TSTP Solution File: SYN986+1.001 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : SYN986+1.001 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n021.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Fri Sep  1 03:36:46 EDT 2023

% Result   : Theorem 0.20s 0.39s
% Output   : Proof 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.08/0.13  % Problem  : SYN986+1.001 : TPTP v8.1.2. Released v4.0.0.
% 0.13/0.14  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.35  % Computer : n021.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit : 300
% 0.13/0.35  % WCLimit  : 300
% 0.13/0.35  % DateTime : Sat Aug 26 19:37:42 EDT 2023
% 0.13/0.35  % CPUTime  : 
% 0.20/0.39  Command-line arguments: --kbo-weight0 --lhs-weight 5 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10 --goal-heuristic
% 0.20/0.39  
% 0.20/0.39  % SZS status Theorem
% 0.20/0.39  
% 0.20/0.40  % SZS output start Proof
% 0.20/0.40  Take the following subset of the input axioms:
% 0.20/0.40    fof(ck, conjecture, ?[Z1, Z0]: (r(zero, zero, Z1) & r(zero, Z1, Z0))).
% 0.20/0.40    fof(hyp1, axiom, ![Y]: r(Y, zero, succ(Y))).
% 0.20/0.40    fof(hyp2, axiom, ![X, Z, Y2, Z1_2]: (r(Y2, X, Z) => (r(Z, X, Z1_2) => r(Y2, succ(X), Z1_2)))).
% 0.20/0.40  
% 0.20/0.40  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.20/0.40  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.20/0.40  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.20/0.40    fresh(y, y, x1...xn) = u
% 0.20/0.40    C => fresh(s, t, x1...xn) = v
% 0.20/0.40  where fresh is a fresh function symbol and x1..xn are the free
% 0.20/0.40  variables of u and v.
% 0.20/0.40  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.20/0.40  input problem has no model of domain size 1).
% 0.20/0.40  
% 0.20/0.40  The encoding turns the above axioms into the following unit equations and goals:
% 0.20/0.40  
% 0.20/0.40  Axiom 1 (hyp1): r(X, zero, succ(X)) = true2.
% 0.20/0.40  Axiom 2 (hyp2): fresh2(X, X, Y, Z, W) = true2.
% 0.20/0.40  Axiom 3 (hyp2): fresh(X, X, Y, Z, W, V) = r(Y, succ(Z), V).
% 0.20/0.40  Axiom 4 (hyp2): fresh(r(X, Y, Z), true2, W, Y, X, Z) = fresh2(r(W, Y, X), true2, W, Y, Z).
% 0.20/0.40  
% 0.20/0.40  Goal 1 (ck): tuple(r(zero, X, Y), r(zero, zero, X)) = tuple(true2, true2).
% 0.20/0.40  The goal is true when:
% 0.20/0.40    X = succ(zero)
% 0.20/0.40    Y = succ(succ(zero))
% 0.20/0.40  
% 0.20/0.40  Proof:
% 0.20/0.40    tuple(r(zero, succ(zero), succ(succ(zero))), r(zero, zero, succ(zero)))
% 0.20/0.40  = { by axiom 3 (hyp2) R->L }
% 0.20/0.40    tuple(fresh(true2, true2, zero, zero, succ(zero), succ(succ(zero))), r(zero, zero, succ(zero)))
% 0.20/0.40  = { by axiom 1 (hyp1) R->L }
% 0.20/0.40    tuple(fresh(r(succ(zero), zero, succ(succ(zero))), true2, zero, zero, succ(zero), succ(succ(zero))), r(zero, zero, succ(zero)))
% 0.20/0.40  = { by axiom 4 (hyp2) }
% 0.20/0.40    tuple(fresh2(r(zero, zero, succ(zero)), true2, zero, zero, succ(succ(zero))), r(zero, zero, succ(zero)))
% 0.20/0.40  = { by axiom 1 (hyp1) }
% 0.20/0.40    tuple(fresh2(true2, true2, zero, zero, succ(succ(zero))), r(zero, zero, succ(zero)))
% 0.20/0.40  = { by axiom 2 (hyp2) }
% 0.20/0.40    tuple(true2, r(zero, zero, succ(zero)))
% 0.20/0.40  = { by axiom 1 (hyp1) }
% 0.20/0.40    tuple(true2, true2)
% 0.20/0.40  % SZS output end Proof
% 0.20/0.40  
% 0.20/0.40  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------