TSTP Solution File: SYN568-1 by Etableau---0.67

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Etableau---0.67
% Problem  : SYN568-1 : TPTP v8.1.0. Released v2.5.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : etableau --auto --tsmdo --quicksat=10000 --tableau=1 --tableau-saturation=1 -s -p --tableau-cores=8 --cpu-limit=%d %s

% Computer : n017.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Thu Jul 21 06:12:31 EDT 2022

% Result   : Unsatisfiable 0.20s 0.37s
% Output   : CNFRefutation 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.04/0.12  % Problem  : SYN568-1 : TPTP v8.1.0. Released v2.5.0.
% 0.04/0.13  % Command  : etableau --auto --tsmdo --quicksat=10000 --tableau=1 --tableau-saturation=1 -s -p --tableau-cores=8 --cpu-limit=%d %s
% 0.14/0.34  % Computer : n017.cluster.edu
% 0.14/0.34  % Model    : x86_64 x86_64
% 0.14/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.34  % Memory   : 8042.1875MB
% 0.14/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.34  % CPULimit : 300
% 0.14/0.34  % WCLimit  : 600
% 0.14/0.34  % DateTime : Tue Jul 12 03:02:04 EDT 2022
% 0.14/0.34  % CPUTime  : 
% 0.20/0.37  # No SInE strategy applied
% 0.20/0.37  # Auto-Mode selected heuristic G_E___208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AN
% 0.20/0.37  # and selection function SelectComplexExceptUniqMaxHorn.
% 0.20/0.37  #
% 0.20/0.37  # Presaturation interreduction done
% 0.20/0.37  # Number of axioms: 20 Number of unprocessed: 20
% 0.20/0.37  # Tableaux proof search.
% 0.20/0.37  # APR header successfully linked.
% 0.20/0.37  # Hello from C++
% 0.20/0.37  # The folding up rule is enabled...
% 0.20/0.37  # Local unification is enabled...
% 0.20/0.37  # Any saturation attempts will use folding labels...
% 0.20/0.37  # 20 beginning clauses after preprocessing and clausification
% 0.20/0.37  # Creating start rules for all 20 conjectures.
% 0.20/0.37  # There are 20 start rule candidates:
% 0.20/0.37  # Found 6 unit axioms.
% 0.20/0.37  # Unsuccessfully attempted saturation on 1 start tableaux, moving on.
% 0.20/0.37  # 20 start rule tableaux created.
% 0.20/0.37  # 14 extension rule candidate clauses
% 0.20/0.37  # 6 unit axiom clauses
% 0.20/0.37  
% 0.20/0.37  # Requested 8, 32 cores available to the main process.
% 0.20/0.37  # Closed tableau found in foldup close cycle with 3 folds and 1 closures done.
% 0.20/0.37  # There were 0 total branch saturation attempts.
% 0.20/0.37  # There were 0 of these attempts blocked.
% 0.20/0.37  # There were 0 deferred branch saturation attempts.
% 0.20/0.37  # There were 0 free duplicated saturations.
% 0.20/0.37  # There were 0 total successful branch saturations.
% 0.20/0.37  # There were 0 successful branch saturations in interreduction.
% 0.20/0.37  # There were 0 successful branch saturations on the branch.
% 0.20/0.37  # There were 0 successful branch saturations after the branch.
% 0.20/0.37  # SZS status Unsatisfiable for /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.20/0.37  # SZS output start for /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.20/0.37  # Begin clausification derivation
% 0.20/0.37  
% 0.20/0.37  # End clausification derivation
% 0.20/0.37  # Begin listing active clauses obtained from FOF to CNF conversion
% 0.20/0.37  cnf(i_0_21, negated_conjecture, (p2(X1,X1))).
% 0.20/0.37  cnf(i_0_24, negated_conjecture, (p11(f5(f6(c12)),f9(X1)))).
% 0.20/0.37  cnf(i_0_38, negated_conjecture, (p11(f4(f9(c13),f6(f7(f8(c12)))),f4(f9(c14),f6(f7(f8(c12))))))).
% 0.20/0.37  cnf(i_0_22, negated_conjecture, (p3(X1,X1))).
% 0.20/0.37  cnf(i_0_23, negated_conjecture, (~p11(f9(c13),f9(c14)))).
% 0.20/0.37  cnf(i_0_27, negated_conjecture, (~p3(f6(f7(f8(c12))),f6(c12)))).
% 0.20/0.37  cnf(i_0_25, negated_conjecture, (p10(X1,X2)|p11(X2,X1))).
% 0.20/0.37  cnf(i_0_26, negated_conjecture, (~p10(X1,X2)|~p11(X2,X1))).
% 0.20/0.37  cnf(i_0_33, negated_conjecture, (p2(X1,X2)|~p2(X3,X2)|~p2(X3,X1))).
% 0.20/0.37  cnf(i_0_34, negated_conjecture, (p3(X1,X2)|~p3(X3,X2)|~p3(X3,X1))).
% 0.20/0.37  cnf(i_0_30, negated_conjecture, (p2(f9(X1),f9(X2))|~p2(X1,X2))).
% 0.20/0.37  cnf(i_0_29, negated_conjecture, (p2(f5(X1),f5(X2))|~p3(X1,X2))).
% 0.20/0.37  cnf(i_0_31, negated_conjecture, (p3(f6(X1),f6(X2))|~p3(X1,X2))).
% 0.20/0.37  cnf(i_0_28, negated_conjecture, (p3(f8(X1),f8(X2))|~p3(X1,X2))).
% 0.20/0.37  cnf(i_0_32, negated_conjecture, (p3(f7(X1),f7(X2))|~p3(X1,X2))).
% 0.20/0.37  cnf(i_0_37, negated_conjecture, (p2(f4(X1,X2),f4(X3,X4))|~p3(X2,X4)|~p2(X1,X3))).
% 0.20/0.37  cnf(i_0_36, negated_conjecture, (p11(X1,X2)|~p11(X3,X4)|~p2(X4,X2)|~p2(X3,X1))).
% 0.20/0.37  cnf(i_0_39, negated_conjecture, (p11(f4(X1,X2),f4(X3,X2))|~p11(f5(f6(c12)),X1)|~p11(X1,X3))).
% 0.20/0.37  cnf(i_0_35, negated_conjecture, (p10(X1,X2)|~p10(X3,X4)|~p2(X4,X2)|~p2(X3,X1))).
% 0.20/0.37  cnf(i_0_40, negated_conjecture, (p10(f4(X1,X2),f4(X3,X2))|p3(X2,f6(c12))|~p10(X1,X3)|~p11(f5(f6(c12)),X1))).
% 0.20/0.37  # End listing active clauses.  There is an equivalent clause to each of these in the clausification!
% 0.20/0.37  # Begin printing tableau
% 0.20/0.37  # Found 15 steps
% 0.20/0.37  cnf(i_0_35, negated_conjecture, (p10(f9(c14),f9(c13))|~p10(f9(c14),f9(c13))|~p2(f9(c13),f9(c13))|~p2(f9(c14),f9(c14))), inference(start_rule)).
% 0.20/0.37  cnf(i_0_47, plain, (~p2(f9(c13),f9(c13))), inference(closure_rule, [i_0_21])).
% 0.20/0.37  cnf(i_0_48, plain, (~p2(f9(c14),f9(c14))), inference(closure_rule, [i_0_21])).
% 0.20/0.37  cnf(i_0_45, plain, (p10(f9(c14),f9(c13))), inference(extension_rule, [i_0_40])).
% 0.20/0.37  cnf(i_0_86, plain, (p3(f6(f7(f8(c12))),f6(c12))), inference(closure_rule, [i_0_27])).
% 0.20/0.37  cnf(i_0_88, plain, (~p11(f5(f6(c12)),f9(c14))), inference(closure_rule, [i_0_24])).
% 0.20/0.37  cnf(i_0_85, plain, (p10(f4(f9(c14),f6(f7(f8(c12)))),f4(f9(c13),f6(f7(f8(c12)))))), inference(extension_rule, [i_0_35])).
% 0.20/0.37  cnf(i_0_91, plain, (~p2(f4(f9(c13),f6(f7(f8(c12)))),f4(f9(c13),f6(f7(f8(c12)))))), inference(closure_rule, [i_0_21])).
% 0.20/0.37  cnf(i_0_89, plain, (p10(f4(f9(c14),f6(f7(f8(c12)))),f4(f9(c13),f6(f7(f8(c12)))))), inference(extension_rule, [i_0_26])).
% 0.20/0.37  cnf(i_0_120, plain, (~p11(f4(f9(c13),f6(f7(f8(c12)))),f4(f9(c14),f6(f7(f8(c12)))))), inference(closure_rule, [i_0_38])).
% 0.20/0.37  cnf(i_0_92, plain, (~p2(f4(f9(c14),f6(f7(f8(c12)))),f4(f9(c14),f6(f7(f8(c12)))))), inference(extension_rule, [i_0_37])).
% 0.20/0.37  cnf(i_0_129, plain, (~p3(f6(f7(f8(c12))),f6(f7(f8(c12))))), inference(closure_rule, [i_0_22])).
% 0.20/0.38  cnf(i_0_130, plain, (~p2(f9(c14),f9(c14))), inference(closure_rule, [i_0_21])).
% 0.20/0.38  cnf(i_0_46, plain, (~p10(f9(c14),f9(c13))), inference(extension_rule, [i_0_25])).
% 0.20/0.38  cnf(i_0_155, plain, (p11(f9(c13),f9(c14))), inference(closure_rule, [i_0_23])).
% 0.20/0.38  # End printing tableau
% 0.20/0.38  # SZS output end
% 0.20/0.38  # Branches closed with saturation will be marked with an "s"
% 0.20/0.38  # Child (11889) has found a proof.
% 0.20/0.38  
% 0.20/0.38  # Proof search is over...
% 0.20/0.38  # Freeing feature tree
%------------------------------------------------------------------------------