected:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T))))):((fofType->(fofType->Prop))->Prop).
% 5.69/5.88  Definition mweakly_directed:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V))))))):((fofType->(fofType->Prop))->Prop).
% 5.69/5.88  Definition mvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W))):((fofType->Prop)->Prop).
% 5.69/5.88  Definition minvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False))):((fofType->Prop)->Prop).
% 5.69/5.88  Definition msatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W)))):((fofType->Prop)->Prop).
% 5.69/5.88  Definition mcountersatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False)))):((fofType->Prop)->Prop).
% 5.69/5.88  Parameter rel_b:(fofType->(fofType->Prop)).
% 5.69/5.88  Definition mbox_b:=(fun (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((rel_b W) V)->False)) (Phi V)))):((fofType->Prop)->(fofType->Prop)).
% 5.69/5.88  Definition mdia_b:=(fun (Phi:(fofType->Prop))=> (mnot (mbox_b (mnot Phi)))):((fofType->Prop)->(fofType->Prop)).
% 5.69/5.88  Axiom a1:(mreflexive rel_b).
% 5.69/5.88  Axiom a2:(msymmetric rel_b).
% 5.69/5.88  Parameter p:(fofType->Prop).
% 5.69/5.88  Parameter q:(fofType->Prop).
% 5.69/5.88  Trying to prove (mvalid ((mimplies (mbox_b ((mequiv p) q))) ((mequiv (mbox_b p)) (mbox_b q))))
% 5.69/5.88  Found a10:=(a1 W):((rel_b W) W)
% 5.69/5.88  Found (a1 W) as proof of ((rel_b W) V)
% 5.69/5.88  Found (a1 W) as proof of ((rel_b W) V)
% 5.69/5.88  Found (a1 W) as proof of ((rel_b W) V)
% 5.69/5.88  Found (x1 (a1 W)) as proof of False
% 5.69/5.88  Found (fun (x1:(((rel_b W) V)->False))=> (x1 (a1 W))) as proof of False
% 5.69/5.88  Found (fun (x1:(((rel_b W) V)->False))=> (x1 (a1 W))) as proof of ((((rel_b W) V)->False)->False)
% 5.69/5.88  Found a10:=(a1 S):((rel_b S) S)
% 5.69/5.88  Found (a1 S) as proof of ((rel_b S) V)
% 5.69/5.88  Found (a1 S) as proof of ((rel_b S) V)
% 5.69/5.88  Found (a1 S) as proof of ((rel_b S) V)
% 5.69/5.88  Found (x1 (a1 S)) as proof of False
% 5.69/5.88  Found (fun (x1:(((rel_b S) V)->False))=> (x1 (a1 S))) as proof of False
% 5.69/5.88  Found (fun (x1:(((rel_b S) V)->False))=> (x1 (a1 S))) as proof of ((((rel_b S) V)->False)->False)
% 5.69/5.88  Found a10:=(a1 W):((rel_b W) W)
% 5.69/5.88  Found (a1 W) as proof of ((rel_b W) V)
% 5.69/5.88  Found (a1 W) as proof of ((rel_b W) V)
% 5.69/5.88  Found (a1 W) as proof of ((rel_b W) V)
% 5.69/5.88  Found (x1 (a1 W)) as proof of False
% 5.69/5.88  Found (fun (x1:(((rel_b W) V)->False))=> (x1 (a1 W))) as proof of False
% 5.69/5.88  Found (fun (x1:(((rel_b W) V)->False))=> (x1 (a1 W))) as proof of ((((rel_b W) V)->False)->False)
% 5.69/5.88  Found a10:=(a1 S):((rel_b S) S)
% 5.69/5.88  Found (a1 S) as proof of ((rel_b S) V)
% 5.69/5.88  Found (a1 S) as proof of ((rel_b S) V)
% 5.69/5.88  Found (a1 S) as proof of ((rel_b S) V)
% 5.69/5.88  Found (x1 (a1 S)) as proof of False
% 5.69/5.88  Found (fun (x1:(((rel_b S) V)->False))=> (x1 (a1 S))) as proof of False
% 5.69/5.88  Found (fun (x1:(((rel_b S) V)->False))=> (x1 (a1 S))) as proof of ((((rel_b S) V)->False)->False)
% 5.69/5.88  Found a10:=(a1 W):((rel_b W) W)
% 5.69/5.88  Found (a1 W) as proof of ((rel_b W) V0)
% 5.69/5.88  Found (a1 W) as proof of ((rel_b W) V0)
% 5.69/5.88  Found (a1 W) as proof of ((rel_b W) V0)
% 5.69/5.88  Found (x3 (a1 W)) as proof of False
% 5.69/5.88  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of False
% 5.69/5.88  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 5.69/5.88  Found a10:=(a1 W):((rel_b W) W)
% 5.69/5.88  Found (a1 W) as proof of ((rel_b W) V0)
% 5.69/5.88  Found (a1 W) as proof of ((rel_b W) V0)
% 5.69/5.88  Found (a1 W) as proof of ((rel_b W) V0)
% 5.69/5.88  Found (x3 (a1 W)) as proof of False
% 5.69/5.88  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of False
% 5.69/5.88  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 5.69/5.88  Found a10:=(a1 S):((rel_b S) S)
% 5.69/5.88  Found (a1 S) as proof of ((rel_b S) V0)
% 5.69/5.88  Found (a1 S) as proof of ((rel_b S) V0)
% 5.69/5.88  Found (a1 S) as proof of ((rel_b S) V0)
% 5.69/5.88  Found (x3 (a1 S)) as proof of False
% 5.69/5.88  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of False
% 5.69/5.88  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 11.38/11.61  Found a10:=(a1 S):((rel_b S) S)
% 11.38/11.61  Found (a1 S) as proof of ((rel_b S) V0)
% 11.38/11.61  Found (a1 S) as proof of ((rel_b S) V0)
% 11.38/11.61  Found (a1 S) as proof of ((rel_b S) V0)
% 11.38/11.61  Found (x3 (a1 S)) as proof of False
% 11.38/11.61  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of False
% 11.38/11.61  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 11.38/11.61  Found a10:=(a1 W):((rel_b W) W)
% 11.38/11.61  Found (a1 W) as proof of ((rel_b W) V)
% 11.38/11.61  Found (a1 W) as proof of ((rel_b W) V)
% 11.38/11.61  Found (a1 W) as proof of ((rel_b W) V)
% 11.38/11.61  Found (x1 (a1 W)) as proof of False
% 11.38/11.61  Found (fun (x1:(((rel_b W) V)->False))=> (x1 (a1 W))) as proof of False
% 11.38/11.61  Found (fun (x1:(((rel_b W) V)->False))=> (x1 (a1 W))) as proof of ((((rel_b W) V)->False)->False)
% 11.38/11.61  Found a10:=(a1 W):((rel_b W) W)
% 11.38/11.61  Found (a1 W) as proof of ((rel_b W) V)
% 11.38/11.61  Found (a1 W) as proof of ((rel_b W) V)
% 11.38/11.61  Found (a1 W) as proof of ((rel_b W) V)
% 11.38/11.61  Found (x1 (a1 W)) as proof of False
% 11.38/11.61  Found (fun (x1:(((rel_b W) V)->False))=> (x1 (a1 W))) as proof of False
% 11.38/11.61  Found (fun (x1:(((rel_b W) V)->False))=> (x1 (a1 W))) as proof of ((((rel_b W) V)->False)->False)
% 11.38/11.61  Found a10:=(a1 S):((rel_b S) S)
% 11.38/11.61  Found (a1 S) as proof of ((rel_b S) V)
% 11.38/11.61  Found (a1 S) as proof of ((rel_b S) V)
% 11.38/11.61  Found (a1 S) as proof of ((rel_b S) V)
% 11.38/11.61  Found (x1 (a1 S)) as proof of False
% 11.38/11.61  Found (fun (x1:(((rel_b S) V)->False))=> (x1 (a1 S))) as proof of False
% 11.38/11.61  Found (fun (x1:(((rel_b S) V)->False))=> (x1 (a1 S))) as proof of ((((rel_b S) V)->False)->False)
% 11.38/11.61  Found a10:=(a1 W):((rel_b W) W)
% 11.38/11.61  Found (a1 W) as proof of ((rel_b W) V0)
% 11.38/11.61  Found (a1 W) as proof of ((rel_b W) V0)
% 11.38/11.61  Found (a1 W) as proof of ((rel_b W) V0)
% 11.38/11.61  Found (x3 (a1 W)) as proof of False
% 11.38/11.61  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of False
% 11.38/11.61  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 11.38/11.61  Found a10:=(a1 S):((rel_b S) S)
% 11.38/11.61  Found (a1 S) as proof of ((rel_b S) V)
% 11.38/11.61  Found (a1 S) as proof of ((rel_b S) V)
% 11.38/11.61  Found (a1 S) as proof of ((rel_b S) V)
% 11.38/11.61  Found (x1 (a1 S)) as proof of False
% 11.38/11.61  Found (fun (x1:(((rel_b S) V)->False))=> (x1 (a1 S))) as proof of False
% 11.38/11.61  Found (fun (x1:(((rel_b S) V)->False))=> (x1 (a1 S))) as proof of ((((rel_b S) V)->False)->False)
% 11.38/11.61  Found a10:=(a1 W):((rel_b W) W)
% 11.38/11.61  Found (a1 W) as proof of ((rel_b W) V0)
% 11.38/11.61  Found (a1 W) as proof of ((rel_b W) V0)
% 11.38/11.61  Found (a1 W) as proof of ((rel_b W) V0)
% 11.38/11.61  Found (x3 (a1 W)) as proof of False
% 11.38/11.61  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of False
% 11.38/11.61  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 11.38/11.61  Found a10:=(a1 W):((rel_b W) W)
% 11.38/11.61  Found (a1 W) as proof of ((rel_b W) V)
% 11.38/11.61  Found (a1 W) as proof of ((rel_b W) V)
% 11.38/11.61  Found (a1 W) as proof of ((rel_b W) V)
% 11.38/11.61  Found (x1 (a1 W)) as proof of False
% 11.38/11.61  Found (fun (x1:(((rel_b W) V)->False))=> (x1 (a1 W))) as proof of False
% 11.38/11.61  Found (fun (x1:(((rel_b W) V)->False))=> (x1 (a1 W))) as proof of ((((rel_b W) V)->False)->False)
% 11.38/11.61  Found a10:=(a1 W):((rel_b W) W)
% 11.38/11.61  Found (a1 W) as proof of ((rel_b W) V)
% 11.38/11.61  Found (a1 W) as proof of ((rel_b W) V)
% 11.38/11.61  Found (a1 W) as proof of ((rel_b W) V)
% 11.38/11.61  Found (x1 (a1 W)) as proof of False
% 11.38/11.61  Found (fun (x1:(((rel_b W) V)->False))=> (x1 (a1 W))) as proof of False
% 11.38/11.61  Found (fun (x1:(((rel_b W) V)->False))=> (x1 (a1 W))) as proof of ((((rel_b W) V)->False)->False)
% 11.38/11.61  Found a10:=(a1 S):((rel_b S) S)
% 11.38/11.61  Found (a1 S) as proof of ((rel_b S) V0)
% 11.38/11.61  Found (a1 S) as proof of ((rel_b S) V0)
% 11.38/11.61  Found (a1 S) as proof of ((rel_b S) V0)
% 11.38/11.61  Found (x3 (a1 S)) as proof of False
% 11.38/11.61  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of False
% 11.38/11.61  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 11.38/11.61  Found a10:=(a1 S):((rel_b S) S)
% 11.38/11.61  Found (a1 S) as proof of ((rel_b S) V0)
% 11.38/11.61  Found (a1 S) as proof of ((rel_b S) V0)
% 11.38/11.61  Found (a1 S) as proof of ((rel_b S) V0)
% 11.38/11.61  Found (x3 (a1 S)) as proof of False
% 11.38/11.61  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of False
% 11.38/11.61  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 11.38/11.61  Found a10:=(a1 S):((rel_b S) S)
% 11.38/11.61  Found (a1 S) as proof of ((rel_b S) V)
% 11.38/11.61  Found (a1 S) as proof of ((rel_b S) V)
% 11.38/11.61  Found (a1 S) as proof of ((rel_b S) V)
% 28.16/28.35  Found (x1 (a1 S)) as proof of False
% 28.16/28.35  Found (fun (x1:(((rel_b S) V)->False))=> (x1 (a1 S))) as proof of False
% 28.16/28.35  Found (fun (x1:(((rel_b S) V)->False))=> (x1 (a1 S))) as proof of ((((rel_b S) V)->False)->False)
% 28.16/28.35  Found a10:=(a1 S):((rel_b S) S)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V)
% 28.16/28.35  Found (x1 (a1 S)) as proof of False
% 28.16/28.35  Found (fun (x1:(((rel_b S) V)->False))=> (x1 (a1 S))) as proof of False
% 28.16/28.35  Found (fun (x1:(((rel_b S) V)->False))=> (x1 (a1 S))) as proof of ((((rel_b S) V)->False)->False)
% 28.16/28.35  Found a10:=(a1 W):((rel_b W) W)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found a10:=(a1 W):((rel_b W) W)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found a10:=(a1 S):((rel_b S) S)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V0)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V0)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V0)
% 28.16/28.35  Found a10:=(a1 S):((rel_b S) S)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V0)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V0)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V0)
% 28.16/28.35  Found a10:=(a1 W):((rel_b W) W)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found a10:=(a1 W):((rel_b W) W)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found a10:=(a1 S):((rel_b S) S)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V0)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V0)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V0)
% 28.16/28.35  Found a10:=(a1 S):((rel_b S) S)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V0)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V0)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V0)
% 28.16/28.35  Found a10:=(a1 W):((rel_b W) W)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (x3 (a1 W)) as proof of False
% 28.16/28.35  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of False
% 28.16/28.35  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 28.16/28.35  Found a10:=(a1 W):((rel_b W) W)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (x3 (a1 W)) as proof of False
% 28.16/28.35  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of False
% 28.16/28.35  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 28.16/28.35  Found a10:=(a1 W):((rel_b W) W)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (x3 (a1 W)) as proof of False
% 28.16/28.35  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of False
% 28.16/28.35  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 28.16/28.35  Found a10:=(a1 W):((rel_b W) W)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V0)
% 28.16/28.35  Found (x3 (a1 W)) as proof of False
% 28.16/28.35  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of False
% 28.16/28.35  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 28.16/28.35  Found a10:=(a1 S):((rel_b S) S)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V0)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V0)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V0)
% 28.16/28.35  Found (x3 (a1 S)) as proof of False
% 28.16/28.35  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of False
% 28.16/28.35  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 28.16/28.35  Found a10:=(a1 S):((rel_b S) S)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V0)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V0)
% 28.16/28.35  Found (a1 S) as proof of ((rel_b S) V0)
% 28.16/28.35  Found (x3 (a1 S)) as proof of False
% 28.16/28.35  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of False
% 28.16/28.35  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 28.16/28.35  Found a10:=(a1 W):((rel_b W) W)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V)
% 28.16/28.35  Found (a1 W) as proof of ((rel_b W) V)
% 28.16/28.35  Found (x1 (a1 W)) as proof of False
% 44.01/44.19  Found (fun (x1:(((rel_b W) V)->False))=> (x1 (a1 W))) as proof of False
% 44.01/44.19  Found (fun (x1:(((rel_b W) V)->False))=> (x1 (a1 W))) as proof of ((((rel_b W) V)->False)->False)
% 44.01/44.19  Found a10:=(a1 S):((rel_b S) S)
% 44.01/44.19  Found (a1 S) as proof of ((rel_b S) V0)
% 44.01/44.19  Found (a1 S) as proof of ((rel_b S) V0)
% 44.01/44.19  Found (a1 S) as proof of ((rel_b S) V0)
% 44.01/44.19  Found (x3 (a1 S)) as proof of False
% 44.01/44.19  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of False
% 44.01/44.19  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 44.01/44.19  Found a10:=(a1 S):((rel_b S) S)
% 44.01/44.19  Found (a1 S) as proof of ((rel_b S) V0)
% 44.01/44.19  Found (a1 S) as proof of ((rel_b S) V0)
% 44.01/44.19  Found (a1 S) as proof of ((rel_b S) V0)
% 44.01/44.19  Found (x3 (a1 S)) as proof of False
% 44.01/44.19  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of False
% 44.01/44.19  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 44.01/44.19  Found a10:=(a1 V0):((rel_b V0) V0)
% 44.01/44.19  Found (a1 V0) as proof of ((rel_b V0) W)
% 44.01/44.19  Found (a1 V0) as proof of ((rel_b V0) W)
% 44.01/44.19  Found (a1 V0) as proof of ((rel_b V0) W)
% 44.01/44.19  Found (a200 (a1 V0)) as proof of ((rel_b W) V0)
% 44.01/44.19  Found ((a20 W) (a1 V0)) as proof of ((rel_b W) V0)
% 44.01/44.19  Found (((a2 V0) W) (a1 V0)) as proof of ((rel_b W) V0)
% 44.01/44.19  Found (((a2 V0) W) (a1 V0)) as proof of ((rel_b W) V0)
% 44.01/44.19  Found a10:=(a1 S):((rel_b S) S)
% 44.01/44.19  Found (a1 S) as proof of ((rel_b S) V)
% 44.01/44.19  Found (a1 S) as proof of ((rel_b S) V)
% 44.01/44.19  Found (a1 S) as proof of ((rel_b S) V)
% 44.01/44.19  Found (x1 (a1 S)) as proof of False
% 44.01/44.19  Found (fun (x1:(((rel_b S) V)->False))=> (x1 (a1 S))) as proof of False
% 44.01/44.19  Found (fun (x1:(((rel_b S) V)->False))=> (x1 (a1 S))) as proof of ((((rel_b S) V)->False)->False)
% 44.01/44.19  Found a10:=(a1 W):((rel_b W) W)
% 44.01/44.19  Found (a1 W) as proof of ((rel_b W) V)
% 44.01/44.19  Found (a1 W) as proof of ((rel_b W) V)
% 44.01/44.19  Found (a1 W) as proof of ((rel_b W) V)
% 44.01/44.19  Found (x2 (a1 W)) as proof of False
% 44.01/44.19  Found (fun (x2:(((rel_b W) V)->False))=> (x2 (a1 W))) as proof of False
% 44.01/44.19  Found (fun (x2:(((rel_b W) V)->False))=> (x2 (a1 W))) as proof of ((((rel_b W) V)->False)->False)
% 44.01/44.19  Found a10:=(a1 W):((rel_b W) W)
% 44.01/44.19  Found (a1 W) as proof of ((rel_b W) V)
% 44.01/44.19  Found (a1 W) as proof of ((rel_b W) V)
% 44.01/44.19  Found (a1 W) as proof of ((rel_b W) V)
% 44.01/44.19  Found (x2 (a1 W)) as proof of False
% 44.01/44.19  Found (fun (x2:(((rel_b W) V)->False))=> (x2 (a1 W))) as proof of False
% 44.01/44.19  Found (fun (x2:(((rel_b W) V)->False))=> (x2 (a1 W))) as proof of ((((rel_b W) V)->False)->False)
% 44.01/44.19  Found a10:=(a1 V0):((rel_b V0) V0)
% 44.01/44.19  Found (a1 V0) as proof of ((rel_b V0) W)
% 44.01/44.19  Found (a1 V0) as proof of ((rel_b V0) W)
% 44.01/44.19  Found (a1 V0) as proof of ((rel_b V0) W)
% 44.01/44.19  Found (a200 (a1 V0)) as proof of ((rel_b W) V0)
% 44.01/44.19  Found ((a20 W) (a1 V0)) as proof of ((rel_b W) V0)
% 44.01/44.19  Found (((a2 V0) W) (a1 V0)) as proof of ((rel_b W) V0)
% 44.01/44.19  Found (((a2 V0) W) (a1 V0)) as proof of ((rel_b W) V0)
% 44.01/44.19  Found a10:=(a1 W):((rel_b W) W)
% 44.01/44.19  Found (a1 W) as proof of ((rel_b W) V0)
% 44.01/44.19  Found (a1 W) as proof of ((rel_b W) V0)
% 44.01/44.19  Found (a1 W) as proof of ((rel_b W) V0)
% 44.01/44.19  Found (x3 (a1 W)) as proof of False
% 44.01/44.19  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of False
% 44.01/44.19  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 44.01/44.19  Found a10:=(a1 W):((rel_b W) W)
% 44.01/44.19  Found (a1 W) as proof of ((rel_b W) V0)
% 44.01/44.19  Found (a1 W) as proof of ((rel_b W) V0)
% 44.01/44.19  Found (a1 W) as proof of ((rel_b W) V0)
% 44.01/44.19  Found (x3 (a1 W)) as proof of False
% 44.01/44.19  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of False
% 44.01/44.19  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 44.01/44.19  Found a10:=(a1 W):((rel_b W) W)
% 44.01/44.19  Found (a1 W) as proof of ((rel_b W) V0)
% 44.01/44.19  Found (a1 W) as proof of ((rel_b W) V0)
% 44.01/44.19  Found (a1 W) as proof of ((rel_b W) V0)
% 44.01/44.19  Found (x3 (a1 W)) as proof of False
% 44.01/44.19  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of False
% 44.01/44.19  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 44.01/44.19  Found a10:=(a1 W):((rel_b W) W)
% 44.01/44.19  Found (a1 W) as proof of ((rel_b W) V0)
% 44.01/44.19  Found (a1 W) as proof of ((rel_b W) V0)
% 44.01/44.19  Found (a1 W) as proof of ((rel_b W) V0)
% 44.01/44.19  Found (x3 (a1 W)) as proof of False
% 44.01/44.19  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of False
% 44.01/44.19  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 60.55/60.74  Found a10:=(a1 W):((rel_b W) W)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found a10:=(a1 W):((rel_b W) W)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found a10:=(a1 W):((rel_b W) W)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V)
% 60.55/60.74  Found (x1 (a1 W)) as proof of False
% 60.55/60.74  Found (fun (x1:(((rel_b W) V)->False))=> (x1 (a1 W))) as proof of False
% 60.55/60.74  Found (fun (x1:(((rel_b W) V)->False))=> (x1 (a1 W))) as proof of ((((rel_b W) V)->False)->False)
% 60.55/60.74  Found a10:=(a1 V0):((rel_b V0) V0)
% 60.55/60.74  Found (a1 V0) as proof of ((rel_b V0) S)
% 60.55/60.74  Found (a1 V0) as proof of ((rel_b V0) S)
% 60.55/60.74  Found (a1 V0) as proof of ((rel_b V0) S)
% 60.55/60.74  Found (a200 (a1 V0)) as proof of ((rel_b S) V0)
% 60.55/60.74  Found ((a20 S) (a1 V0)) as proof of ((rel_b S) V0)
% 60.55/60.74  Found (((a2 V0) S) (a1 V0)) as proof of ((rel_b S) V0)
% 60.55/60.74  Found (((a2 V0) S) (a1 V0)) as proof of ((rel_b S) V0)
% 60.55/60.74  Found a10:=(a1 S):((rel_b S) S)
% 60.55/60.74  Found (a1 S) as proof of ((rel_b S) V)
% 60.55/60.74  Found (a1 S) as proof of ((rel_b S) V)
% 60.55/60.74  Found (a1 S) as proof of ((rel_b S) V)
% 60.55/60.74  Found (x2 (a1 S)) as proof of False
% 60.55/60.74  Found (fun (x2:(((rel_b S) V)->False))=> (x2 (a1 S))) as proof of False
% 60.55/60.74  Found (fun (x2:(((rel_b S) V)->False))=> (x2 (a1 S))) as proof of ((((rel_b S) V)->False)->False)
% 60.55/60.74  Found a10:=(a1 S):((rel_b S) S)
% 60.55/60.74  Found (a1 S) as proof of ((rel_b S) V)
% 60.55/60.74  Found (a1 S) as proof of ((rel_b S) V)
% 60.55/60.74  Found (a1 S) as proof of ((rel_b S) V)
% 60.55/60.74  Found (x2 (a1 S)) as proof of False
% 60.55/60.74  Found (fun (x2:(((rel_b S) V)->False))=> (x2 (a1 S))) as proof of False
% 60.55/60.74  Found (fun (x2:(((rel_b S) V)->False))=> (x2 (a1 S))) as proof of ((((rel_b S) V)->False)->False)
% 60.55/60.74  Found a10:=(a1 W):((rel_b W) W)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found (x4 (a1 W)) as proof of False
% 60.55/60.74  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of False
% 60.55/60.74  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 60.55/60.74  Found a10:=(a1 W):((rel_b W) W)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found (x4 (a1 W)) as proof of False
% 60.55/60.74  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of False
% 60.55/60.74  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 60.55/60.74  Found a10:=(a1 V0):((rel_b V0) V0)
% 60.55/60.74  Found (a1 V0) as proof of ((rel_b V0) S)
% 60.55/60.74  Found (a1 V0) as proof of ((rel_b V0) S)
% 60.55/60.74  Found (a1 V0) as proof of ((rel_b V0) S)
% 60.55/60.74  Found (a200 (a1 V0)) as proof of ((rel_b S) V0)
% 60.55/60.74  Found ((a20 S) (a1 V0)) as proof of ((rel_b S) V0)
% 60.55/60.74  Found (((a2 V0) S) (a1 V0)) as proof of ((rel_b S) V0)
% 60.55/60.74  Found (((a2 V0) S) (a1 V0)) as proof of ((rel_b S) V0)
% 60.55/60.74  Found a10:=(a1 S):((rel_b S) S)
% 60.55/60.74  Found (a1 S) as proof of ((rel_b S) V0)
% 60.55/60.74  Found (a1 S) as proof of ((rel_b S) V0)
% 60.55/60.74  Found (a1 S) as proof of ((rel_b S) V0)
% 60.55/60.74  Found (x3 (a1 S)) as proof of False
% 60.55/60.74  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of False
% 60.55/60.74  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 60.55/60.74  Found a10:=(a1 W):((rel_b W) W)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found (x4 (a1 W)) as proof of False
% 60.55/60.74  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of False
% 60.55/60.74  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 60.55/60.74  Found a10:=(a1 W):((rel_b W) W)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found (x4 (a1 W)) as proof of False
% 60.55/60.74  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of False
% 60.55/60.74  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 60.55/60.74  Found a10:=(a1 W):((rel_b W) W)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 60.55/60.74  Found (a1 W) as proof of ((rel_b W) V0)
% 75.15/75.34  Found (x3 (a1 W)) as proof of False
% 75.15/75.34  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of False
% 75.15/75.34  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies q) p)) V)
% 75.15/75.34  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->((mnot ((mimplies q) p)) V))
% 75.15/75.34  Found a10:=(a1 W):((rel_b W) W)
% 75.15/75.34  Found (a1 W) as proof of ((rel_b W) V0)
% 75.15/75.34  Found (a1 W) as proof of ((rel_b W) V0)
% 75.15/75.34  Found (a1 W) as proof of ((rel_b W) V0)
% 75.15/75.34  Found (x3 (a1 W)) as proof of False
% 75.15/75.34  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of False
% 75.15/75.34  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies p) q)) V)
% 75.15/75.34  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->((mnot ((mimplies p) q)) V))
% 75.15/75.34  Found a10:=(a1 S):((rel_b S) S)
% 75.15/75.34  Found (a1 S) as proof of ((rel_b S) V0)
% 75.15/75.34  Found (a1 S) as proof of ((rel_b S) V0)
% 75.15/75.34  Found (a1 S) as proof of ((rel_b S) V0)
% 75.15/75.34  Found (x3 (a1 S)) as proof of False
% 75.15/75.34  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of False
% 75.15/75.34  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 75.15/75.34  Found a10:=(a1 W):((rel_b W) W)
% 75.15/75.34  Found (a1 W) as proof of ((rel_b W) V0)
% 75.15/75.34  Found (a1 W) as proof of ((rel_b W) V0)
% 75.15/75.34  Found (a1 W) as proof of ((rel_b W) V0)
% 75.15/75.34  Found (x3 (a1 W)) as proof of False
% 75.15/75.34  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of False
% 75.15/75.34  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies q) p)) V)
% 75.15/75.34  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->((mnot ((mimplies q) p)) V))
% 75.15/75.34  Found a10:=(a1 W):((rel_b W) W)
% 75.15/75.34  Found (a1 W) as proof of ((rel_b W) V0)
% 75.15/75.34  Found (a1 W) as proof of ((rel_b W) V0)
% 75.15/75.34  Found (a1 W) as proof of ((rel_b W) V0)
% 75.15/75.34  Found (x3 (a1 W)) as proof of False
% 75.15/75.34  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of False
% 75.15/75.34  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies p) q)) V)
% 75.15/75.34  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->((mnot ((mimplies p) q)) V))
% 75.15/75.34  Found a10:=(a1 S):((rel_b S) S)
% 75.15/75.34  Found (a1 S) as proof of ((rel_b S) V0)
% 75.15/75.34  Found (a1 S) as proof of ((rel_b S) V0)
% 75.15/75.34  Found (a1 S) as proof of ((rel_b S) V0)
% 75.15/75.34  Found a10:=(a1 S):((rel_b S) S)
% 75.15/75.34  Found (a1 S) as proof of ((rel_b S) V0)
% 75.15/75.34  Found (a1 S) as proof of ((rel_b S) V0)
% 75.15/75.34  Found (a1 S) as proof of ((rel_b S) V0)
% 75.15/75.34  Found (x3 (a1 S)) as proof of False
% 75.15/75.34  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of False
% 75.15/75.34  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 75.15/75.34  Found a10:=(a1 W):((rel_b W) W)
% 75.15/75.34  Found (a1 W) as proof of ((rel_b W) V1)
% 75.15/75.34  Found (a1 W) as proof of ((rel_b W) V1)
% 75.15/75.34  Found (a1 W) as proof of ((rel_b W) V1)
% 75.15/75.34  Found (x5 (a1 W)) as proof of False
% 75.15/75.34  Found (fun (x5:(((rel_b W) V1)->False))=> (x5 (a1 W))) as proof of False
% 75.15/75.34  Found (fun (x5:(((rel_b W) V1)->False))=> (x5 (a1 W))) as proof of ((((rel_b W) V1)->False)->False)
% 75.15/75.34  Found a10:=(a1 S):((rel_b S) S)
% 75.15/75.34  Found (a1 S) as proof of ((rel_b S) V0)
% 75.15/75.34  Found (a1 S) as proof of ((rel_b S) V0)
% 75.15/75.34  Found (a1 S) as proof of ((rel_b S) V0)
% 75.15/75.34  Found a10:=(a1 S):((rel_b S) S)
% 75.15/75.34  Found (a1 S) as proof of ((rel_b S) V0)
% 75.15/75.34  Found (a1 S) as proof of ((rel_b S) V0)
% 75.15/75.34  Found (a1 S) as proof of ((rel_b S) V0)
% 75.15/75.34  Found (x3 (a1 S)) as proof of False
% 75.15/75.34  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of False
% 75.15/75.34  Found (fun (x3:(((rel_b S) V0)->False))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 75.15/75.34  Found a10:=(a1 W):((rel_b W) W)
% 75.15/75.34  Found (a1 W) as proof of ((rel_b W) V1)
% 75.15/75.34  Found (a1 W) as proof of ((rel_b W) V1)
% 75.15/75.34  Found (a1 W) as proof of ((rel_b W) V1)
% 75.15/75.34  Found (x5 (a1 W)) as proof of False
% 75.15/75.34  Found (fun (x5:(((rel_b W) V1)->False))=> (x5 (a1 W))) as proof of False
% 75.15/75.34  Found (fun (x5:(((rel_b W) V1)->False))=> (x5 (a1 W))) as proof of ((((rel_b W) V1)->False)->False)
% 85.81/86.02  Found a10:=(a1 W):((rel_b W) W)
% 85.81/86.02  Found (a1 W) as proof of ((rel_b W) V1)
% 85.81/86.02  Found (a1 W) as proof of ((rel_b W) V1)
% 85.81/86.02  Found (a1 W) as proof of ((rel_b W) V1)
% 85.81/86.02  Found (x5 (a1 W)) as proof of False
% 85.81/86.02  Found (fun (x5:(((rel_b W) V1)->False))=> (x5 (a1 W))) as proof of False
% 85.81/86.02  Found (fun (x5:(((rel_b W) V1)->False))=> (x5 (a1 W))) as proof of ((((rel_b W) V1)->False)->False)
% 85.81/86.02  Found a10:=(a1 W):((rel_b W) W)
% 85.81/86.02  Found (a1 W) as proof of ((rel_b W) V1)
% 85.81/86.02  Found (a1 W) as proof of ((rel_b W) V1)
% 85.81/86.02  Found (a1 W) as proof of ((rel_b W) V1)
% 85.81/86.02  Found (x5 (a1 W)) as proof of False
% 85.81/86.02  Found (fun (x5:(((rel_b W) V1)->False))=> (x5 (a1 W))) as proof of False
% 85.81/86.02  Found (fun (x5:(((rel_b W) V1)->False))=> (x5 (a1 W))) as proof of ((((rel_b W) V1)->False)->False)
% 85.81/86.02  Found a10:=(a1 W):((rel_b W) W)
% 85.81/86.02  Found (a1 W) as proof of ((rel_b W) V0)
% 85.81/86.02  Found (a1 W) as proof of ((rel_b W) V0)
% 85.81/86.02  Found (a1 W) as proof of ((rel_b W) V0)
% 85.81/86.02  Found (x3 (a1 W)) as proof of False
% 85.81/86.02  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of False
% 85.81/86.02  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies q) p)) V)
% 85.81/86.02  Found (or_intror00 (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 85.81/86.02  Found ((or_intror0 ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 85.81/86.02  Found (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 85.81/86.02  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 85.81/86.02  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))))) as proof of ((((rel_b W) V0)->False)->((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)))
% 85.81/86.02  Found a10:=(a1 S):((rel_b S) S)
% 85.81/86.02  Found (a1 S) as proof of ((rel_b S) V)
% 85.81/86.02  Found (a1 S) as proof of ((rel_b S) V)
% 85.81/86.02  Found (a1 S) as proof of ((rel_b S) V)
% 85.81/86.02  Found (x1 (a1 S)) as proof of False
% 85.81/86.02  Found (fun (x1:(((rel_b S) V)->False))=> (x1 (a1 S))) as proof of False
% 85.81/86.02  Found (fun (x1:(((rel_b S) V)->False))=> (x1 (a1 S))) as proof of ((((rel_b S) V)->False)->False)
% 85.81/86.02  Found a10:=(a1 S):((rel_b S) S)
% 85.81/86.02  Found (a1 S) as proof of ((rel_b S) V0)
% 85.81/86.02  Found (a1 S) as proof of ((rel_b S) V0)
% 85.81/86.02  Found (a1 S) as proof of ((rel_b S) V0)
% 85.81/86.02  Found (x4 (a1 S)) as proof of False
% 85.81/86.02  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of False
% 85.81/86.02  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 85.81/86.02  Found a10:=(a1 S):((rel_b S) S)
% 85.81/86.02  Found (a1 S) as proof of ((rel_b S) V0)
% 85.81/86.02  Found (a1 S) as proof of ((rel_b S) V0)
% 85.81/86.02  Found (a1 S) as proof of ((rel_b S) V0)
% 85.81/86.02  Found (x4 (a1 S)) as proof of False
% 85.81/86.02  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of False
% 85.81/86.02  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 85.81/86.02  Found a10:=(a1 W):((rel_b W) W)
% 85.81/86.02  Found (a1 W) as proof of ((rel_b W) V0)
% 85.81/86.02  Found (a1 W) as proof of ((rel_b W) V0)
% 85.81/86.02  Found (a1 W) as proof of ((rel_b W) V0)
% 85.81/86.02  Found (x3 (a1 W)) as proof of False
% 85.81/86.02  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of False
% 85.81/86.02  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies p) q)) V)
% 85.81/86.02  Found (or_introl10 (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 85.81/86.02  Found ((or_introl1 ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 85.81/86.02  Found (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 85.81/86.02  Found (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 95.50/95.74  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))))) as proof of (((mor (mnot ((mimplies p) q))) (mnot ((mimplies q) p))) V)
% 95.50/95.74  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))))) as proof of ((((rel_b W) V0)->False)->(((mor (mnot ((mimplies p) q))) (mnot ((mimplies q) p))) V))
% 95.50/95.74  Found a10:=(a1 W):((rel_b W) W)
% 95.50/95.74  Found (a1 W) as proof of ((rel_b W) V0)
% 95.50/95.74  Found (a1 W) as proof of ((rel_b W) V0)
% 95.50/95.74  Found (a1 W) as proof of ((rel_b W) V0)
% 95.50/95.74  Found (x3 (a1 W)) as proof of False
% 95.50/95.74  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of False
% 95.50/95.74  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies q) p)) V)
% 95.50/95.74  Found (or_intror00 (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 95.50/95.74  Found ((or_intror0 ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 95.50/95.74  Found (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 95.50/95.74  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 95.50/95.74  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))))) as proof of ((((rel_b W) V0)->False)->((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)))
% 95.50/95.74  Found a10:=(a1 S):((rel_b S) S)
% 95.50/95.74  Found (a1 S) as proof of ((rel_b S) V0)
% 95.50/95.74  Found (a1 S) as proof of ((rel_b S) V0)
% 95.50/95.74  Found (a1 S) as proof of ((rel_b S) V0)
% 95.50/95.74  Found (x4 (a1 S)) as proof of False
% 95.50/95.74  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of False
% 95.50/95.74  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 95.50/95.74  Found a10:=(a1 S):((rel_b S) S)
% 95.50/95.74  Found (a1 S) as proof of ((rel_b S) V0)
% 95.50/95.74  Found (a1 S) as proof of ((rel_b S) V0)
% 95.50/95.74  Found (a1 S) as proof of ((rel_b S) V0)
% 95.50/95.74  Found (x4 (a1 S)) as proof of False
% 95.50/95.74  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of False
% 95.50/95.74  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 95.50/95.74  Found a10:=(a1 W):((rel_b W) W)
% 95.50/95.74  Found (a1 W) as proof of ((rel_b W) V0)
% 95.50/95.74  Found (a1 W) as proof of ((rel_b W) V0)
% 95.50/95.74  Found (a1 W) as proof of ((rel_b W) V0)
% 95.50/95.74  Found (x3 (a1 W)) as proof of False
% 95.50/95.74  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of False
% 95.50/95.74  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies p) q)) V)
% 95.50/95.74  Found (or_introl10 (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 95.50/95.74  Found ((or_introl1 ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 95.50/95.74  Found (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 95.50/95.74  Found (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 95.50/95.74  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))))) as proof of (((mor (mnot ((mimplies p) q))) (mnot ((mimplies q) p))) V)
% 95.50/95.74  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))))) as proof of ((((rel_b W) V0)->False)->(((mor (mnot ((mimplies p) q))) (mnot ((mimplies q) p))) V))
% 116.75/117.04  Found a10:=(a1 S):((rel_b S) S)
% 116.75/117.04  Found (a1 S) as proof of ((rel_b S) V0)
% 116.75/117.04  Found (a1 S) as proof of ((rel_b S) V0)
% 116.75/117.04  Found (a1 S) as proof of ((rel_b S) V0)
% 116.75/117.04  Found (x3 (a1 S)) as proof of False
% 116.75/117.04  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of False
% 116.75/117.04  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies p) q)) V)
% 116.75/117.04  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->((mnot ((mimplies p) q)) V))
% 116.75/117.04  Found a10:=(a1 S):((rel_b S) S)
% 116.75/117.04  Found (a1 S) as proof of ((rel_b S) V0)
% 116.75/117.04  Found (a1 S) as proof of ((rel_b S) V0)
% 116.75/117.04  Found (a1 S) as proof of ((rel_b S) V0)
% 116.75/117.04  Found (x3 (a1 S)) as proof of False
% 116.75/117.04  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of False
% 116.75/117.04  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies q) p)) V)
% 116.75/117.04  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->((mnot ((mimplies q) p)) V))
% 116.75/117.04  Found a10:=(a1 W):((rel_b W) W)
% 116.75/117.04  Found (a1 W) as proof of ((rel_b W) V)
% 116.75/117.04  Found (a1 W) as proof of ((rel_b W) V)
% 116.75/117.04  Found (a1 W) as proof of ((rel_b W) V)
% 116.75/117.04  Found (x2 (a1 W)) as proof of False
% 116.75/117.04  Found (fun (x2:(((rel_b W) V)->False))=> (x2 (a1 W))) as proof of False
% 116.75/117.04  Found (fun (x2:(((rel_b W) V)->False))=> (x2 (a1 W))) as proof of ((((rel_b W) V)->False)->False)
% 116.75/117.04  Found a10:=(a1 W):((rel_b W) W)
% 116.75/117.04  Found (a1 W) as proof of ((rel_b W) V)
% 116.75/117.04  Found (a1 W) as proof of ((rel_b W) V)
% 116.75/117.04  Found (a1 W) as proof of ((rel_b W) V)
% 116.75/117.04  Found (x2 (a1 W)) as proof of False
% 116.75/117.04  Found (fun (x2:(((rel_b W) V)->False))=> (x2 (a1 W))) as proof of False
% 116.75/117.04  Found (fun (x2:(((rel_b W) V)->False))=> (x2 (a1 W))) as proof of ((((rel_b W) V)->False)->False)
% 116.75/117.04  Found a10:=(a1 S):((rel_b S) S)
% 116.75/117.04  Found (a1 S) as proof of ((rel_b S) V0)
% 116.75/117.04  Found (a1 S) as proof of ((rel_b S) V0)
% 116.75/117.04  Found (a1 S) as proof of ((rel_b S) V0)
% 116.75/117.04  Found (x3 (a1 S)) as proof of False
% 116.75/117.04  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of False
% 116.75/117.04  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies q) p)) V)
% 116.75/117.04  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->((mnot ((mimplies q) p)) V))
% 116.75/117.04  Found a10:=(a1 S):((rel_b S) S)
% 116.75/117.04  Found (a1 S) as proof of ((rel_b S) V0)
% 116.75/117.04  Found (a1 S) as proof of ((rel_b S) V0)
% 116.75/117.04  Found (a1 S) as proof of ((rel_b S) V0)
% 116.75/117.04  Found (x3 (a1 S)) as proof of False
% 116.75/117.04  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of False
% 116.75/117.04  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies p) q)) V)
% 116.75/117.04  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->((mnot ((mimplies p) q)) V))
% 116.75/117.04  Found a10:=(a1 V0):((rel_b V0) V0)
% 116.75/117.04  Found (a1 V0) as proof of ((rel_b V0) W)
% 116.75/117.04  Found (a1 V0) as proof of ((rel_b V0) W)
% 116.75/117.04  Found (a1 V0) as proof of ((rel_b V0) W)
% 116.75/117.04  Found (a200 (a1 V0)) as proof of ((rel_b W) V0)
% 116.75/117.04  Found ((a20 W) (a1 V0)) as proof of ((rel_b W) V0)
% 116.75/117.04  Found (((a2 V0) W) (a1 V0)) as proof of ((rel_b W) V0)
% 116.75/117.04  Found (((a2 V0) W) (a1 V0)) as proof of ((rel_b W) V0)
% 116.75/117.04  Found a10:=(a1 V0):((rel_b V0) V0)
% 116.75/117.04  Found (a1 V0) as proof of ((rel_b V0) W)
% 116.75/117.04  Found (a1 V0) as proof of ((rel_b V0) W)
% 116.75/117.04  Found (a1 V0) as proof of ((rel_b V0) W)
% 116.75/117.04  Found (a200 (a1 V0)) as proof of ((rel_b W) V0)
% 116.75/117.04  Found ((a20 W) (a1 V0)) as proof of ((rel_b W) V0)
% 116.75/117.04  Found (((a2 V0) W) (a1 V0)) as proof of ((rel_b W) V0)
% 116.75/117.04  Found (((a2 V0) W) (a1 V0)) as proof of ((rel_b W) V0)
% 116.75/117.04  Found a10:=(a1 S):((rel_b S) S)
% 116.75/117.04  Found (a1 S) as proof of ((rel_b S) V1)
% 116.75/117.04  Found (a1 S) as proof of ((rel_b S) V1)
% 116.75/117.04  Found (a1 S) as proof of ((rel_b S) V1)
% 116.75/117.04  Found (x5 (a1 S)) as proof of False
% 116.75/117.04  Found (fun (x5:(((rel_b S) V1)->False))=> (x5 (a1 S))) as proof of False
% 116.75/117.04  Found (fun (x5:(((rel_b S) V1)->False))=> (x5 (a1 S))) as proof of ((((rel_b S) V1)->False)->False)
% 116.75/117.04  Found a10:=(a1 S):((rel_b S) S)
% 127.27/127.55  Found (a1 S) as proof of ((rel_b S) V1)
% 127.27/127.55  Found (a1 S) as proof of ((rel_b S) V1)
% 127.27/127.55  Found (a1 S) as proof of ((rel_b S) V1)
% 127.27/127.55  Found (x5 (a1 S)) as proof of False
% 127.27/127.55  Found (fun (x5:(((rel_b S) V1)->False))=> (x5 (a1 S))) as proof of False
% 127.27/127.55  Found (fun (x5:(((rel_b S) V1)->False))=> (x5 (a1 S))) as proof of ((((rel_b S) V1)->False)->False)
% 127.27/127.55  Found a10:=(a1 S):((rel_b S) S)
% 127.27/127.55  Found (a1 S) as proof of ((rel_b S) V1)
% 127.27/127.55  Found (a1 S) as proof of ((rel_b S) V1)
% 127.27/127.55  Found (a1 S) as proof of ((rel_b S) V1)
% 127.27/127.55  Found (x5 (a1 S)) as proof of False
% 127.27/127.55  Found (fun (x5:(((rel_b S) V1)->False))=> (x5 (a1 S))) as proof of False
% 127.27/127.55  Found (fun (x5:(((rel_b S) V1)->False))=> (x5 (a1 S))) as proof of ((((rel_b S) V1)->False)->False)
% 127.27/127.55  Found a10:=(a1 W):((rel_b W) W)
% 127.27/127.55  Found (a1 W) as proof of ((rel_b W) V0)
% 127.27/127.55  Found (a1 W) as proof of ((rel_b W) V0)
% 127.27/127.55  Found (a1 W) as proof of ((rel_b W) V0)
% 127.27/127.55  Found a10:=(a1 S):((rel_b S) S)
% 127.27/127.55  Found (a1 S) as proof of ((rel_b S) V0)
% 127.27/127.55  Found (a1 S) as proof of ((rel_b S) V0)
% 127.27/127.55  Found (a1 S) as proof of ((rel_b S) V0)
% 127.27/127.55  Found (x3 (a1 S)) as proof of False
% 127.27/127.55  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of False
% 127.27/127.55  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies q) p)) V)
% 127.27/127.55  Found (or_intror00 (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 127.27/127.55  Found ((or_intror0 ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 127.27/127.55  Found (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 127.27/127.55  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 127.27/127.55  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))))) as proof of ((((rel_b S) V0)->False)->((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)))
% 127.27/127.55  Found a10:=(a1 S):((rel_b S) S)
% 127.27/127.55  Found (a1 S) as proof of ((rel_b S) V1)
% 127.27/127.55  Found (a1 S) as proof of ((rel_b S) V1)
% 127.27/127.55  Found (a1 S) as proof of ((rel_b S) V1)
% 127.27/127.55  Found (x5 (a1 S)) as proof of False
% 127.27/127.55  Found (fun (x5:(((rel_b S) V1)->False))=> (x5 (a1 S))) as proof of False
% 127.27/127.55  Found (fun (x5:(((rel_b S) V1)->False))=> (x5 (a1 S))) as proof of ((((rel_b S) V1)->False)->False)
% 127.27/127.55  Found a10:=(a1 W):((rel_b W) W)
% 127.27/127.55  Found (a1 W) as proof of ((rel_b W) V0)
% 127.27/127.55  Found (a1 W) as proof of ((rel_b W) V0)
% 127.27/127.55  Found (a1 W) as proof of ((rel_b W) V0)
% 127.27/127.55  Found a10:=(a1 W):((rel_b W) W)
% 127.27/127.55  Found (a1 W) as proof of ((rel_b W) V0)
% 127.27/127.55  Found (a1 W) as proof of ((rel_b W) V0)
% 127.27/127.55  Found (a1 W) as proof of ((rel_b W) V0)
% 127.27/127.55  Found a10:=(a1 W):((rel_b W) W)
% 127.27/127.55  Found (a1 W) as proof of ((rel_b W) V0)
% 127.27/127.55  Found (a1 W) as proof of ((rel_b W) V0)
% 127.27/127.55  Found (a1 W) as proof of ((rel_b W) V0)
% 127.27/127.55  Found a10:=(a1 S):((rel_b S) S)
% 127.27/127.55  Found (a1 S) as proof of ((rel_b S) V0)
% 127.27/127.55  Found (a1 S) as proof of ((rel_b S) V0)
% 127.27/127.55  Found (a1 S) as proof of ((rel_b S) V0)
% 127.27/127.55  Found (x3 (a1 S)) as proof of False
% 127.27/127.55  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of False
% 127.27/127.55  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies p) q)) V)
% 127.27/127.55  Found (or_introl10 (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 127.27/127.55  Found ((or_introl1 ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 127.27/127.55  Found (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 127.27/127.55  Found (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 127.27/127.55  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))))) as proof of (((mor (mnot ((mimplies p) q))) (mnot ((mimplies q) p))) V)
% 137.79/138.11  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))))) as proof of ((((rel_b S) V0)->False)->(((mor (mnot ((mimplies p) q))) (mnot ((mimplies q) p))) V))
% 137.79/138.11  Found a10:=(a1 S):((rel_b S) S)
% 137.79/138.11  Found (a1 S) as proof of ((rel_b S) V0)
% 137.79/138.11  Found (a1 S) as proof of ((rel_b S) V0)
% 137.79/138.11  Found (a1 S) as proof of ((rel_b S) V0)
% 137.79/138.11  Found (x3 (a1 S)) as proof of False
% 137.79/138.11  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of False
% 137.79/138.11  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies p) q)) V)
% 137.79/138.11  Found (or_introl10 (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 137.79/138.11  Found ((or_introl1 ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 137.79/138.11  Found (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 137.79/138.11  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 137.79/138.11  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))))) as proof of ((((rel_b S) V0)->False)->((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)))
% 137.79/138.11  Found a10:=(a1 S):((rel_b S) S)
% 137.79/138.11  Found (a1 S) as proof of ((rel_b S) V)
% 137.79/138.11  Found (a1 S) as proof of ((rel_b S) V)
% 137.79/138.11  Found (a1 S) as proof of ((rel_b S) V)
% 137.79/138.11  Found (x2 (a1 S)) as proof of False
% 137.79/138.11  Found (fun (x2:(((rel_b S) V)->False))=> (x2 (a1 S))) as proof of False
% 137.79/138.11  Found (fun (x2:(((rel_b S) V)->False))=> (x2 (a1 S))) as proof of ((((rel_b S) V)->False)->False)
% 137.79/138.11  Found a10:=(a1 S):((rel_b S) S)
% 137.79/138.11  Found (a1 S) as proof of ((rel_b S) V)
% 137.79/138.11  Found (a1 S) as proof of ((rel_b S) V)
% 137.79/138.11  Found (a1 S) as proof of ((rel_b S) V)
% 137.79/138.11  Found (x2 (a1 S)) as proof of False
% 137.79/138.11  Found (fun (x2:(((rel_b S) V)->False))=> (x2 (a1 S))) as proof of False
% 137.79/138.11  Found (fun (x2:(((rel_b S) V)->False))=> (x2 (a1 S))) as proof of ((((rel_b S) V)->False)->False)
% 137.79/138.11  Found a10:=(a1 W):((rel_b W) W)
% 137.79/138.11  Found (a1 W) as proof of ((rel_b W) V0)
% 137.79/138.11  Found (a1 W) as proof of ((rel_b W) V0)
% 137.79/138.11  Found (a1 W) as proof of ((rel_b W) V0)
% 137.79/138.11  Found a10:=(a1 W):((rel_b W) W)
% 137.79/138.11  Found (a1 W) as proof of ((rel_b W) V0)
% 137.79/138.11  Found (a1 W) as proof of ((rel_b W) V0)
% 137.79/138.11  Found (a1 W) as proof of ((rel_b W) V0)
% 137.79/138.11  Found (x4 (a1 W)) as proof of False
% 137.79/138.11  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of False
% 137.79/138.11  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 137.79/138.11  Found a10:=(a1 W):((rel_b W) W)
% 137.79/138.11  Found (a1 W) as proof of ((rel_b W) V0)
% 137.79/138.11  Found (a1 W) as proof of ((rel_b W) V0)
% 137.79/138.11  Found (a1 W) as proof of ((rel_b W) V0)
% 137.79/138.11  Found a10:=(a1 W):((rel_b W) W)
% 137.79/138.11  Found (a1 W) as proof of ((rel_b W) V0)
% 137.79/138.11  Found (a1 W) as proof of ((rel_b W) V0)
% 137.79/138.11  Found (a1 W) as proof of ((rel_b W) V0)
% 137.79/138.11  Found (x4 (a1 W)) as proof of False
% 137.79/138.11  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of False
% 137.79/138.11  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 137.79/138.11  Found a10:=(a1 S):((rel_b S) S)
% 137.79/138.11  Found (a1 S) as proof of ((rel_b S) V0)
% 137.79/138.11  Found (a1 S) as proof of ((rel_b S) V0)
% 137.79/138.11  Found (a1 S) as proof of ((rel_b S) V0)
% 137.79/138.11  Found (x3 (a1 S)) as proof of False
% 137.79/138.11  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of False
% 137.79/138.11  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies q) p)) V)
% 137.79/138.11  Found (or_intror00 (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 137.79/138.11  Found ((or_intror0 ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 151.54/151.85  Found (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 151.54/151.85  Found (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 151.54/151.85  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))))) as proof of (((mor (mnot ((mimplies p) q))) (mnot ((mimplies q) p))) V)
% 151.54/151.85  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))))) as proof of ((((rel_b S) V0)->False)->(((mor (mnot ((mimplies p) q))) (mnot ((mimplies q) p))) V))
% 151.54/151.85  Found a10:=(a1 W):((rel_b W) W)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V)
% 151.54/151.85  Found (x2 (a1 W)) as proof of False
% 151.54/151.85  Found (fun (x2:(((rel_b W) V)->False))=> (x2 (a1 W))) as proof of False
% 151.54/151.85  Found (fun (x2:(((rel_b W) V)->False))=> (x2 (a1 W))) as proof of ((((rel_b W) V)->False)->False)
% 151.54/151.85  Found a10:=(a1 W):((rel_b W) W)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V)
% 151.54/151.85  Found (x2 (a1 W)) as proof of False
% 151.54/151.85  Found (fun (x2:(((rel_b W) V)->False))=> (x2 (a1 W))) as proof of False
% 151.54/151.85  Found (fun (x2:(((rel_b W) V)->False))=> (x2 (a1 W))) as proof of ((((rel_b W) V)->False)->False)
% 151.54/151.85  Found a10:=(a1 W):((rel_b W) W)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V0)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V0)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V0)
% 151.54/151.85  Found (x4 (a1 W)) as proof of False
% 151.54/151.85  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of False
% 151.54/151.85  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 151.54/151.85  Found a10:=(a1 W):((rel_b W) W)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V0)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V0)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V0)
% 151.54/151.85  Found (x4 (a1 W)) as proof of False
% 151.54/151.85  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of False
% 151.54/151.85  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 151.54/151.85  Found a10:=(a1 W):((rel_b W) W)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V0)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V0)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V0)
% 151.54/151.85  Found (x3 (a1 W)) as proof of False
% 151.54/151.85  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of False
% 151.54/151.85  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies p) q)) V)
% 151.54/151.85  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->((mnot ((mimplies p) q)) V))
% 151.54/151.85  Found a10:=(a1 W):((rel_b W) W)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V0)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V0)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V0)
% 151.54/151.85  Found (x3 (a1 W)) as proof of False
% 151.54/151.85  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of False
% 151.54/151.85  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies q) p)) V)
% 151.54/151.85  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->((mnot ((mimplies q) p)) V))
% 151.54/151.85  Found a10:=(a1 V0):((rel_b V0) V0)
% 151.54/151.85  Found (a1 V0) as proof of ((rel_b V0) S)
% 151.54/151.85  Found (a1 V0) as proof of ((rel_b V0) S)
% 151.54/151.85  Found (a1 V0) as proof of ((rel_b V0) S)
% 151.54/151.85  Found (a200 (a1 V0)) as proof of ((rel_b S) V0)
% 151.54/151.85  Found ((a20 S) (a1 V0)) as proof of ((rel_b S) V0)
% 151.54/151.85  Found (((a2 V0) S) (a1 V0)) as proof of ((rel_b S) V0)
% 151.54/151.85  Found (((a2 V0) S) (a1 V0)) as proof of ((rel_b S) V0)
% 151.54/151.85  Found a10:=(a1 W):((rel_b W) W)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V0)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V0)
% 151.54/151.85  Found (a1 W) as proof of ((rel_b W) V0)
% 151.54/151.85  Found (x4 (a1 W)) as proof of False
% 151.54/151.85  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of False
% 168.22/168.51  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 168.22/168.51  Found a10:=(a1 W):((rel_b W) W)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (x4 (a1 W)) as proof of False
% 168.22/168.51  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of False
% 168.22/168.51  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 168.22/168.51  Found a10:=(a1 W):((rel_b W) W)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (x3 (a1 W)) as proof of False
% 168.22/168.51  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of False
% 168.22/168.51  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies p) q)) V)
% 168.22/168.51  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->((mnot ((mimplies p) q)) V))
% 168.22/168.51  Found a10:=(a1 W):((rel_b W) W)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (x3 (a1 W)) as proof of False
% 168.22/168.51  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of False
% 168.22/168.51  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies q) p)) V)
% 168.22/168.51  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->((mnot ((mimplies q) p)) V))
% 168.22/168.51  Found a10:=(a1 V0):((rel_b V0) V0)
% 168.22/168.51  Found (a1 V0) as proof of ((rel_b V0) S)
% 168.22/168.51  Found (a1 V0) as proof of ((rel_b V0) S)
% 168.22/168.51  Found (a1 V0) as proof of ((rel_b V0) S)
% 168.22/168.51  Found (a200 (a1 V0)) as proof of ((rel_b S) V0)
% 168.22/168.51  Found ((a20 S) (a1 V0)) as proof of ((rel_b S) V0)
% 168.22/168.51  Found (((a2 V0) S) (a1 V0)) as proof of ((rel_b S) V0)
% 168.22/168.51  Found (((a2 V0) S) (a1 V0)) as proof of ((rel_b S) V0)
% 168.22/168.51  Found a10:=(a1 W):((rel_b W) W)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (x4 (a1 W)) as proof of False
% 168.22/168.51  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of False
% 168.22/168.51  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 168.22/168.51  Found a10:=(a1 W):((rel_b W) W)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (x4 (a1 W)) as proof of False
% 168.22/168.51  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of False
% 168.22/168.51  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 168.22/168.51  Found a10:=(a1 W):((rel_b W) W)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (x3 (a1 W)) as proof of False
% 168.22/168.51  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of False
% 168.22/168.51  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies p) q)) V)
% 168.22/168.51  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->((mnot ((mimplies p) q)) V))
% 168.22/168.51  Found a10:=(a1 W):((rel_b W) W)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (x3 (a1 W)) as proof of False
% 168.22/168.51  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of False
% 168.22/168.51  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies q) p)) V)
% 168.22/168.51  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->((mnot ((mimplies q) p)) V))
% 168.22/168.51  Found a10:=(a1 S):((rel_b S) S)
% 168.22/168.51  Found (a1 S) as proof of ((rel_b S) V0)
% 168.22/168.51  Found (a1 S) as proof of ((rel_b S) V0)
% 168.22/168.51  Found (a1 S) as proof of ((rel_b S) V0)
% 168.22/168.51  Found a10:=(a1 W):((rel_b W) W)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (a1 W) as proof of ((rel_b W) V0)
% 168.22/168.51  Found (x3 (a1 W)) as proof of False
% 168.22/168.51  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of False
% 181.60/181.88  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies p) q)) V)
% 181.60/181.88  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->((mnot ((mimplies p) q)) V))
% 181.60/181.88  Found a10:=(a1 W):((rel_b W) W)
% 181.60/181.88  Found (a1 W) as proof of ((rel_b W) V0)
% 181.60/181.88  Found (a1 W) as proof of ((rel_b W) V0)
% 181.60/181.88  Found (a1 W) as proof of ((rel_b W) V0)
% 181.60/181.88  Found (x3 (a1 W)) as proof of False
% 181.60/181.88  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of False
% 181.60/181.88  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies q) p)) V)
% 181.60/181.88  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->((mnot ((mimplies q) p)) V))
% 181.60/181.88  Found a10:=(a1 S):((rel_b S) S)
% 181.60/181.88  Found (a1 S) as proof of ((rel_b S) V0)
% 181.60/181.88  Found (a1 S) as proof of ((rel_b S) V0)
% 181.60/181.88  Found (a1 S) as proof of ((rel_b S) V0)
% 181.60/181.88  Found a10:=(a1 S):((rel_b S) S)
% 181.60/181.88  Found (a1 S) as proof of ((rel_b S) V0)
% 181.60/181.88  Found (a1 S) as proof of ((rel_b S) V0)
% 181.60/181.88  Found (a1 S) as proof of ((rel_b S) V0)
% 181.60/181.88  Found a10:=(a1 W):((rel_b W) W)
% 181.60/181.88  Found (a1 W) as proof of ((rel_b W) V0)
% 181.60/181.88  Found (a1 W) as proof of ((rel_b W) V0)
% 181.60/181.88  Found (a1 W) as proof of ((rel_b W) V0)
% 181.60/181.88  Found (x3 (a1 W)) as proof of False
% 181.60/181.88  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of False
% 181.60/181.88  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies q) p)) V)
% 181.60/181.88  Found (or_introl10 (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 181.60/181.88  Found ((or_introl1 ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 181.60/181.88  Found (((or_introl ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 181.60/181.88  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_introl ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 181.60/181.88  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_introl ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))))) as proof of ((((rel_b W) V0)->False)->((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)))
% 181.60/181.88  Found a10:=(a1 S):((rel_b S) S)
% 181.60/181.88  Found (a1 S) as proof of ((rel_b S) V0)
% 181.60/181.88  Found (a1 S) as proof of ((rel_b S) V0)
% 181.60/181.88  Found (a1 S) as proof of ((rel_b S) V0)
% 181.60/181.88  Found a10:=(a1 S):((rel_b S) S)
% 181.60/181.88  Found (a1 S) as proof of ((rel_b S) V)
% 181.60/181.88  Found (a1 S) as proof of ((rel_b S) V)
% 181.60/181.88  Found (a1 S) as proof of ((rel_b S) V)
% 181.60/181.88  Found (x2 (a1 S)) as proof of False
% 181.60/181.88  Found (fun (x2:(((rel_b S) V)->False))=> (x2 (a1 S))) as proof of False
% 181.60/181.88  Found (fun (x2:(((rel_b S) V)->False))=> (x2 (a1 S))) as proof of ((((rel_b S) V)->False)->False)
% 181.60/181.88  Found a10:=(a1 S):((rel_b S) S)
% 181.60/181.88  Found (a1 S) as proof of ((rel_b S) V)
% 181.60/181.88  Found (a1 S) as proof of ((rel_b S) V)
% 181.60/181.88  Found (a1 S) as proof of ((rel_b S) V)
% 181.60/181.88  Found (x2 (a1 S)) as proof of False
% 181.60/181.88  Found (fun (x2:(((rel_b S) V)->False))=> (x2 (a1 S))) as proof of False
% 181.60/181.88  Found (fun (x2:(((rel_b S) V)->False))=> (x2 (a1 S))) as proof of ((((rel_b S) V)->False)->False)
% 181.60/181.88  Found a10:=(a1 W):((rel_b W) W)
% 181.60/181.88  Found (a1 W) as proof of ((rel_b W) V0)
% 181.60/181.88  Found (a1 W) as proof of ((rel_b W) V0)
% 181.60/181.88  Found (a1 W) as proof of ((rel_b W) V0)
% 181.60/181.88  Found (x3 (a1 W)) as proof of False
% 181.60/181.88  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of False
% 181.60/181.88  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies p) q)) V)
% 181.60/181.88  Found (or_intror00 (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 181.60/181.88  Found ((or_intror0 ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 181.60/181.88  Found (((or_intror ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 193.28/193.57  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_intror ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 193.28/193.57  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_intror ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))))) as proof of ((((rel_b W) V0)->False)->((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)))
% 193.28/193.57  Found a10:=(a1 S):((rel_b S) S)
% 193.28/193.57  Found (a1 S) as proof of ((rel_b S) V0)
% 193.28/193.57  Found (a1 S) as proof of ((rel_b S) V0)
% 193.28/193.57  Found (a1 S) as proof of ((rel_b S) V0)
% 193.28/193.57  Found a10:=(a1 S):((rel_b S) S)
% 193.28/193.57  Found (a1 S) as proof of ((rel_b S) V0)
% 193.28/193.57  Found (a1 S) as proof of ((rel_b S) V0)
% 193.28/193.57  Found (a1 S) as proof of ((rel_b S) V0)
% 193.28/193.57  Found (x4 (a1 S)) as proof of False
% 193.28/193.57  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of False
% 193.28/193.57  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 193.28/193.57  Found a10:=(a1 S):((rel_b S) S)
% 193.28/193.57  Found (a1 S) as proof of ((rel_b S) V0)
% 193.28/193.57  Found (a1 S) as proof of ((rel_b S) V0)
% 193.28/193.57  Found (a1 S) as proof of ((rel_b S) V0)
% 193.28/193.57  Found (x4 (a1 S)) as proof of False
% 193.28/193.57  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of False
% 193.28/193.57  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 193.28/193.57  Found a10:=(a1 W):((rel_b W) W)
% 193.28/193.57  Found (a1 W) as proof of ((rel_b W) V1)
% 193.28/193.57  Found (a1 W) as proof of ((rel_b W) V1)
% 193.28/193.57  Found (a1 W) as proof of ((rel_b W) V1)
% 193.28/193.57  Found (x5 (a1 W)) as proof of False
% 193.28/193.57  Found (fun (x5:(((rel_b W) V1)->False))=> (x5 (a1 W))) as proof of False
% 193.28/193.57  Found (fun (x5:(((rel_b W) V1)->False))=> (x5 (a1 W))) as proof of ((((rel_b W) V1)->False)->False)
% 193.28/193.57  Found a10:=(a1 W):((rel_b W) W)
% 193.28/193.57  Found (a1 W) as proof of ((rel_b W) V0)
% 193.28/193.57  Found (a1 W) as proof of ((rel_b W) V0)
% 193.28/193.57  Found (a1 W) as proof of ((rel_b W) V0)
% 193.28/193.57  Found (x3 (a1 W)) as proof of False
% 193.28/193.57  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of False
% 193.28/193.57  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies q) p)) V)
% 193.28/193.57  Found (or_intror10 (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 193.28/193.57  Found ((or_intror1 ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 193.28/193.57  Found (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 193.28/193.57  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 193.28/193.57  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))))) as proof of ((((rel_b W) V0)->False)->((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)))
% 193.28/193.58  Found a10:=(a1 S):((rel_b S) S)
% 193.28/193.58  Found (a1 S) as proof of ((rel_b S) V0)
% 193.28/193.58  Found (a1 S) as proof of ((rel_b S) V0)
% 193.28/193.58  Found (a1 S) as proof of ((rel_b S) V0)
% 193.28/193.58  Found a10:=(a1 S):((rel_b S) S)
% 193.28/193.58  Found (a1 S) as proof of ((rel_b S) V0)
% 193.28/193.58  Found (a1 S) as proof of ((rel_b S) V0)
% 193.28/193.58  Found (a1 S) as proof of ((rel_b S) V0)
% 193.28/193.58  Found (x4 (a1 S)) as proof of False
% 193.28/193.58  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of False
% 193.28/193.58  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 193.28/193.58  Found a10:=(a1 S):((rel_b S) S)
% 193.28/193.58  Found (a1 S) as proof of ((rel_b S) V0)
% 193.28/193.58  Found (a1 S) as proof of ((rel_b S) V0)
% 193.28/193.58  Found (a1 S) as proof of ((rel_b S) V0)
% 193.28/193.58  Found (x4 (a1 S)) as proof of False
% 193.28/193.58  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of False
% 193.28/193.58  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 193.28/193.58  Found a10:=(a1 S):((rel_b S) S)
% 202.13/202.42  Found (a1 S) as proof of ((rel_b S) V0)
% 202.13/202.42  Found (a1 S) as proof of ((rel_b S) V0)
% 202.13/202.42  Found (a1 S) as proof of ((rel_b S) V0)
% 202.13/202.42  Found (x3 (a1 S)) as proof of False
% 202.13/202.42  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of False
% 202.13/202.42  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies q) p)) V)
% 202.13/202.42  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->((mnot ((mimplies q) p)) V))
% 202.13/202.42  Found a10:=(a1 S):((rel_b S) S)
% 202.13/202.42  Found (a1 S) as proof of ((rel_b S) V0)
% 202.13/202.42  Found (a1 S) as proof of ((rel_b S) V0)
% 202.13/202.42  Found (a1 S) as proof of ((rel_b S) V0)
% 202.13/202.42  Found (x3 (a1 S)) as proof of False
% 202.13/202.42  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of False
% 202.13/202.42  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies p) q)) V)
% 202.13/202.42  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->((mnot ((mimplies p) q)) V))
% 202.13/202.42  Found a10:=(a1 W):((rel_b W) W)
% 202.13/202.42  Found (a1 W) as proof of ((rel_b W) V1)
% 202.13/202.42  Found (a1 W) as proof of ((rel_b W) V1)
% 202.13/202.42  Found (a1 W) as proof of ((rel_b W) V1)
% 202.13/202.42  Found (x5 (a1 W)) as proof of False
% 202.13/202.42  Found (fun (x5:(((rel_b W) V1)->False))=> (x5 (a1 W))) as proof of False
% 202.13/202.42  Found (fun (x5:(((rel_b W) V1)->False))=> (x5 (a1 W))) as proof of ((((rel_b W) V1)->False)->False)
% 202.13/202.42  Found a10:=(a1 W):((rel_b W) W)
% 202.13/202.42  Found (a1 W) as proof of ((rel_b W) V1)
% 202.13/202.42  Found (a1 W) as proof of ((rel_b W) V1)
% 202.13/202.42  Found (a1 W) as proof of ((rel_b W) V1)
% 202.13/202.42  Found (x5 (a1 W)) as proof of False
% 202.13/202.42  Found (fun (x5:(((rel_b W) V1)->False))=> (x5 (a1 W))) as proof of False
% 202.13/202.42  Found (fun (x5:(((rel_b W) V1)->False))=> (x5 (a1 W))) as proof of ((((rel_b W) V1)->False)->False)
% 202.13/202.42  Found a10:=(a1 W):((rel_b W) W)
% 202.13/202.42  Found (a1 W) as proof of ((rel_b W) V0)
% 202.13/202.42  Found (a1 W) as proof of ((rel_b W) V0)
% 202.13/202.42  Found (a1 W) as proof of ((rel_b W) V0)
% 202.13/202.42  Found (x3 (a1 W)) as proof of False
% 202.13/202.42  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of False
% 202.13/202.42  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies q) p)) V)
% 202.13/202.42  Found (or_intror10 (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 202.13/202.42  Found ((or_intror1 ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 202.13/202.42  Found (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 202.13/202.42  Found (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 202.13/202.42  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))))) as proof of (((mor (mnot ((mimplies p) q))) (mnot ((mimplies q) p))) V)
% 202.13/202.42  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))))) as proof of ((((rel_b W) V0)->False)->(((mor (mnot ((mimplies p) q))) (mnot ((mimplies q) p))) V))
% 202.13/202.42  Found a10:=(a1 W):((rel_b W) W)
% 202.13/202.42  Found (a1 W) as proof of ((rel_b W) V0)
% 202.13/202.42  Found (a1 W) as proof of ((rel_b W) V0)
% 202.13/202.42  Found (a1 W) as proof of ((rel_b W) V0)
% 202.13/202.42  Found (x3 (a1 W)) as proof of False
% 202.13/202.42  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of False
% 202.13/202.42  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies p) q)) V)
% 202.13/202.42  Found (or_introl00 (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 202.13/202.42  Found ((or_introl0 ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 202.13/202.42  Found (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 210.00/210.30  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 210.00/210.30  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))))) as proof of ((((rel_b W) V0)->False)->((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)))
% 210.00/210.30  Found a10:=(a1 S):((rel_b S) S)
% 210.00/210.30  Found (a1 S) as proof of ((rel_b S) V0)
% 210.00/210.30  Found (a1 S) as proof of ((rel_b S) V0)
% 210.00/210.30  Found (a1 S) as proof of ((rel_b S) V0)
% 210.00/210.30  Found (x4 (a1 S)) as proof of False
% 210.00/210.30  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of False
% 210.00/210.30  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 210.00/210.30  Found a10:=(a1 S):((rel_b S) S)
% 210.00/210.30  Found (a1 S) as proof of ((rel_b S) V0)
% 210.00/210.30  Found (a1 S) as proof of ((rel_b S) V0)
% 210.00/210.30  Found (a1 S) as proof of ((rel_b S) V0)
% 210.00/210.30  Found (x4 (a1 S)) as proof of False
% 210.00/210.30  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of False
% 210.00/210.30  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 210.00/210.30  Found a10:=(a1 S):((rel_b S) S)
% 210.00/210.30  Found (a1 S) as proof of ((rel_b S) V0)
% 210.00/210.30  Found (a1 S) as proof of ((rel_b S) V0)
% 210.00/210.30  Found (a1 S) as proof of ((rel_b S) V0)
% 210.00/210.30  Found (x3 (a1 S)) as proof of False
% 210.00/210.30  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of False
% 210.00/210.30  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies p) q)) V)
% 210.00/210.30  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->((mnot ((mimplies p) q)) V))
% 210.00/210.30  Found a10:=(a1 S):((rel_b S) S)
% 210.00/210.30  Found (a1 S) as proof of ((rel_b S) V0)
% 210.00/210.30  Found (a1 S) as proof of ((rel_b S) V0)
% 210.00/210.30  Found (a1 S) as proof of ((rel_b S) V0)
% 210.00/210.30  Found (x3 (a1 S)) as proof of False
% 210.00/210.30  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of False
% 210.00/210.30  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies q) p)) V)
% 210.00/210.30  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->((mnot ((mimplies q) p)) V))
% 210.00/210.30  Found a10:=(a1 W):((rel_b W) W)
% 210.00/210.30  Found (a1 W) as proof of ((rel_b W) V1)
% 210.00/210.30  Found (a1 W) as proof of ((rel_b W) V1)
% 210.00/210.30  Found (a1 W) as proof of ((rel_b W) V1)
% 210.00/210.30  Found (x5 (a1 W)) as proof of False
% 210.00/210.30  Found (fun (x5:(((rel_b W) V1)->False))=> (x5 (a1 W))) as proof of False
% 210.00/210.30  Found (fun (x5:(((rel_b W) V1)->False))=> (x5 (a1 W))) as proof of ((((rel_b W) V1)->False)->False)
% 210.00/210.30  Found a10:=(a1 W):((rel_b W) W)
% 210.00/210.30  Found (a1 W) as proof of ((rel_b W) V0)
% 210.00/210.30  Found (a1 W) as proof of ((rel_b W) V0)
% 210.00/210.30  Found (a1 W) as proof of ((rel_b W) V0)
% 210.00/210.30  Found (x3 (a1 W)) as proof of False
% 210.00/210.30  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of False
% 210.00/210.30  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies p) q)) V)
% 210.00/210.30  Found (or_introl00 (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 210.00/210.30  Found ((or_introl0 ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 210.00/210.30  Found (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 210.00/210.30  Found (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 210.00/210.30  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))))) as proof of (((mor (mnot ((mimplies p) q))) (mnot ((mimplies q) p))) V)
% 210.00/210.30  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))))) as proof of ((((rel_b W) V0)->False)->(((mor (mnot ((mimplies p) q))) (mnot ((mimplies q) p))) V))
% 226.55/226.91  Found a10:=(a1 S):((rel_b S) S)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (x4 (a1 S)) as proof of False
% 226.55/226.91  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of False
% 226.55/226.91  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 226.55/226.91  Found a10:=(a1 S):((rel_b S) S)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (x4 (a1 S)) as proof of False
% 226.55/226.91  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of False
% 226.55/226.91  Found (fun (x4:(((rel_b S) V0)->False))=> (x4 (a1 S))) as proof of ((((rel_b S) V0)->False)->False)
% 226.55/226.91  Found a10:=(a1 S):((rel_b S) S)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (x3 (a1 S)) as proof of False
% 226.55/226.91  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of False
% 226.55/226.91  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies q) p)) V)
% 226.55/226.91  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->((mnot ((mimplies q) p)) V))
% 226.55/226.91  Found a10:=(a1 S):((rel_b S) S)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (x3 (a1 S)) as proof of False
% 226.55/226.91  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of False
% 226.55/226.91  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies p) q)) V)
% 226.55/226.91  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->((mnot ((mimplies p) q)) V))
% 226.55/226.91  Found a10:=(a1 S):((rel_b S) S)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (x3 (a1 S)) as proof of False
% 226.55/226.91  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of False
% 226.55/226.91  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies p) q)) V)
% 226.55/226.91  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->((mnot ((mimplies p) q)) V))
% 226.55/226.91  Found a10:=(a1 S):((rel_b S) S)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (x3 (a1 S)) as proof of False
% 226.55/226.91  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of False
% 226.55/226.91  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies q) p)) V)
% 226.55/226.91  Found (fun (x3:(((rel_b S) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of ((((rel_b S) V0)->False)->((mnot ((mimplies q) p)) V))
% 226.55/226.91  Found a10:=(a1 S):((rel_b S) S)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (a1 S) as proof of ((rel_b S) V0)
% 226.55/226.91  Found (x3 (a1 S)) as proof of False
% 226.55/226.91  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of False
% 226.55/226.91  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies q) p)) V)
% 226.55/226.91  Found (or_introl10 (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 226.55/226.91  Found ((or_introl1 ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 226.55/226.91  Found (((or_introl ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 226.55/226.91  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_introl ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 226.55/226.91  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_introl ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))))) as proof of ((((rel_b S) V0)->False)->((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)))
% 246.32/246.63  Found a10:=(a1 S):((rel_b S) S)
% 246.32/246.63  Found (a1 S) as proof of ((rel_b S) V0)
% 246.32/246.63  Found (a1 S) as proof of ((rel_b S) V0)
% 246.32/246.63  Found (a1 S) as proof of ((rel_b S) V0)
% 246.32/246.63  Found (x3 (a1 S)) as proof of False
% 246.32/246.63  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of False
% 246.32/246.63  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies q) p)) V)
% 246.32/246.63  Found (or_introl10 (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 246.32/246.63  Found ((or_introl1 ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 246.32/246.63  Found (((or_introl ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 246.32/246.63  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_introl ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 246.32/246.63  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_introl ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))))) as proof of ((((rel_b S) V0)->False)->((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)))
% 246.32/246.63  Found a10:=(a1 W):((rel_b W) W)
% 246.32/246.63  Found (a1 W) as proof of ((rel_b W) V0)
% 246.32/246.63  Found (a1 W) as proof of ((rel_b W) V0)
% 246.32/246.63  Found (a1 W) as proof of ((rel_b W) V0)
% 246.32/246.63  Found a10:=(a1 W):((rel_b W) W)
% 246.32/246.63  Found (a1 W) as proof of ((rel_b W) V0)
% 246.32/246.63  Found (a1 W) as proof of ((rel_b W) V0)
% 246.32/246.63  Found (a1 W) as proof of ((rel_b W) V0)
% 246.32/246.63  Found a10:=(a1 S):((rel_b S) S)
% 246.32/246.63  Found (a1 S) as proof of ((rel_b S) V1)
% 246.32/246.63  Found (a1 S) as proof of ((rel_b S) V1)
% 246.32/246.63  Found (a1 S) as proof of ((rel_b S) V1)
% 246.32/246.63  Found (x5 (a1 S)) as proof of False
% 246.32/246.63  Found (fun (x5:(((rel_b S) V1)->False))=> (x5 (a1 S))) as proof of False
% 246.32/246.63  Found (fun (x5:(((rel_b S) V1)->False))=> (x5 (a1 S))) as proof of ((((rel_b S) V1)->False)->False)
% 246.32/246.63  Found a10:=(a1 S):((rel_b S) S)
% 246.32/246.63  Found (a1 S) as proof of ((rel_b S) V0)
% 246.32/246.63  Found (a1 S) as proof of ((rel_b S) V0)
% 246.32/246.63  Found (a1 S) as proof of ((rel_b S) V0)
% 246.32/246.63  Found (x3 (a1 S)) as proof of False
% 246.32/246.63  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of False
% 246.32/246.63  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies q) p)) V)
% 246.32/246.63  Found (or_intror10 (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 246.32/246.63  Found ((or_intror1 ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 246.32/246.63  Found (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 246.32/246.63  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 246.32/246.63  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))))) as proof of ((((rel_b S) V0)->False)->((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)))
% 246.32/246.63  Found a10:=(a1 W):((rel_b W) W)
% 246.32/246.63  Found (a1 W) as proof of ((rel_b W) V)
% 246.32/246.63  Found (a1 W) as proof of ((rel_b W) V)
% 246.32/246.63  Found (a1 W) as proof of ((rel_b W) V)
% 246.32/246.63  Found (x2 (a1 W)) as proof of False
% 246.32/246.63  Found (fun (x2:(((rel_b W) V)->False))=> (x2 (a1 W))) as proof of False
% 246.32/246.63  Found (fun (x2:(((rel_b W) V)->False))=> (x2 (a1 W))) as proof of ((((rel_b W) V)->False)->False)
% 246.32/246.63  Found a10:=(a1 W):((rel_b W) W)
% 246.32/246.63  Found (a1 W) as proof of ((rel_b W) V)
% 246.32/246.63  Found (a1 W) as proof of ((rel_b W) V)
% 252.44/252.79  Found (a1 W) as proof of ((rel_b W) V)
% 252.44/252.79  Found (x2 (a1 W)) as proof of False
% 252.44/252.79  Found (fun (x2:(((rel_b W) V)->False))=> (x2 (a1 W))) as proof of False
% 252.44/252.79  Found (fun (x2:(((rel_b W) V)->False))=> (x2 (a1 W))) as proof of ((((rel_b W) V)->False)->False)
% 252.44/252.79  Found a10:=(a1 W):((rel_b W) W)
% 252.44/252.79  Found (a1 W) as proof of ((rel_b W) V0)
% 252.44/252.79  Found (a1 W) as proof of ((rel_b W) V0)
% 252.44/252.79  Found (a1 W) as proof of ((rel_b W) V0)
% 252.44/252.79  Found a10:=(a1 W):((rel_b W) W)
% 252.44/252.79  Found (a1 W) as proof of ((rel_b W) V0)
% 252.44/252.79  Found (a1 W) as proof of ((rel_b W) V0)
% 252.44/252.79  Found (a1 W) as proof of ((rel_b W) V0)
% 252.44/252.79  Found a10:=(a1 S):((rel_b S) S)
% 252.44/252.79  Found (a1 S) as proof of ((rel_b S) V1)
% 252.44/252.79  Found (a1 S) as proof of ((rel_b S) V1)
% 252.44/252.79  Found (a1 S) as proof of ((rel_b S) V1)
% 252.44/252.79  Found (x5 (a1 S)) as proof of False
% 252.44/252.79  Found (fun (x5:(((rel_b S) V1)->False))=> (x5 (a1 S))) as proof of False
% 252.44/252.79  Found (fun (x5:(((rel_b S) V1)->False))=> (x5 (a1 S))) as proof of ((((rel_b S) V1)->False)->False)
% 252.44/252.79  Found a10:=(a1 S):((rel_b S) S)
% 252.44/252.79  Found (a1 S) as proof of ((rel_b S) V1)
% 252.44/252.79  Found (a1 S) as proof of ((rel_b S) V1)
% 252.44/252.79  Found (a1 S) as proof of ((rel_b S) V1)
% 252.44/252.79  Found (x5 (a1 S)) as proof of False
% 252.44/252.79  Found (fun (x5:(((rel_b S) V1)->False))=> (x5 (a1 S))) as proof of False
% 252.44/252.79  Found (fun (x5:(((rel_b S) V1)->False))=> (x5 (a1 S))) as proof of ((((rel_b S) V1)->False)->False)
% 252.44/252.79  Found a10:=(a1 S):((rel_b S) S)
% 252.44/252.79  Found (a1 S) as proof of ((rel_b S) V0)
% 252.44/252.79  Found (a1 S) as proof of ((rel_b S) V0)
% 252.44/252.79  Found (a1 S) as proof of ((rel_b S) V0)
% 252.44/252.79  Found (x3 (a1 S)) as proof of False
% 252.44/252.79  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of False
% 252.44/252.79  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies p) q)) V)
% 252.44/252.79  Found (or_introl00 (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 252.44/252.79  Found ((or_introl0 ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 252.44/252.79  Found (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 252.44/252.79  Found (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 252.44/252.79  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))))) as proof of (((mor (mnot ((mimplies p) q))) (mnot ((mimplies q) p))) V)
% 252.44/252.79  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))))) as proof of ((((rel_b S) V0)->False)->(((mor (mnot ((mimplies p) q))) (mnot ((mimplies q) p))) V))
% 252.44/252.79  Found a10:=(a1 S):((rel_b S) S)
% 252.44/252.79  Found (a1 S) as proof of ((rel_b S) V0)
% 252.44/252.79  Found (a1 S) as proof of ((rel_b S) V0)
% 252.44/252.79  Found (a1 S) as proof of ((rel_b S) V0)
% 252.44/252.79  Found (x3 (a1 S)) as proof of False
% 252.44/252.79  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of False
% 252.44/252.79  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies q) p)) V)
% 252.44/252.79  Found (or_intror10 (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 252.44/252.79  Found ((or_intror1 ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 252.44/252.79  Found (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 252.44/252.79  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 252.44/252.79  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_intror ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies q) p) V))=> (x3 (a1 S))))) as proof of ((((rel_b S) V0)->False)->((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)))
% 267.89/268.21  Found a10:=(a1 S):((rel_b S) S)
% 267.89/268.21  Found (a1 S) as proof of ((rel_b S) V1)
% 267.89/268.21  Found (a1 S) as proof of ((rel_b S) V1)
% 267.89/268.21  Found (a1 S) as proof of ((rel_b S) V1)
% 267.89/268.21  Found (x5 (a1 S)) as proof of False
% 267.89/268.21  Found (fun (x5:(((rel_b S) V1)->False))=> (x5 (a1 S))) as proof of False
% 267.89/268.21  Found (fun (x5:(((rel_b S) V1)->False))=> (x5 (a1 S))) as proof of ((((rel_b S) V1)->False)->False)
% 267.89/268.21  Found a10:=(a1 S):((rel_b S) S)
% 267.89/268.21  Found (a1 S) as proof of ((rel_b S) V0)
% 267.89/268.21  Found (a1 S) as proof of ((rel_b S) V0)
% 267.89/268.21  Found (a1 S) as proof of ((rel_b S) V0)
% 267.89/268.21  Found (x3 (a1 S)) as proof of False
% 267.89/268.21  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of False
% 267.89/268.21  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))) as proof of ((mnot ((mimplies p) q)) V)
% 267.89/268.21  Found (or_introl00 (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 267.89/268.21  Found ((or_introl0 ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 267.89/268.21  Found (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 267.89/268.21  Found (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S)))) as proof of ((or ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V))
% 267.89/268.21  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))))) as proof of (((mor (mnot ((mimplies p) q))) (mnot ((mimplies q) p))) V)
% 267.89/268.21  Found (fun (x3:(((rel_b S) V0)->False))=> (((or_introl ((mnot ((mimplies p) q)) V)) ((mnot ((mimplies q) p)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 S))))) as proof of ((((rel_b S) V0)->False)->(((mor (mnot ((mimplies p) q))) (mnot ((mimplies q) p))) V))
% 267.89/268.21  Found a10:=(a1 W):((rel_b W) W)
% 267.89/268.21  Found (a1 W) as proof of ((rel_b W) V0)
% 267.89/268.21  Found (a1 W) as proof of ((rel_b W) V0)
% 267.89/268.21  Found (a1 W) as proof of ((rel_b W) V0)
% 267.89/268.21  Found (x4 (a1 W)) as proof of False
% 267.89/268.21  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of False
% 267.89/268.21  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 267.89/268.21  Found a10:=(a1 W):((rel_b W) W)
% 267.89/268.21  Found (a1 W) as proof of ((rel_b W) V0)
% 267.89/268.21  Found (a1 W) as proof of ((rel_b W) V0)
% 267.89/268.21  Found (a1 W) as proof of ((rel_b W) V0)
% 267.89/268.21  Found (x4 (a1 W)) as proof of False
% 267.89/268.21  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of False
% 267.89/268.21  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 267.89/268.21  Found a10:=(a1 W):((rel_b W) W)
% 267.89/268.21  Found (a1 W) as proof of ((rel_b W) V0)
% 267.89/268.21  Found (a1 W) as proof of ((rel_b W) V0)
% 267.89/268.21  Found (a1 W) as proof of ((rel_b W) V0)
% 267.89/268.21  Found (x4 (a1 W)) as proof of False
% 267.89/268.21  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of False
% 267.89/268.21  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 267.89/268.21  Found a10:=(a1 W):((rel_b W) W)
% 267.89/268.21  Found (a1 W) as proof of ((rel_b W) V0)
% 267.89/268.21  Found (a1 W) as proof of ((rel_b W) V0)
% 267.89/268.21  Found (a1 W) as proof of ((rel_b W) V0)
% 267.89/268.21  Found (x4 (a1 W)) as proof of False
% 267.89/268.21  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of False
% 267.89/268.21  Found (fun (x4:(((rel_b W) V0)->False))=> (x4 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 267.89/268.21  Found a10:=(a1 W):((rel_b W) W)
% 267.89/268.21  Found (a1 W) as proof of ((rel_b W) V0)
% 267.89/268.21  Found (a1 W) as proof of ((rel_b W) V0)
% 267.89/268.21  Found (a1 W) as proof of ((rel_b W) V0)
% 267.89/268.21  Found (x5 (a1 W)) as proof of False
% 267.89/268.21  Found (fun (x5:(((rel_b W) V0)->False))=> (x5 (a1 W))) as proof of False
% 267.89/268.21  Found (fun (x5:(((rel_b W) V0)->False))=> (x5 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 267.89/268.21  Found a10:=(a1 W):((rel_b W) W)
% 267.89/268.21  Found (a1 W) as proof of ((rel_b W) V0)
% 267.89/268.21  Found (a1 W) as proof of ((rel_b W) V0)
% 267.89/268.21  Found (a1 W) as proof of ((rel_b W) V0)
% 267.89/268.21  Found (x5 (a1 W)) as proof of False
% 267.89/268.21  Found (fun (x5:(((rel_b W) V0)->False))=> (x5 (a1 W))) as proof of False
% 267.89/268.21  Found (fun (x5:(((rel_b W) V0)->False))=> (x5 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 277.15/277.47  Found a10:=(a1 W):((rel_b W) W)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (x3 (a1 W)) as proof of False
% 277.15/277.47  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of False
% 277.15/277.47  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies p) q)) V)
% 277.15/277.47  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->((mnot ((mimplies p) q)) V))
% 277.15/277.47  Found a10:=(a1 W):((rel_b W) W)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (x3 (a1 W)) as proof of False
% 277.15/277.47  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of False
% 277.15/277.47  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies q) p)) V)
% 277.15/277.47  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->((mnot ((mimplies q) p)) V))
% 277.15/277.47  Found a10:=(a1 W):((rel_b W) W)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (x5 (a1 W)) as proof of False
% 277.15/277.47  Found (fun (x5:(((rel_b W) V0)->False))=> (x5 (a1 W))) as proof of False
% 277.15/277.47  Found (fun (x5:(((rel_b W) V0)->False))=> (x5 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 277.15/277.47  Found a10:=(a1 W):((rel_b W) W)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (x5 (a1 W)) as proof of False
% 277.15/277.47  Found (fun (x5:(((rel_b W) V0)->False))=> (x5 (a1 W))) as proof of False
% 277.15/277.47  Found (fun (x5:(((rel_b W) V0)->False))=> (x5 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 277.15/277.47  Found a10:=(a1 W):((rel_b W) W)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (x5 (a1 W)) as proof of False
% 277.15/277.47  Found (fun (x5:(((rel_b W) V0)->False))=> (x5 (a1 W))) as proof of False
% 277.15/277.47  Found (fun (x5:(((rel_b W) V0)->False))=> (x5 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 277.15/277.47  Found a10:=(a1 W):((rel_b W) W)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (x3 (a1 W)) as proof of False
% 277.15/277.47  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of False
% 277.15/277.47  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies p) q)) V)
% 277.15/277.47  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->((mnot ((mimplies p) q)) V))
% 277.15/277.47  Found a10:=(a1 W):((rel_b W) W)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (x5 (a1 W)) as proof of False
% 277.15/277.47  Found (fun (x5:(((rel_b W) V0)->False))=> (x5 (a1 W))) as proof of False
% 277.15/277.47  Found (fun (x5:(((rel_b W) V0)->False))=> (x5 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 277.15/277.47  Found a10:=(a1 W):((rel_b W) W)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (x3 (a1 W)) as proof of False
% 277.15/277.47  Found (fun (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of False
% 277.15/277.47  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies q) p)) V)
% 277.15/277.47  Found (fun (x3:(((rel_b W) V0)->False)) (x4:(((mimplies q) p) V))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->((mnot ((mimplies q) p)) V))
% 277.15/277.47  Found a10:=(a1 W):((rel_b W) W)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (x5 (a1 W)) as proof of False
% 277.15/277.47  Found (fun (x5:(((rel_b W) V0)->False))=> (x5 (a1 W))) as proof of False
% 277.15/277.47  Found (fun (x5:(((rel_b W) V0)->False))=> (x5 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 277.15/277.47  Found a10:=(a1 W):((rel_b W) W)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 277.15/277.47  Found (a1 W) as proof of ((rel_b W) V0)
% 296.38/296.71  Found (a1 W) as proof of ((rel_b W) V0)
% 296.38/296.71  Found (x5 (a1 W)) as proof of False
% 296.38/296.71  Found (fun (x5:(((rel_b W) V0)->False))=> (x5 (a1 W))) as proof of False
% 296.38/296.71  Found (fun (x5:(((rel_b W) V0)->False))=> (x5 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 296.38/296.71  Found a10:=(a1 S):((rel_b S) S)
% 296.38/296.71  Found (a1 S) as proof of ((rel_b S) V0)
% 296.38/296.71  Found (a1 S) as proof of ((rel_b S) V0)
% 296.38/296.71  Found (a1 S) as proof of ((rel_b S) V0)
% 296.38/296.71  Found a10:=(a1 S):((rel_b S) S)
% 296.38/296.71  Found (a1 S) as proof of ((rel_b S) V)
% 296.38/296.71  Found (a1 S) as proof of ((rel_b S) V)
% 296.38/296.71  Found (a1 S) as proof of ((rel_b S) V)
% 296.38/296.71  Found (x2 (a1 S)) as proof of False
% 296.38/296.71  Found (fun (x2:(((rel_b S) V)->False))=> (x2 (a1 S))) as proof of False
% 296.38/296.71  Found (fun (x2:(((rel_b S) V)->False))=> (x2 (a1 S))) as proof of ((((rel_b S) V)->False)->False)
% 296.38/296.71  Found a10:=(a1 S):((rel_b S) S)
% 296.38/296.71  Found (a1 S) as proof of ((rel_b S) V)
% 296.38/296.71  Found (a1 S) as proof of ((rel_b S) V)
% 296.38/296.71  Found (a1 S) as proof of ((rel_b S) V)
% 296.38/296.71  Found (x2 (a1 S)) as proof of False
% 296.38/296.71  Found (fun (x2:(((rel_b S) V)->False))=> (x2 (a1 S))) as proof of False
% 296.38/296.71  Found (fun (x2:(((rel_b S) V)->False))=> (x2 (a1 S))) as proof of ((((rel_b S) V)->False)->False)
% 296.38/296.71  Found a10:=(a1 S):((rel_b S) S)
% 296.38/296.71  Found (a1 S) as proof of ((rel_b S) V0)
% 296.38/296.71  Found (a1 S) as proof of ((rel_b S) V0)
% 296.38/296.71  Found (a1 S) as proof of ((rel_b S) V0)
% 296.38/296.71  Found a10:=(a1 S):((rel_b S) S)
% 296.38/296.71  Found (a1 S) as proof of ((rel_b S) V0)
% 296.38/296.71  Found (a1 S) as proof of ((rel_b S) V0)
% 296.38/296.71  Found (a1 S) as proof of ((rel_b S) V0)
% 296.38/296.71  Found a10:=(a1 W):((rel_b W) W)
% 296.38/296.71  Found (a1 W) as proof of ((rel_b W) V0)
% 296.38/296.71  Found (a1 W) as proof of ((rel_b W) V0)
% 296.38/296.71  Found (a1 W) as proof of ((rel_b W) V0)
% 296.38/296.71  Found (x3 (a1 W)) as proof of False
% 296.38/296.71  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of False
% 296.38/296.71  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 296.38/296.71  Found a10:=(a1 W):((rel_b W) W)
% 296.38/296.71  Found (a1 W) as proof of ((rel_b W) V1)
% 296.38/296.71  Found (a1 W) as proof of ((rel_b W) V1)
% 296.38/296.71  Found (a1 W) as proof of ((rel_b W) V1)
% 296.38/296.71  Found a10:=(a1 W):((rel_b W) W)
% 296.38/296.71  Found (a1 W) as proof of ((rel_b W) V0)
% 296.38/296.71  Found (a1 W) as proof of ((rel_b W) V0)
% 296.38/296.71  Found (a1 W) as proof of ((rel_b W) V0)
% 296.38/296.71  Found (x3 (a1 W)) as proof of False
% 296.38/296.71  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of False
% 296.38/296.71  Found (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))) as proof of ((mnot ((mimplies p) q)) V)
% 296.38/296.71  Found (or_intror10 (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 296.38/296.71  Found ((or_intror1 ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 296.38/296.71  Found (((or_intror ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W)))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 296.38/296.71  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_intror ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))))) as proof of ((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V))
% 296.38/296.71  Found (fun (x3:(((rel_b W) V0)->False))=> (((or_intror ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)) (fun (x4:(((mimplies p) q) V))=> (x3 (a1 W))))) as proof of ((((rel_b W) V0)->False)->((or ((mnot ((mimplies q) p)) V)) ((mnot ((mimplies p) q)) V)))
% 296.38/296.71  Found a10:=(a1 W):((rel_b W) W)
% 296.38/296.71  Found (a1 W) as proof of ((rel_b W) V1)
% 296.38/296.71  Found (a1 W) as proof of ((rel_b W) V1)
% 296.38/296.71  Found (a1 W) as proof of ((rel_b W) V1)
% 296.38/296.71  Found a10:=(a1 S):((rel_b S) S)
% 296.38/296.71  Found (a1 S) as proof of ((rel_b S) V0)
% 296.38/296.71  Found (a1 S) as proof of ((rel_b S) V0)
% 296.38/296.71  Found (a1 S) as proof of ((rel_b S) V0)
% 296.38/296.71  Found a10:=(a1 W):((rel_b W) W)
% 296.38/296.71  Found (a1 W) as proof of ((rel_b W) V0)
% 296.38/296.71  Found (a1 W) as proof of ((rel_b W) V0)
% 296.38/296.71  Found (a1 W) as proof of ((rel_b W) V0)
% 296.38/296.71  Found (x3 (a1 W)) as proof of False
% 296.38/296.71  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of False
% 296.38/296.71  Found (fun (x3:(((rel_b W) V0)->False))=> (x3 (a1 W))) as proof of ((((rel_b W) V0)->False)->False)
% 296.38/296.71  Found a10:=(a1 W):((rel_b W) W)
% 296.38/296.71  Found (a1 W) as proof of ((rel_b W) V1)
% 296.38/296.71  Found (a1 W) as proof of ((rel_b W) V1)
% 296.38/296.71  Found (a1 W) as proof of ((
%------------------------------------------------------------------------------