TSTP Solution File: SYN467+1 by Zenon---0.7.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Zenon---0.7.1
% Problem  : SYN467+1 : TPTP v8.1.0. Released v2.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_zenon %s %d

% Computer : n006.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Thu Jul 21 13:53:10 EDT 2022

% Result   : Theorem 0.83s 1.02s
% Output   : Proof 0.93s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.11  % Problem  : SYN467+1 : TPTP v8.1.0. Released v2.1.0.
% 0.00/0.11  % Command  : run_zenon %s %d
% 0.11/0.32  % Computer : n006.cluster.edu
% 0.11/0.32  % Model    : x86_64 x86_64
% 0.11/0.32  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.11/0.32  % Memory   : 8042.1875MB
% 0.11/0.32  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.11/0.32  % CPULimit : 300
% 0.11/0.32  % WCLimit  : 600
% 0.11/0.32  % DateTime : Tue Jul 12 02:44:35 EDT 2022
% 0.11/0.32  % CPUTime  : 
% 0.83/1.02  (* PROOF-FOUND *)
% 0.83/1.02  % SZS status Theorem
% 0.83/1.02  (* BEGIN-PROOF *)
% 0.83/1.02  % SZS output start Proof
% 0.83/1.02  Theorem co1 : (~(((~(hskp0))\/((ndr1_0)/\((c3_1 (a199))/\((~(c0_1 (a199)))/\(~(c1_1 (a199)))))))/\(((~(hskp1))\/((ndr1_0)/\((c0_1 (a200))/\((~(c1_1 (a200)))/\(~(c2_1 (a200)))))))/\(((~(hskp2))\/((ndr1_0)/\((c2_1 (a201))/\((~(c0_1 (a201)))/\(~(c1_1 (a201)))))))/\(((~(hskp3))\/((ndr1_0)/\((c1_1 (a203))/\((~(c0_1 (a203)))/\(~(c3_1 (a203)))))))/\(((~(hskp4))\/((ndr1_0)/\((c1_1 (a204))/\((~(c0_1 (a204)))/\(~(c2_1 (a204)))))))/\(((~(hskp5))\/((ndr1_0)/\((c2_1 (a205))/\((c3_1 (a205))/\(~(c1_1 (a205)))))))/\(((~(hskp6))\/((ndr1_0)/\((c0_1 (a208))/\((c1_1 (a208))/\(~(c2_1 (a208)))))))/\(((~(hskp7))\/((ndr1_0)/\((c0_1 (a209))/\((c1_1 (a209))/\(~(c3_1 (a209)))))))/\(((~(hskp8))\/((ndr1_0)/\((c0_1 (a212))/\((c3_1 (a212))/\(~(c1_1 (a212)))))))/\(((~(hskp9))\/((ndr1_0)/\((~(c0_1 (a213)))/\((~(c1_1 (a213)))/\(~(c2_1 (a213)))))))/\(((~(hskp10))\/((ndr1_0)/\((c1_1 (a214))/\((~(c2_1 (a214)))/\(~(c3_1 (a214)))))))/\(((~(hskp11))\/((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216)))))))/\(((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217)))))))/\(((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))))/\(((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))))/\(((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))))/\(((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))))/\(((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232)))))))/\(((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))))/\(((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))))/\(((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239)))))))/\(((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241)))))))/\(((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))))/\(((~(hskp23))\/((ndr1_0)/\((~(c0_1 (a248)))/\((~(c2_1 (a248)))/\(~(c3_1 (a248)))))))/\(((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))))/\(((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256)))))))/\(((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281)))))))/\(((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))))/\(((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202))))))/\(((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227))))))/\(((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230))))))/\(((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W))))))))/\(((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z))))))))/\(((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((hskp27)\/(hskp0)))/\(((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((hskp1)\/(hskp2)))/\(((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28)))/\(((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/(hskp3)))/\(((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((hskp4)\/(hskp5)))/\(((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))))/\(((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(hskp3)))/\(((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0)))/\(((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7)))/\(((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))))/\(((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4)))/\(((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))))/\(((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W))))))))/\(((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0)))/\(((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((hskp8)\/(hskp9)))/\(((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))))/\(((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))))/\(((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38))))))))/\(((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10)))/\(((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))))/\(((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10)))/\(((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11)))/\(((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12)))/\(((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))))/\(((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13)))/\(((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14)))/\(((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp6)\/(hskp1)))/\(((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp8)\/(hskp14)))/\(((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5)))/\(((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))))/\(((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14)))/\(((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15)))/\(((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27))/\(((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16)))/\(((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp17)\/(hskp18)))/\(((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12)))/\(((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp15)\/(hskp1)))/\(((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20)))/\(((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/(hskp17)))/\(((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W))))))))/\(((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21)))/\(((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))))/\(((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17)))/\(((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22)))/\(((forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38))))))\/((hskp1)\/(hskp14)))/\(((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23)))/\(((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22)))/\(((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18)))/\(((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))))/\(((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3)))/\(((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18)))/\(((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19)))/\(((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15)))/\(((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp21))/\(((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19)))/\(((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17)))/\(((forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z))))))\/((hskp7)\/(hskp24)))/\(((forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z))))))\/((hskp8)\/(hskp11)))/\(((forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z))))))\/((hskp10)\/(hskp9)))/\(((hskp27)\/((hskp24)\/(hskp4)))/\(((hskp6)\/((hskp10)\/(hskp20)))/\(((hskp6)\/(hskp9))/\(((hskp15)\/((hskp8)\/(hskp26)))/\(((hskp8)\/((hskp13)\/(hskp18)))/\(((hskp8)\/((hskp14)\/(hskp22)))/\((hskp24)\/((hskp4)\/(hskp18)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))).
% 0.83/1.02  Proof.
% 0.83/1.02  assert (zenon_L1_ : (~(hskp6)) -> (hskp6) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H1 zenon_H2.
% 0.83/1.02  exact (zenon_H1 zenon_H2).
% 0.83/1.02  (* end of lemma zenon_L1_ *)
% 0.83/1.02  assert (zenon_L2_ : (~(hskp9)) -> (hskp9) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H3 zenon_H4.
% 0.83/1.02  exact (zenon_H3 zenon_H4).
% 0.83/1.02  (* end of lemma zenon_L2_ *)
% 0.83/1.02  assert (zenon_L3_ : ((hskp6)\/(hskp9)) -> (~(hskp9)) -> (~(hskp6)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H5 zenon_H3 zenon_H1.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H5); [ zenon_intro zenon_H2 | zenon_intro zenon_H4 ].
% 0.83/1.02  exact (zenon_H1 zenon_H2).
% 0.83/1.02  exact (zenon_H3 zenon_H4).
% 0.83/1.02  (* end of lemma zenon_L3_ *)
% 0.83/1.02  assert (zenon_L4_ : (~(ndr1_0)) -> (ndr1_0) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H6 zenon_H7.
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  (* end of lemma zenon_L4_ *)
% 0.83/1.02  assert (zenon_L5_ : (forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U))))) -> (ndr1_0) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H8 zenon_H7 zenon_H9 zenon_Ha zenon_Hb.
% 0.83/1.02  generalize (zenon_H8 (a213)). zenon_intro zenon_Hc.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_Hc); [ zenon_intro zenon_H6 | zenon_intro zenon_Hd ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hd); [ zenon_intro zenon_Hf | zenon_intro zenon_He ].
% 0.83/1.02  exact (zenon_H9 zenon_Hf).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_He); [ zenon_intro zenon_H11 | zenon_intro zenon_H10 ].
% 0.83/1.02  exact (zenon_Ha zenon_H11).
% 0.83/1.02  exact (zenon_Hb zenon_H10).
% 0.83/1.02  (* end of lemma zenon_L5_ *)
% 0.83/1.02  assert (zenon_L6_ : (~(hskp1)) -> (hskp1) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H12 zenon_H13.
% 0.83/1.02  exact (zenon_H12 zenon_H13).
% 0.83/1.02  (* end of lemma zenon_L6_ *)
% 0.83/1.02  assert (zenon_L7_ : (~(hskp2)) -> (hskp2) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H14 zenon_H15.
% 0.83/1.02  exact (zenon_H14 zenon_H15).
% 0.83/1.02  (* end of lemma zenon_L7_ *)
% 0.83/1.02  assert (zenon_L8_ : ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((hskp1)\/(hskp2))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (ndr1_0) -> (~(hskp1)) -> (~(hskp2)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H16 zenon_Hb zenon_Ha zenon_H9 zenon_H7 zenon_H12 zenon_H14.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H16); [ zenon_intro zenon_H8 | zenon_intro zenon_H17 ].
% 0.83/1.02  apply (zenon_L5_); trivial.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H17); [ zenon_intro zenon_H13 | zenon_intro zenon_H15 ].
% 0.83/1.02  exact (zenon_H12 zenon_H13).
% 0.83/1.02  exact (zenon_H14 zenon_H15).
% 0.83/1.02  (* end of lemma zenon_L8_ *)
% 0.83/1.02  assert (zenon_L9_ : (~(hskp8)) -> (hskp8) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H18 zenon_H19.
% 0.83/1.02  exact (zenon_H18 zenon_H19).
% 0.83/1.02  (* end of lemma zenon_L9_ *)
% 0.83/1.02  assert (zenon_L10_ : (~(hskp13)) -> (hskp13) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H1a zenon_H1b.
% 0.83/1.02  exact (zenon_H1a zenon_H1b).
% 0.83/1.02  (* end of lemma zenon_L10_ *)
% 0.83/1.02  assert (zenon_L11_ : (~(hskp18)) -> (hskp18) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H1c zenon_H1d.
% 0.83/1.02  exact (zenon_H1c zenon_H1d).
% 0.83/1.02  (* end of lemma zenon_L11_ *)
% 0.83/1.02  assert (zenon_L12_ : ((hskp8)\/((hskp13)\/(hskp18))) -> (~(hskp8)) -> (~(hskp13)) -> (~(hskp18)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H1e zenon_H18 zenon_H1a zenon_H1c.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H1e); [ zenon_intro zenon_H19 | zenon_intro zenon_H1f ].
% 0.83/1.02  exact (zenon_H18 zenon_H19).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H1f); [ zenon_intro zenon_H1b | zenon_intro zenon_H1d ].
% 0.83/1.02  exact (zenon_H1a zenon_H1b).
% 0.83/1.02  exact (zenon_H1c zenon_H1d).
% 0.83/1.02  (* end of lemma zenon_L12_ *)
% 0.83/1.02  assert (zenon_L13_ : (forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66))))) -> (ndr1_0) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H20 zenon_H7 zenon_H21 zenon_H22 zenon_H23.
% 0.83/1.02  generalize (zenon_H20 (a233)). zenon_intro zenon_H24.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_H24); [ zenon_intro zenon_H6 | zenon_intro zenon_H25 ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H25); [ zenon_intro zenon_H27 | zenon_intro zenon_H26 ].
% 0.83/1.02  exact (zenon_H21 zenon_H27).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H26); [ zenon_intro zenon_H29 | zenon_intro zenon_H28 ].
% 0.83/1.02  exact (zenon_H22 zenon_H29).
% 0.83/1.02  exact (zenon_H23 zenon_H28).
% 0.83/1.02  (* end of lemma zenon_L13_ *)
% 0.83/1.02  assert (zenon_L14_ : (~(hskp30)) -> (hskp30) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H2a zenon_H2b.
% 0.83/1.02  exact (zenon_H2a zenon_H2b).
% 0.83/1.02  (* end of lemma zenon_L14_ *)
% 0.83/1.02  assert (zenon_L15_ : (~(hskp16)) -> (hskp16) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H2c zenon_H2d.
% 0.83/1.02  exact (zenon_H2c zenon_H2d).
% 0.83/1.02  (* end of lemma zenon_L15_ *)
% 0.83/1.02  assert (zenon_L16_ : ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(c3_1 (a233))) -> (~(c2_1 (a233))) -> (~(c1_1 (a233))) -> (ndr1_0) -> (~(hskp30)) -> (~(hskp16)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H2e zenon_H23 zenon_H22 zenon_H21 zenon_H7 zenon_H2a zenon_H2c.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H2e); [ zenon_intro zenon_H20 | zenon_intro zenon_H2f ].
% 0.83/1.02  apply (zenon_L13_); trivial.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H2f); [ zenon_intro zenon_H2b | zenon_intro zenon_H2d ].
% 0.83/1.02  exact (zenon_H2a zenon_H2b).
% 0.83/1.02  exact (zenon_H2c zenon_H2d).
% 0.83/1.02  (* end of lemma zenon_L16_ *)
% 0.83/1.02  assert (zenon_L17_ : (forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12)))))) -> (ndr1_0) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H30 zenon_H7 zenon_H31 zenon_H32 zenon_H33.
% 0.83/1.02  generalize (zenon_H30 (a208)). zenon_intro zenon_H34.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_H34); [ zenon_intro zenon_H6 | zenon_intro zenon_H35 ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H35); [ zenon_intro zenon_H37 | zenon_intro zenon_H36 ].
% 0.83/1.02  exact (zenon_H31 zenon_H37).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H36); [ zenon_intro zenon_H39 | zenon_intro zenon_H38 ].
% 0.83/1.02  exact (zenon_H39 zenon_H32).
% 0.83/1.02  exact (zenon_H38 zenon_H33).
% 0.83/1.02  (* end of lemma zenon_L17_ *)
% 0.83/1.02  assert (zenon_L18_ : (forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))) -> (ndr1_0) -> (c0_1 (a230)) -> (c2_1 (a230)) -> (c3_1 (a230)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H3a zenon_H7 zenon_H3b zenon_H3c zenon_H3d.
% 0.83/1.02  generalize (zenon_H3a (a230)). zenon_intro zenon_H3e.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_H3e); [ zenon_intro zenon_H6 | zenon_intro zenon_H3f ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H3f); [ zenon_intro zenon_H41 | zenon_intro zenon_H40 ].
% 0.83/1.02  exact (zenon_H41 zenon_H3b).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H40); [ zenon_intro zenon_H43 | zenon_intro zenon_H42 ].
% 0.83/1.02  exact (zenon_H43 zenon_H3c).
% 0.83/1.02  exact (zenon_H42 zenon_H3d).
% 0.83/1.02  (* end of lemma zenon_L18_ *)
% 0.83/1.02  assert (zenon_L19_ : (~(hskp3)) -> (hskp3) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H44 zenon_H45.
% 0.83/1.02  exact (zenon_H44 zenon_H45).
% 0.83/1.02  (* end of lemma zenon_L19_ *)
% 0.83/1.02  assert (zenon_L20_ : ((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230))))) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (~(hskp3)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H46 zenon_H47 zenon_H33 zenon_H32 zenon_H31 zenon_H44.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H46). zenon_intro zenon_H7. zenon_intro zenon_H48.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H48). zenon_intro zenon_H3b. zenon_intro zenon_H49.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H49). zenon_intro zenon_H3c. zenon_intro zenon_H3d.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H47); [ zenon_intro zenon_H30 | zenon_intro zenon_H4a ].
% 0.83/1.02  apply (zenon_L17_); trivial.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H4a); [ zenon_intro zenon_H3a | zenon_intro zenon_H45 ].
% 0.83/1.02  apply (zenon_L18_); trivial.
% 0.83/1.02  exact (zenon_H44 zenon_H45).
% 0.83/1.02  (* end of lemma zenon_L20_ *)
% 0.83/1.02  assert (zenon_L21_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp3)) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H4b zenon_H4c zenon_H47 zenon_H44 zenon_H33 zenon_H32 zenon_H31 zenon_H2c zenon_H2e.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H4c); [ zenon_intro zenon_H2a | zenon_intro zenon_H46 ].
% 0.83/1.02  apply (zenon_L16_); trivial.
% 0.83/1.02  apply (zenon_L20_); trivial.
% 0.83/1.02  (* end of lemma zenon_L21_ *)
% 0.83/1.02  assert (zenon_L22_ : ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp3)) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(hskp8)) -> (~(hskp13)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H4f zenon_H4c zenon_H47 zenon_H44 zenon_H33 zenon_H32 zenon_H31 zenon_H2c zenon_H2e zenon_H18 zenon_H1a zenon_H1e.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.02  apply (zenon_L12_); trivial.
% 0.83/1.02  apply (zenon_L21_); trivial.
% 0.83/1.02  (* end of lemma zenon_L22_ *)
% 0.83/1.02  assert (zenon_L23_ : (~(hskp15)) -> (hskp15) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H50 zenon_H51.
% 0.83/1.02  exact (zenon_H50 zenon_H51).
% 0.83/1.02  (* end of lemma zenon_L23_ *)
% 0.83/1.02  assert (zenon_L24_ : (~(hskp26)) -> (hskp26) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H52 zenon_H53.
% 0.83/1.02  exact (zenon_H52 zenon_H53).
% 0.83/1.02  (* end of lemma zenon_L24_ *)
% 0.83/1.02  assert (zenon_L25_ : ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp15)) -> (~(hskp8)) -> (~(hskp26)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H54 zenon_H50 zenon_H18 zenon_H52.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H54); [ zenon_intro zenon_H51 | zenon_intro zenon_H55 ].
% 0.83/1.02  exact (zenon_H50 zenon_H51).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H55); [ zenon_intro zenon_H19 | zenon_intro zenon_H53 ].
% 0.83/1.02  exact (zenon_H18 zenon_H19).
% 0.83/1.02  exact (zenon_H52 zenon_H53).
% 0.83/1.02  (* end of lemma zenon_L25_ *)
% 0.83/1.02  assert (zenon_L26_ : (forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))) -> (ndr1_0) -> (~(c3_1 (a281))) -> (c1_1 (a281)) -> (c2_1 (a281)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H56 zenon_H7 zenon_H57 zenon_H58 zenon_H59.
% 0.83/1.02  generalize (zenon_H56 (a281)). zenon_intro zenon_H5a.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_H5a); [ zenon_intro zenon_H6 | zenon_intro zenon_H5b ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H5b); [ zenon_intro zenon_H5d | zenon_intro zenon_H5c ].
% 0.83/1.02  exact (zenon_H57 zenon_H5d).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H5c); [ zenon_intro zenon_H5f | zenon_intro zenon_H5e ].
% 0.83/1.02  exact (zenon_H5f zenon_H58).
% 0.83/1.02  exact (zenon_H5e zenon_H59).
% 0.83/1.02  (* end of lemma zenon_L26_ *)
% 0.83/1.02  assert (zenon_L27_ : (~(hskp14)) -> (hskp14) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H60 zenon_H61.
% 0.83/1.02  exact (zenon_H60 zenon_H61).
% 0.83/1.02  (* end of lemma zenon_L27_ *)
% 0.83/1.02  assert (zenon_L28_ : (~(hskp17)) -> (hskp17) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H62 zenon_H63.
% 0.83/1.02  exact (zenon_H62 zenon_H63).
% 0.83/1.02  (* end of lemma zenon_L28_ *)
% 0.83/1.02  assert (zenon_L29_ : ((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281)))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp14)) -> (~(hskp17)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H64 zenon_H65 zenon_H60 zenon_H62.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H64). zenon_intro zenon_H7. zenon_intro zenon_H66.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H66). zenon_intro zenon_H58. zenon_intro zenon_H67.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H67). zenon_intro zenon_H59. zenon_intro zenon_H57.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H65); [ zenon_intro zenon_H56 | zenon_intro zenon_H68 ].
% 0.83/1.02  apply (zenon_L26_); trivial.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H68); [ zenon_intro zenon_H61 | zenon_intro zenon_H63 ].
% 0.83/1.02  exact (zenon_H60 zenon_H61).
% 0.83/1.02  exact (zenon_H62 zenon_H63).
% 0.83/1.02  (* end of lemma zenon_L29_ *)
% 0.83/1.02  assert (zenon_L30_ : ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp17)) -> (~(hskp14)) -> (~(hskp15)) -> (~(hskp8)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H69 zenon_H65 zenon_H62 zenon_H60 zenon_H50 zenon_H18 zenon_H54.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H69); [ zenon_intro zenon_H52 | zenon_intro zenon_H64 ].
% 0.83/1.02  apply (zenon_L25_); trivial.
% 0.83/1.02  apply (zenon_L29_); trivial.
% 0.83/1.02  (* end of lemma zenon_L30_ *)
% 0.83/1.02  assert (zenon_L31_ : (forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))) -> (ndr1_0) -> (~(c1_1 (a231))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H6a zenon_H7 zenon_H6b zenon_H6c zenon_H6d.
% 0.83/1.02  generalize (zenon_H6a (a231)). zenon_intro zenon_H6e.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_H6e); [ zenon_intro zenon_H6 | zenon_intro zenon_H6f ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H6f); [ zenon_intro zenon_H71 | zenon_intro zenon_H70 ].
% 0.83/1.02  exact (zenon_H6b zenon_H71).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H70); [ zenon_intro zenon_H73 | zenon_intro zenon_H72 ].
% 0.83/1.02  exact (zenon_H6c zenon_H73).
% 0.83/1.02  exact (zenon_H72 zenon_H6d).
% 0.83/1.02  (* end of lemma zenon_L31_ *)
% 0.83/1.02  assert (zenon_L32_ : (~(hskp22)) -> (hskp22) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H74 zenon_H75.
% 0.83/1.02  exact (zenon_H74 zenon_H75).
% 0.83/1.02  (* end of lemma zenon_L32_ *)
% 0.83/1.02  assert (zenon_L33_ : ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> (~(c1_1 (a231))) -> (ndr1_0) -> (~(hskp3)) -> (~(hskp22)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H76 zenon_H6d zenon_H6c zenon_H6b zenon_H7 zenon_H44 zenon_H74.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H76); [ zenon_intro zenon_H6a | zenon_intro zenon_H77 ].
% 0.83/1.02  apply (zenon_L31_); trivial.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H77); [ zenon_intro zenon_H45 | zenon_intro zenon_H75 ].
% 0.83/1.02  exact (zenon_H44 zenon_H45).
% 0.83/1.02  exact (zenon_H74 zenon_H75).
% 0.83/1.02  (* end of lemma zenon_L33_ *)
% 0.83/1.02  assert (zenon_L34_ : (~(hskp27)) -> (hskp27) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H78 zenon_H79.
% 0.83/1.02  exact (zenon_H78 zenon_H79).
% 0.83/1.02  (* end of lemma zenon_L34_ *)
% 0.83/1.02  assert (zenon_L35_ : (~(hskp19)) -> (hskp19) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H7a zenon_H7b.
% 0.83/1.02  exact (zenon_H7a zenon_H7b).
% 0.83/1.02  (* end of lemma zenon_L35_ *)
% 0.83/1.02  assert (zenon_L36_ : ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (c2_1 (a281)) -> (c1_1 (a281)) -> (~(c3_1 (a281))) -> (ndr1_0) -> (~(hskp27)) -> (~(hskp19)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H7c zenon_H59 zenon_H58 zenon_H57 zenon_H7 zenon_H78 zenon_H7a.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H7c); [ zenon_intro zenon_H56 | zenon_intro zenon_H7d ].
% 0.83/1.02  apply (zenon_L26_); trivial.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H7d); [ zenon_intro zenon_H79 | zenon_intro zenon_H7b ].
% 0.83/1.02  exact (zenon_H78 zenon_H79).
% 0.83/1.02  exact (zenon_H7a zenon_H7b).
% 0.83/1.02  (* end of lemma zenon_L36_ *)
% 0.83/1.02  assert (zenon_L37_ : (forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33)))))) -> (ndr1_0) -> (~(c0_1 (a244))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H7e zenon_H7 zenon_H7f zenon_H80 zenon_H81.
% 0.83/1.02  generalize (zenon_H7e (a244)). zenon_intro zenon_H82.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_H82); [ zenon_intro zenon_H6 | zenon_intro zenon_H83 ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H83); [ zenon_intro zenon_H85 | zenon_intro zenon_H84 ].
% 0.83/1.02  exact (zenon_H7f zenon_H85).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H84); [ zenon_intro zenon_H87 | zenon_intro zenon_H86 ].
% 0.83/1.02  exact (zenon_H80 zenon_H87).
% 0.83/1.02  exact (zenon_H86 zenon_H81).
% 0.83/1.02  (* end of lemma zenon_L37_ *)
% 0.83/1.02  assert (zenon_L38_ : (forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37)))))) -> (ndr1_0) -> (~(c1_1 (a232))) -> (~(c2_1 (a232))) -> (c3_1 (a232)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H88 zenon_H7 zenon_H89 zenon_H8a zenon_H8b.
% 0.83/1.02  generalize (zenon_H88 (a232)). zenon_intro zenon_H8c.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_H8c); [ zenon_intro zenon_H6 | zenon_intro zenon_H8d ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H8d); [ zenon_intro zenon_H8f | zenon_intro zenon_H8e ].
% 0.83/1.02  exact (zenon_H89 zenon_H8f).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H8e); [ zenon_intro zenon_H91 | zenon_intro zenon_H90 ].
% 0.83/1.02  exact (zenon_H8a zenon_H91).
% 0.83/1.02  exact (zenon_H90 zenon_H8b).
% 0.83/1.02  (* end of lemma zenon_L38_ *)
% 0.83/1.02  assert (zenon_L39_ : (forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25)))))) -> (ndr1_0) -> (forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))) -> (~(c1_1 (a231))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H92 zenon_H7 zenon_H93 zenon_H6b zenon_H6d zenon_H6c.
% 0.83/1.02  generalize (zenon_H92 (a231)). zenon_intro zenon_H94.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_H94); [ zenon_intro zenon_H6 | zenon_intro zenon_H95 ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H95); [ zenon_intro zenon_H96 | zenon_intro zenon_H70 ].
% 0.83/1.02  generalize (zenon_H93 (a231)). zenon_intro zenon_H97.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_H97); [ zenon_intro zenon_H6 | zenon_intro zenon_H98 ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H98); [ zenon_intro zenon_H71 | zenon_intro zenon_H99 ].
% 0.83/1.02  exact (zenon_H6b zenon_H71).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H99); [ zenon_intro zenon_H9a | zenon_intro zenon_H72 ].
% 0.83/1.02  exact (zenon_H9a zenon_H96).
% 0.83/1.02  exact (zenon_H72 zenon_H6d).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H70); [ zenon_intro zenon_H73 | zenon_intro zenon_H72 ].
% 0.83/1.02  exact (zenon_H6c zenon_H73).
% 0.83/1.02  exact (zenon_H72 zenon_H6d).
% 0.83/1.02  (* end of lemma zenon_L39_ *)
% 0.83/1.02  assert (zenon_L40_ : (forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))) -> (ndr1_0) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H9b zenon_H7 zenon_H9c zenon_H9d zenon_H9e.
% 0.83/1.02  generalize (zenon_H9b (a198)). zenon_intro zenon_H9f.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_H9f); [ zenon_intro zenon_H6 | zenon_intro zenon_Ha0 ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Ha0); [ zenon_intro zenon_Ha2 | zenon_intro zenon_Ha1 ].
% 0.83/1.02  exact (zenon_Ha2 zenon_H9c).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Ha1); [ zenon_intro zenon_Ha4 | zenon_intro zenon_Ha3 ].
% 0.83/1.02  exact (zenon_Ha4 zenon_H9d).
% 0.83/1.02  exact (zenon_Ha3 zenon_H9e).
% 0.83/1.02  (* end of lemma zenon_L40_ *)
% 0.83/1.02  assert (zenon_L41_ : ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> (~(c1_1 (a231))) -> (forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (ndr1_0) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_Ha5 zenon_H6c zenon_H6d zenon_H6b zenon_H93 zenon_H33 zenon_H32 zenon_H31 zenon_H7 zenon_H9c zenon_H9d zenon_H9e.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Ha5); [ zenon_intro zenon_H92 | zenon_intro zenon_Ha6 ].
% 0.83/1.02  apply (zenon_L39_); trivial.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Ha6); [ zenon_intro zenon_H30 | zenon_intro zenon_H9b ].
% 0.83/1.02  apply (zenon_L17_); trivial.
% 0.83/1.02  apply (zenon_L40_); trivial.
% 0.83/1.02  (* end of lemma zenon_L41_ *)
% 0.83/1.02  assert (zenon_L42_ : (~(hskp21)) -> (hskp21) -> False).
% 0.83/1.02  do 0 intro. intros zenon_Ha7 zenon_Ha8.
% 0.83/1.02  exact (zenon_Ha7 zenon_Ha8).
% 0.83/1.02  (* end of lemma zenon_L42_ *)
% 0.83/1.02  assert (zenon_L43_ : ((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281)))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c3_1 (a232)) -> (~(c2_1 (a232))) -> (~(c1_1 (a232))) -> (~(hskp21)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H64 zenon_Ha9 zenon_H8b zenon_H8a zenon_H89 zenon_Ha7.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H64). zenon_intro zenon_H7. zenon_intro zenon_H66.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H66). zenon_intro zenon_H58. zenon_intro zenon_H67.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H67). zenon_intro zenon_H59. zenon_intro zenon_H57.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Ha9); [ zenon_intro zenon_H88 | zenon_intro zenon_Haa ].
% 0.83/1.02  apply (zenon_L38_); trivial.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Haa); [ zenon_intro zenon_H56 | zenon_intro zenon_Ha8 ].
% 0.83/1.02  apply (zenon_L26_); trivial.
% 0.83/1.02  exact (zenon_Ha7 zenon_Ha8).
% 0.83/1.02  (* end of lemma zenon_L43_ *)
% 0.83/1.02  assert (zenon_L44_ : ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(hskp21)) -> (c3_1 (a232)) -> (~(c2_1 (a232))) -> (~(c1_1 (a232))) -> (~(hskp15)) -> (~(hskp8)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H69 zenon_Ha9 zenon_Ha7 zenon_H8b zenon_H8a zenon_H89 zenon_H50 zenon_H18 zenon_H54.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H69); [ zenon_intro zenon_H52 | zenon_intro zenon_H64 ].
% 0.83/1.02  apply (zenon_L25_); trivial.
% 0.83/1.02  apply (zenon_L43_); trivial.
% 0.83/1.02  (* end of lemma zenon_L44_ *)
% 0.83/1.02  assert (zenon_L45_ : ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp27)) -> (~(c3_1 (a233))) -> (~(c2_1 (a233))) -> (~(c1_1 (a233))) -> (ndr1_0) -> False).
% 0.83/1.02  do 0 intro. intros zenon_Hab zenon_H78 zenon_H23 zenon_H22 zenon_H21 zenon_H7.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hab); [ zenon_intro zenon_H20 | zenon_intro zenon_H79 ].
% 0.83/1.02  apply (zenon_L13_); trivial.
% 0.83/1.02  exact (zenon_H78 zenon_H79).
% 0.83/1.02  (* end of lemma zenon_L45_ *)
% 0.83/1.02  assert (zenon_L46_ : (forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60)))))) -> (ndr1_0) -> (~(c1_1 (a241))) -> (~(c3_1 (a241))) -> (c0_1 (a241)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_Hac zenon_H7 zenon_Had zenon_Hae zenon_Haf.
% 0.83/1.02  generalize (zenon_Hac (a241)). zenon_intro zenon_Hb0.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_Hb0); [ zenon_intro zenon_H6 | zenon_intro zenon_Hb1 ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hb1); [ zenon_intro zenon_Hb3 | zenon_intro zenon_Hb2 ].
% 0.83/1.02  exact (zenon_Had zenon_Hb3).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hb2); [ zenon_intro zenon_Hb5 | zenon_intro zenon_Hb4 ].
% 0.83/1.02  exact (zenon_Hae zenon_Hb5).
% 0.83/1.02  exact (zenon_Hb4 zenon_Haf).
% 0.83/1.02  (* end of lemma zenon_L46_ *)
% 0.83/1.02  assert (zenon_L47_ : (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (ndr1_0) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_Hb6 zenon_H7 zenon_Hb7 zenon_Hb8 zenon_Hb9.
% 0.83/1.02  generalize (zenon_Hb6 (a238)). zenon_intro zenon_Hba.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_Hba); [ zenon_intro zenon_H6 | zenon_intro zenon_Hbb ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hbb); [ zenon_intro zenon_Hbd | zenon_intro zenon_Hbc ].
% 0.83/1.02  exact (zenon_Hb7 zenon_Hbd).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hbc); [ zenon_intro zenon_Hbf | zenon_intro zenon_Hbe ].
% 0.83/1.02  exact (zenon_Hbf zenon_Hb8).
% 0.83/1.02  exact (zenon_Hbe zenon_Hb9).
% 0.83/1.02  (* end of lemma zenon_L47_ *)
% 0.83/1.02  assert (zenon_L48_ : (forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59)))))) -> (ndr1_0) -> (~(c0_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_Hc0 zenon_H7 zenon_Hc1 zenon_Hb8 zenon_Hb9.
% 0.83/1.02  generalize (zenon_Hc0 (a238)). zenon_intro zenon_Hc2.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_Hc2); [ zenon_intro zenon_H6 | zenon_intro zenon_Hc3 ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hc3); [ zenon_intro zenon_Hc4 | zenon_intro zenon_Hbc ].
% 0.83/1.02  exact (zenon_Hc1 zenon_Hc4).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hbc); [ zenon_intro zenon_Hbf | zenon_intro zenon_Hbe ].
% 0.83/1.02  exact (zenon_Hbf zenon_Hb8).
% 0.83/1.02  exact (zenon_Hbe zenon_Hb9).
% 0.83/1.02  (* end of lemma zenon_L48_ *)
% 0.83/1.02  assert (zenon_L49_ : (forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12)))))) -> (ndr1_0) -> (~(c2_1 (a238))) -> (forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59)))))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H30 zenon_H7 zenon_Hb7 zenon_Hc0 zenon_Hb8 zenon_Hb9.
% 0.83/1.02  generalize (zenon_H30 (a238)). zenon_intro zenon_Hc5.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_Hc5); [ zenon_intro zenon_H6 | zenon_intro zenon_Hc6 ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hc6); [ zenon_intro zenon_Hbd | zenon_intro zenon_Hc7 ].
% 0.83/1.02  exact (zenon_Hb7 zenon_Hbd).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hc7); [ zenon_intro zenon_Hc1 | zenon_intro zenon_Hbf ].
% 0.83/1.02  apply (zenon_L48_); trivial.
% 0.83/1.02  exact (zenon_Hbf zenon_Hb8).
% 0.83/1.02  (* end of lemma zenon_L49_ *)
% 0.83/1.02  assert (zenon_L50_ : (forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))) -> (ndr1_0) -> (forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))) -> (c0_1 (a198)) -> (c2_1 (a198)) -> (c1_1 (a198)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H56 zenon_H7 zenon_H3a zenon_H9c zenon_H9e zenon_H9d.
% 0.83/1.02  generalize (zenon_H56 (a198)). zenon_intro zenon_Hc8.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_Hc8); [ zenon_intro zenon_H6 | zenon_intro zenon_Hc9 ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hc9); [ zenon_intro zenon_Hca | zenon_intro zenon_Ha1 ].
% 0.83/1.02  generalize (zenon_H3a (a198)). zenon_intro zenon_Hcb.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_Hcb); [ zenon_intro zenon_H6 | zenon_intro zenon_Hcc ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hcc); [ zenon_intro zenon_Ha2 | zenon_intro zenon_Hcd ].
% 0.83/1.02  exact (zenon_Ha2 zenon_H9c).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hcd); [ zenon_intro zenon_Ha3 | zenon_intro zenon_Hce ].
% 0.83/1.02  exact (zenon_Ha3 zenon_H9e).
% 0.83/1.02  exact (zenon_Hce zenon_Hca).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Ha1); [ zenon_intro zenon_Ha4 | zenon_intro zenon_Ha3 ].
% 0.83/1.02  exact (zenon_Ha4 zenon_H9d).
% 0.83/1.02  exact (zenon_Ha3 zenon_H9e).
% 0.83/1.02  (* end of lemma zenon_L50_ *)
% 0.83/1.02  assert (zenon_L51_ : ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59)))))) -> (~(c2_1 (a238))) -> (c1_1 (a198)) -> (c2_1 (a198)) -> (c0_1 (a198)) -> (ndr1_0) -> (forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))) -> (~(hskp3)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H47 zenon_Hb9 zenon_Hb8 zenon_Hc0 zenon_Hb7 zenon_H9d zenon_H9e zenon_H9c zenon_H7 zenon_H56 zenon_H44.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H47); [ zenon_intro zenon_H30 | zenon_intro zenon_H4a ].
% 0.83/1.02  apply (zenon_L49_); trivial.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H4a); [ zenon_intro zenon_H3a | zenon_intro zenon_H45 ].
% 0.83/1.02  apply (zenon_L50_); trivial.
% 0.83/1.02  exact (zenon_H44 zenon_H45).
% 0.83/1.02  (* end of lemma zenon_L51_ *)
% 0.83/1.02  assert (zenon_L52_ : (~(hskp5)) -> (hskp5) -> False).
% 0.83/1.02  do 0 intro. intros zenon_Hcf zenon_Hd0.
% 0.83/1.02  exact (zenon_Hcf zenon_Hd0).
% 0.83/1.02  (* end of lemma zenon_L52_ *)
% 0.83/1.02  assert (zenon_L53_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp3)) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (c0_1 (a241)) -> (~(c3_1 (a241))) -> (~(c1_1 (a241))) -> (~(hskp5)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_Hd1 zenon_Hd2 zenon_H44 zenon_Hb7 zenon_Hb8 zenon_Hb9 zenon_H47 zenon_Hd3 zenon_Haf zenon_Hae zenon_Had zenon_Hcf.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hd2); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hd6 ].
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hd3); [ zenon_intro zenon_Hac | zenon_intro zenon_Hd7 ].
% 0.83/1.02  apply (zenon_L46_); trivial.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hd7); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H56 ].
% 0.83/1.02  apply (zenon_L47_); trivial.
% 0.83/1.02  apply (zenon_L51_); trivial.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hd6); [ zenon_intro zenon_Hac | zenon_intro zenon_Hd0 ].
% 0.83/1.02  apply (zenon_L46_); trivial.
% 0.83/1.02  exact (zenon_Hcf zenon_Hd0).
% 0.83/1.02  (* end of lemma zenon_L53_ *)
% 0.83/1.02  assert (zenon_L54_ : ((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp3)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_Hd8 zenon_Hd9 zenon_Hd2 zenon_Hcf zenon_Hb7 zenon_Hb8 zenon_Hb9 zenon_H47 zenon_H44 zenon_Hd3 zenon_H21 zenon_H22 zenon_H23 zenon_Hab.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hd8). zenon_intro zenon_H7. zenon_intro zenon_Hda.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hda). zenon_intro zenon_Haf. zenon_intro zenon_Hdb.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hdb). zenon_intro zenon_Had. zenon_intro zenon_Hae.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.02  apply (zenon_L45_); trivial.
% 0.83/1.02  apply (zenon_L53_); trivial.
% 0.83/1.02  (* end of lemma zenon_L54_ *)
% 0.83/1.02  assert (zenon_L55_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp3)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp8)) -> (~(hskp15)) -> (~(c1_1 (a232))) -> (~(c2_1 (a232))) -> (c3_1 (a232)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> False).
% 0.83/1.02  do 0 intro. intros zenon_Hdc zenon_Hdd zenon_Hd9 zenon_Hd2 zenon_Hcf zenon_H47 zenon_H44 zenon_Hd3 zenon_H21 zenon_H22 zenon_H23 zenon_Hab zenon_H54 zenon_H18 zenon_H50 zenon_H89 zenon_H8a zenon_H8b zenon_Ha9 zenon_H69.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.83/1.02  apply (zenon_L44_); trivial.
% 0.83/1.02  apply (zenon_L54_); trivial.
% 0.83/1.02  (* end of lemma zenon_L55_ *)
% 0.83/1.02  assert (zenon_L56_ : ((hskp8)\/((hskp14)\/(hskp22))) -> (~(hskp8)) -> (~(hskp14)) -> (~(hskp22)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_He0 zenon_H18 zenon_H60 zenon_H74.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_He0); [ zenon_intro zenon_H19 | zenon_intro zenon_He1 ].
% 0.83/1.02  exact (zenon_H18 zenon_H19).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_He1); [ zenon_intro zenon_H61 | zenon_intro zenon_H75 ].
% 0.83/1.02  exact (zenon_H60 zenon_H61).
% 0.83/1.02  exact (zenon_H74 zenon_H75).
% 0.83/1.02  (* end of lemma zenon_L56_ *)
% 0.83/1.02  assert (zenon_L57_ : (forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59)))))) -> (ndr1_0) -> (~(c0_1 (a244))) -> (forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37)))))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_Hc0 zenon_H7 zenon_H7f zenon_H88 zenon_H80 zenon_H81.
% 0.83/1.02  generalize (zenon_Hc0 (a244)). zenon_intro zenon_He2.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_He2); [ zenon_intro zenon_H6 | zenon_intro zenon_He3 ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_He3); [ zenon_intro zenon_H85 | zenon_intro zenon_He4 ].
% 0.83/1.02  exact (zenon_H7f zenon_H85).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_He4); [ zenon_intro zenon_He5 | zenon_intro zenon_H86 ].
% 0.83/1.02  generalize (zenon_H88 (a244)). zenon_intro zenon_He6.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_He6); [ zenon_intro zenon_H6 | zenon_intro zenon_He7 ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_He7); [ zenon_intro zenon_He8 | zenon_intro zenon_H84 ].
% 0.83/1.02  exact (zenon_He5 zenon_He8).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H84); [ zenon_intro zenon_H87 | zenon_intro zenon_H86 ].
% 0.83/1.02  exact (zenon_H80 zenon_H87).
% 0.83/1.02  exact (zenon_H86 zenon_H81).
% 0.83/1.02  exact (zenon_H86 zenon_H81).
% 0.83/1.02  (* end of lemma zenon_L57_ *)
% 0.83/1.02  assert (zenon_L58_ : (forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37)))))) -> (ndr1_0) -> (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H88 zenon_H7 zenon_Hb6 zenon_H80 zenon_H81.
% 0.83/1.02  generalize (zenon_H88 (a244)). zenon_intro zenon_He6.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_He6); [ zenon_intro zenon_H6 | zenon_intro zenon_He7 ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_He7); [ zenon_intro zenon_He8 | zenon_intro zenon_H84 ].
% 0.83/1.02  generalize (zenon_Hb6 (a244)). zenon_intro zenon_He9.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_He9); [ zenon_intro zenon_H6 | zenon_intro zenon_Hea ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hea); [ zenon_intro zenon_H87 | zenon_intro zenon_He4 ].
% 0.83/1.02  exact (zenon_H80 zenon_H87).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_He4); [ zenon_intro zenon_He5 | zenon_intro zenon_H86 ].
% 0.83/1.02  exact (zenon_He5 zenon_He8).
% 0.83/1.02  exact (zenon_H86 zenon_H81).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H84); [ zenon_intro zenon_H87 | zenon_intro zenon_H86 ].
% 0.83/1.02  exact (zenon_H80 zenon_H87).
% 0.83/1.02  exact (zenon_H86 zenon_H81).
% 0.83/1.02  (* end of lemma zenon_L58_ *)
% 0.83/1.02  assert (zenon_L59_ : ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c0_1 (a244))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37)))))) -> (ndr1_0) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_Heb zenon_H7f zenon_H81 zenon_H80 zenon_H88 zenon_H7 zenon_H9c zenon_H9d zenon_H9e.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Heb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hec ].
% 0.83/1.02  apply (zenon_L57_); trivial.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hec); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H9b ].
% 0.83/1.02  apply (zenon_L58_); trivial.
% 0.83/1.02  apply (zenon_L40_); trivial.
% 0.83/1.02  (* end of lemma zenon_L59_ *)
% 0.83/1.02  assert (zenon_L60_ : (forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))) -> (ndr1_0) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H93 zenon_H7 zenon_Hed zenon_Hee zenon_Hef.
% 0.83/1.02  generalize (zenon_H93 (a228)). zenon_intro zenon_Hf0.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_Hf0); [ zenon_intro zenon_H6 | zenon_intro zenon_Hf1 ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hf1); [ zenon_intro zenon_Hf3 | zenon_intro zenon_Hf2 ].
% 0.83/1.02  exact (zenon_Hed zenon_Hf3).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hf2); [ zenon_intro zenon_Hf5 | zenon_intro zenon_Hf4 ].
% 0.83/1.02  exact (zenon_Hf5 zenon_Hee).
% 0.83/1.02  exact (zenon_Hf4 zenon_Hef).
% 0.83/1.02  (* end of lemma zenon_L60_ *)
% 0.83/1.02  assert (zenon_L61_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> (~(c0_1 (a244))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_Hd1 zenon_Hf6 zenon_H80 zenon_H81 zenon_H7f zenon_Heb zenon_Hed zenon_Hee zenon_Hef.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.83/1.02  apply (zenon_L37_); trivial.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.83/1.02  apply (zenon_L59_); trivial.
% 0.83/1.02  apply (zenon_L60_); trivial.
% 0.83/1.02  (* end of lemma zenon_L61_ *)
% 0.83/1.02  assert (zenon_L62_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_Hf8 zenon_Hd9 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Heb zenon_H21 zenon_H22 zenon_H23 zenon_Hab.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.02  apply (zenon_L45_); trivial.
% 0.83/1.02  apply (zenon_L61_); trivial.
% 0.83/1.02  (* end of lemma zenon_L62_ *)
% 0.83/1.02  assert (zenon_L63_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp8)) -> (~(hskp14)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H4b zenon_Hfb zenon_Hd9 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Heb zenon_Hab zenon_H18 zenon_H60 zenon_He0.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.02  apply (zenon_L56_); trivial.
% 0.83/1.02  apply (zenon_L62_); trivial.
% 0.83/1.02  (* end of lemma zenon_L63_ *)
% 0.83/1.02  assert (zenon_L64_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp14)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> (~(hskp8)) -> (~(hskp13)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> False).
% 0.83/1.02  do 0 intro. intros zenon_Hfc zenon_H4f zenon_Hfb zenon_Hd9 zenon_Hf6 zenon_Heb zenon_Hab zenon_H60 zenon_He0 zenon_H18 zenon_H1a zenon_H1e.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.02  apply (zenon_L12_); trivial.
% 0.83/1.02  apply (zenon_L63_); trivial.
% 0.83/1.02  (* end of lemma zenon_L64_ *)
% 0.83/1.02  assert (zenon_L65_ : ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp3)) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(hskp8)) -> (~(hskp13)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp14)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> False).
% 0.83/1.02  do 0 intro. intros zenon_Hff zenon_Heb zenon_He0 zenon_H4f zenon_H4c zenon_H47 zenon_H44 zenon_H33 zenon_H32 zenon_H31 zenon_H2e zenon_H18 zenon_H1a zenon_H1e zenon_H69 zenon_H65 zenon_H60 zenon_H54 zenon_Hfb zenon_Hd9 zenon_Hf6 zenon_Ha5 zenon_H7c zenon_H76 zenon_Ha9 zenon_Hab zenon_Hd3 zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H100 zenon_H101 zenon_H102.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.83/1.02  apply (zenon_L22_); trivial.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.83/1.02  apply (zenon_L30_); trivial.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.02  apply (zenon_L12_); trivial.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.02  apply (zenon_L33_); trivial.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H69); [ zenon_intro zenon_H52 | zenon_intro zenon_H64 ].
% 0.83/1.02  apply (zenon_L25_); trivial.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H64). zenon_intro zenon_H7. zenon_intro zenon_H66.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H66). zenon_intro zenon_H58. zenon_intro zenon_H67.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_H67). zenon_intro zenon_H59. zenon_intro zenon_H57.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.02  apply (zenon_L36_); trivial.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.02  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.83/1.02  apply (zenon_L37_); trivial.
% 0.83/1.02  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.83/1.02  apply (zenon_L38_); trivial.
% 0.83/1.02  apply (zenon_L41_); trivial.
% 0.83/1.02  apply (zenon_L55_); trivial.
% 0.83/1.02  apply (zenon_L64_); trivial.
% 0.83/1.02  (* end of lemma zenon_L65_ *)
% 0.83/1.02  assert (zenon_L66_ : (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (ndr1_0) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> False).
% 0.83/1.02  do 0 intro. intros zenon_H109 zenon_H7 zenon_H10a zenon_H10b zenon_H10c.
% 0.83/1.02  generalize (zenon_H109 (a219)). zenon_intro zenon_H10d.
% 0.83/1.02  apply (zenon_imply_s _ _ zenon_H10d); [ zenon_intro zenon_H6 | zenon_intro zenon_H10e ].
% 0.83/1.02  exact (zenon_H6 zenon_H7).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H10e); [ zenon_intro zenon_H110 | zenon_intro zenon_H10f ].
% 0.83/1.02  exact (zenon_H10a zenon_H110).
% 0.83/1.02  apply (zenon_or_s _ _ zenon_H10f); [ zenon_intro zenon_H112 | zenon_intro zenon_H111 ].
% 0.83/1.03  exact (zenon_H112 zenon_H10b).
% 0.83/1.03  exact (zenon_H111 zenon_H10c).
% 0.83/1.03  (* end of lemma zenon_L66_ *)
% 0.83/1.03  assert (zenon_L67_ : (~(hskp29)) -> (hskp29) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H113 zenon_H114.
% 0.83/1.03  exact (zenon_H113 zenon_H114).
% 0.83/1.03  (* end of lemma zenon_L67_ *)
% 0.83/1.03  assert (zenon_L68_ : ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> (c3_1 (a219)) -> (c2_1 (a219)) -> (~(c0_1 (a219))) -> (ndr1_0) -> (~(hskp29)) -> (~(hskp15)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H115 zenon_H10c zenon_H10b zenon_H10a zenon_H7 zenon_H113 zenon_H50.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H115); [ zenon_intro zenon_H109 | zenon_intro zenon_H116 ].
% 0.83/1.03  apply (zenon_L66_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H116); [ zenon_intro zenon_H114 | zenon_intro zenon_H51 ].
% 0.83/1.03  exact (zenon_H113 zenon_H114).
% 0.83/1.03  exact (zenon_H50 zenon_H51).
% 0.83/1.03  (* end of lemma zenon_L68_ *)
% 0.83/1.03  assert (zenon_L69_ : (forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))) -> (ndr1_0) -> (c0_1 (a227)) -> (c1_1 (a227)) -> (c3_1 (a227)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H117 zenon_H7 zenon_H118 zenon_H119 zenon_H11a.
% 0.83/1.03  generalize (zenon_H117 (a227)). zenon_intro zenon_H11b.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H11b); [ zenon_intro zenon_H6 | zenon_intro zenon_H11c ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H11c); [ zenon_intro zenon_H11e | zenon_intro zenon_H11d ].
% 0.83/1.03  exact (zenon_H11e zenon_H118).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H11d); [ zenon_intro zenon_H120 | zenon_intro zenon_H11f ].
% 0.83/1.03  exact (zenon_H120 zenon_H119).
% 0.83/1.03  exact (zenon_H11f zenon_H11a).
% 0.83/1.03  (* end of lemma zenon_L69_ *)
% 0.83/1.03  assert (zenon_L70_ : (~(hskp11)) -> (hskp11) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H121 zenon_H122.
% 0.83/1.03  exact (zenon_H121 zenon_H122).
% 0.83/1.03  (* end of lemma zenon_L70_ *)
% 0.83/1.03  assert (zenon_L71_ : ((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227))))) -> ((forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z))))))\/((hskp8)\/(hskp11))) -> (~(hskp8)) -> (~(hskp11)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H123 zenon_H124 zenon_H18 zenon_H121.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H123). zenon_intro zenon_H7. zenon_intro zenon_H125.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H125). zenon_intro zenon_H118. zenon_intro zenon_H126.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H126). zenon_intro zenon_H119. zenon_intro zenon_H11a.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H124); [ zenon_intro zenon_H117 | zenon_intro zenon_H127 ].
% 0.83/1.03  apply (zenon_L69_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H127); [ zenon_intro zenon_H19 | zenon_intro zenon_H122 ].
% 0.83/1.03  exact (zenon_H18 zenon_H19).
% 0.83/1.03  exact (zenon_H121 zenon_H122).
% 0.83/1.03  (* end of lemma zenon_L71_ *)
% 0.83/1.03  assert (zenon_L72_ : ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z))))))\/((hskp8)\/(hskp11))) -> (~(hskp11)) -> (~(hskp8)) -> (ndr1_0) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (~(hskp15)) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H128 zenon_H124 zenon_H121 zenon_H18 zenon_H7 zenon_H10a zenon_H10b zenon_H10c zenon_H50 zenon_H115.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H128); [ zenon_intro zenon_H113 | zenon_intro zenon_H123 ].
% 0.83/1.03  apply (zenon_L68_); trivial.
% 0.83/1.03  apply (zenon_L71_); trivial.
% 0.83/1.03  (* end of lemma zenon_L72_ *)
% 0.83/1.03  assert (zenon_L73_ : ((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp8)) -> (~(hskp13)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H103 zenon_H4f zenon_Hfb zenon_Hd9 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Heb zenon_Hab zenon_H44 zenon_H76 zenon_H18 zenon_H1a zenon_H1e.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.03  apply (zenon_L12_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.03  apply (zenon_L33_); trivial.
% 0.83/1.03  apply (zenon_L62_); trivial.
% 0.83/1.03  (* end of lemma zenon_L73_ *)
% 0.83/1.03  assert (zenon_L74_ : ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> (~(hskp11)) -> ((forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z))))))\/((hskp8)\/(hskp11))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((hskp8)\/((hskp13)\/(hskp18))) -> (~(hskp13)) -> (~(hskp8)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H129 zenon_H115 zenon_H121 zenon_H124 zenon_H128 zenon_H102 zenon_H101 zenon_H100 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_Hd3 zenon_Hab zenon_Ha9 zenon_H76 zenon_H7c zenon_Ha5 zenon_Hf6 zenon_Hd9 zenon_Hfb zenon_H54 zenon_H65 zenon_H69 zenon_H1e zenon_H1a zenon_H18 zenon_H2e zenon_H31 zenon_H32 zenon_H33 zenon_H44 zenon_H47 zenon_H4c zenon_H4f zenon_He0 zenon_Heb zenon_Hff.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.03  apply (zenon_L65_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.03  apply (zenon_L72_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.83/1.03  apply (zenon_L22_); trivial.
% 0.83/1.03  apply (zenon_L73_); trivial.
% 0.83/1.03  (* end of lemma zenon_L74_ *)
% 0.83/1.03  assert (zenon_L75_ : (forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59)))))) -> (ndr1_0) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hc0 zenon_H7 zenon_H12d zenon_H12e zenon_H12f.
% 0.83/1.03  generalize (zenon_Hc0 (a218)). zenon_intro zenon_H130.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H130); [ zenon_intro zenon_H6 | zenon_intro zenon_H131 ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H131); [ zenon_intro zenon_H133 | zenon_intro zenon_H132 ].
% 0.83/1.03  exact (zenon_H12d zenon_H133).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H132); [ zenon_intro zenon_H135 | zenon_intro zenon_H134 ].
% 0.83/1.03  exact (zenon_H135 zenon_H12e).
% 0.83/1.03  exact (zenon_H134 zenon_H12f).
% 0.83/1.03  (* end of lemma zenon_L75_ *)
% 0.83/1.03  assert (zenon_L76_ : ((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> (~(hskp5)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hd8 zenon_Hd2 zenon_H12f zenon_H12e zenon_H12d zenon_Hcf.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd8). zenon_intro zenon_H7. zenon_intro zenon_Hda.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hda). zenon_intro zenon_Haf. zenon_intro zenon_Hdb.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hdb). zenon_intro zenon_Had. zenon_intro zenon_Hae.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hd2); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hd6 ].
% 0.83/1.03  apply (zenon_L75_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hd6); [ zenon_intro zenon_Hac | zenon_intro zenon_Hd0 ].
% 0.83/1.03  apply (zenon_L46_); trivial.
% 0.83/1.03  exact (zenon_Hcf zenon_Hd0).
% 0.83/1.03  (* end of lemma zenon_L76_ *)
% 0.83/1.03  assert (zenon_L77_ : ((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232)))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp8)) -> (~(hskp15)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H106 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_H12f zenon_H12e zenon_H12d zenon_H54 zenon_H18 zenon_H50 zenon_Ha9 zenon_H69.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.83/1.03  apply (zenon_L44_); trivial.
% 0.83/1.03  apply (zenon_L76_); trivial.
% 0.83/1.03  (* end of lemma zenon_L77_ *)
% 0.83/1.03  assert (zenon_L78_ : ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp8)) -> (~(hskp15)) -> (~(hskp14)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H101 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_H12f zenon_H12e zenon_H12d zenon_Ha9 zenon_H54 zenon_H18 zenon_H50 zenon_H60 zenon_H65 zenon_H69.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.83/1.03  apply (zenon_L30_); trivial.
% 0.83/1.03  apply (zenon_L77_); trivial.
% 0.83/1.03  (* end of lemma zenon_L78_ *)
% 0.83/1.03  assert (zenon_L79_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38))))))\/((hskp1)\/(hskp14))) -> (~(hskp1)) -> (~(hskp14)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hfc zenon_H136 zenon_H12 zenon_H60.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H136); [ zenon_intro zenon_H93 | zenon_intro zenon_H137 ].
% 0.83/1.03  apply (zenon_L60_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H137); [ zenon_intro zenon_H13 | zenon_intro zenon_H61 ].
% 0.83/1.03  exact (zenon_H12 zenon_H13).
% 0.83/1.03  exact (zenon_H60 zenon_H61).
% 0.83/1.03  (* end of lemma zenon_L79_ *)
% 0.83/1.03  assert (zenon_L80_ : ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38))))))\/((hskp1)\/(hskp14))) -> (~(hskp1)) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp14)) -> (~(hskp8)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hff zenon_H136 zenon_H12 zenon_H69 zenon_H65 zenon_H60 zenon_H18 zenon_H54 zenon_Ha9 zenon_H12d zenon_H12e zenon_H12f zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H101.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.03  apply (zenon_L78_); trivial.
% 0.83/1.03  apply (zenon_L79_); trivial.
% 0.83/1.03  (* end of lemma zenon_L80_ *)
% 0.83/1.03  assert (zenon_L81_ : (~(hskp24)) -> (hskp24) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H138 zenon_H139.
% 0.83/1.03  exact (zenon_H138 zenon_H139).
% 0.83/1.03  (* end of lemma zenon_L81_ *)
% 0.83/1.03  assert (zenon_L82_ : (~(hskp4)) -> (hskp4) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H13a zenon_H13b.
% 0.83/1.03  exact (zenon_H13a zenon_H13b).
% 0.83/1.03  (* end of lemma zenon_L82_ *)
% 0.83/1.03  assert (zenon_L83_ : ((hskp24)\/((hskp4)\/(hskp18))) -> (~(hskp24)) -> (~(hskp4)) -> (~(hskp18)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H13c zenon_H138 zenon_H13a zenon_H1c.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H13c); [ zenon_intro zenon_H139 | zenon_intro zenon_H13d ].
% 0.83/1.03  exact (zenon_H138 zenon_H139).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H13d); [ zenon_intro zenon_H13b | zenon_intro zenon_H1d ].
% 0.83/1.03  exact (zenon_H13a zenon_H13b).
% 0.83/1.03  exact (zenon_H1c zenon_H1d).
% 0.83/1.03  (* end of lemma zenon_L83_ *)
% 0.83/1.03  assert (zenon_L84_ : (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (ndr1_0) -> (~(c2_1 (a249))) -> (c1_1 (a249)) -> (c3_1 (a249)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hb6 zenon_H7 zenon_H13e zenon_H13f zenon_H140.
% 0.83/1.03  generalize (zenon_Hb6 (a249)). zenon_intro zenon_H141.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H141); [ zenon_intro zenon_H6 | zenon_intro zenon_H142 ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H142); [ zenon_intro zenon_H144 | zenon_intro zenon_H143 ].
% 0.83/1.03  exact (zenon_H13e zenon_H144).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H143); [ zenon_intro zenon_H146 | zenon_intro zenon_H145 ].
% 0.83/1.03  exact (zenon_H146 zenon_H13f).
% 0.83/1.03  exact (zenon_H145 zenon_H140).
% 0.83/1.03  (* end of lemma zenon_L84_ *)
% 0.83/1.03  assert (zenon_L85_ : (forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6)))))) -> (ndr1_0) -> (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (~(c2_1 (a249))) -> (c3_1 (a249)) -> (c0_1 (a249)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H147 zenon_H7 zenon_Hb6 zenon_H13e zenon_H140 zenon_H148.
% 0.83/1.03  generalize (zenon_H147 (a249)). zenon_intro zenon_H149.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H149); [ zenon_intro zenon_H6 | zenon_intro zenon_H14a ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H14a); [ zenon_intro zenon_H13f | zenon_intro zenon_H14b ].
% 0.83/1.03  apply (zenon_L84_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H14b); [ zenon_intro zenon_H144 | zenon_intro zenon_H14c ].
% 0.83/1.03  exact (zenon_H13e zenon_H144).
% 0.83/1.03  exact (zenon_H14c zenon_H148).
% 0.83/1.03  (* end of lemma zenon_L85_ *)
% 0.83/1.03  assert (zenon_L86_ : ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp21)) -> (~(hskp21)) -> (c0_1 (a249)) -> (c3_1 (a249)) -> (~(c2_1 (a249))) -> (ndr1_0) -> (forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6)))))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H14d zenon_Ha7 zenon_H148 zenon_H140 zenon_H13e zenon_H7 zenon_H147.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H14d); [ zenon_intro zenon_Hb6 | zenon_intro zenon_Ha8 ].
% 0.83/1.03  apply (zenon_L85_); trivial.
% 0.83/1.03  exact (zenon_Ha7 zenon_Ha8).
% 0.83/1.03  (* end of lemma zenon_L86_ *)
% 0.83/1.03  assert (zenon_L87_ : (~(hskp12)) -> (hskp12) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H14e zenon_H14f.
% 0.83/1.03  exact (zenon_H14e zenon_H14f).
% 0.83/1.03  (* end of lemma zenon_L87_ *)
% 0.83/1.03  assert (zenon_L88_ : ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (ndr1_0) -> (~(c2_1 (a249))) -> (c3_1 (a249)) -> (c0_1 (a249)) -> (~(hskp21)) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp21)) -> (~(hskp27)) -> (~(hskp12)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H150 zenon_H7 zenon_H13e zenon_H140 zenon_H148 zenon_Ha7 zenon_H14d zenon_H78 zenon_H14e.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H150); [ zenon_intro zenon_H147 | zenon_intro zenon_H151 ].
% 0.83/1.03  apply (zenon_L86_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H151); [ zenon_intro zenon_H79 | zenon_intro zenon_H14f ].
% 0.83/1.03  exact (zenon_H78 zenon_H79).
% 0.83/1.03  exact (zenon_H14e zenon_H14f).
% 0.83/1.03  (* end of lemma zenon_L88_ *)
% 0.83/1.03  assert (zenon_L89_ : (forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))) -> (ndr1_0) -> (~(c2_1 (a249))) -> (c0_1 (a249)) -> (c3_1 (a249)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H152 zenon_H7 zenon_H13e zenon_H148 zenon_H140.
% 0.83/1.03  generalize (zenon_H152 (a249)). zenon_intro zenon_H153.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H153); [ zenon_intro zenon_H6 | zenon_intro zenon_H154 ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H154); [ zenon_intro zenon_H144 | zenon_intro zenon_H155 ].
% 0.83/1.03  exact (zenon_H13e zenon_H144).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H155); [ zenon_intro zenon_H14c | zenon_intro zenon_H145 ].
% 0.83/1.03  exact (zenon_H14c zenon_H148).
% 0.83/1.03  exact (zenon_H145 zenon_H140).
% 0.83/1.03  (* end of lemma zenon_L89_ *)
% 0.83/1.03  assert (zenon_L90_ : ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (c3_1 (a249)) -> (c0_1 (a249)) -> (~(c2_1 (a249))) -> (ndr1_0) -> (~(hskp29)) -> (~(hskp18)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H156 zenon_H140 zenon_H148 zenon_H13e zenon_H7 zenon_H113 zenon_H1c.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H156); [ zenon_intro zenon_H152 | zenon_intro zenon_H157 ].
% 0.83/1.03  apply (zenon_L89_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H157); [ zenon_intro zenon_H114 | zenon_intro zenon_H1d ].
% 0.83/1.03  exact (zenon_H113 zenon_H114).
% 0.83/1.03  exact (zenon_H1c zenon_H1d).
% 0.83/1.03  (* end of lemma zenon_L90_ *)
% 0.83/1.03  assert (zenon_L91_ : (forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))) -> (ndr1_0) -> (c0_1 (a227)) -> (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (c1_1 (a227)) -> (c3_1 (a227)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H3a zenon_H7 zenon_H118 zenon_Hb6 zenon_H119 zenon_H11a.
% 0.83/1.03  generalize (zenon_H3a (a227)). zenon_intro zenon_H158.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H158); [ zenon_intro zenon_H6 | zenon_intro zenon_H159 ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H159); [ zenon_intro zenon_H11e | zenon_intro zenon_H15a ].
% 0.83/1.03  exact (zenon_H11e zenon_H118).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H15a); [ zenon_intro zenon_H15b | zenon_intro zenon_H11f ].
% 0.83/1.03  generalize (zenon_Hb6 (a227)). zenon_intro zenon_H15c.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H15c); [ zenon_intro zenon_H6 | zenon_intro zenon_H15d ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H15d); [ zenon_intro zenon_H15e | zenon_intro zenon_H11d ].
% 0.83/1.03  exact (zenon_H15b zenon_H15e).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H11d); [ zenon_intro zenon_H120 | zenon_intro zenon_H11f ].
% 0.83/1.03  exact (zenon_H120 zenon_H119).
% 0.83/1.03  exact (zenon_H11f zenon_H11a).
% 0.83/1.03  exact (zenon_H11f zenon_H11a).
% 0.83/1.03  (* end of lemma zenon_L91_ *)
% 0.83/1.03  assert (zenon_L92_ : ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (c3_1 (a227)) -> (c1_1 (a227)) -> (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (c0_1 (a227)) -> (ndr1_0) -> (~(hskp3)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H47 zenon_H33 zenon_H32 zenon_H31 zenon_H11a zenon_H119 zenon_Hb6 zenon_H118 zenon_H7 zenon_H44.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H47); [ zenon_intro zenon_H30 | zenon_intro zenon_H4a ].
% 0.83/1.03  apply (zenon_L17_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H4a); [ zenon_intro zenon_H3a | zenon_intro zenon_H45 ].
% 0.83/1.03  apply (zenon_L91_); trivial.
% 0.83/1.03  exact (zenon_H44 zenon_H45).
% 0.83/1.03  (* end of lemma zenon_L92_ *)
% 0.83/1.03  assert (zenon_L93_ : ((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> (~(hskp3)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H123 zenon_Heb zenon_H12f zenon_H12e zenon_H12d zenon_H44 zenon_H31 zenon_H32 zenon_H33 zenon_H47 zenon_H9c zenon_H9d zenon_H9e.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H123). zenon_intro zenon_H7. zenon_intro zenon_H125.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H125). zenon_intro zenon_H118. zenon_intro zenon_H126.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H126). zenon_intro zenon_H119. zenon_intro zenon_H11a.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Heb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hec ].
% 0.83/1.03  apply (zenon_L75_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hec); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H9b ].
% 0.83/1.03  apply (zenon_L92_); trivial.
% 0.83/1.03  apply (zenon_L40_); trivial.
% 0.83/1.03  (* end of lemma zenon_L93_ *)
% 0.83/1.03  assert (zenon_L94_ : ((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> (~(hskp18)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp21)) -> (~(hskp21)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H15f zenon_Hd9 zenon_H128 zenon_Heb zenon_H31 zenon_H32 zenon_H33 zenon_H44 zenon_H47 zenon_H12f zenon_H12e zenon_H12d zenon_H1c zenon_H156 zenon_H14d zenon_Ha7 zenon_H14e zenon_H150.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.03  apply (zenon_L88_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H128); [ zenon_intro zenon_H113 | zenon_intro zenon_H123 ].
% 0.83/1.03  apply (zenon_L90_); trivial.
% 0.83/1.03  apply (zenon_L93_); trivial.
% 0.83/1.03  (* end of lemma zenon_L94_ *)
% 0.83/1.03  assert (zenon_L95_ : ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((hskp24)\/((hskp4)\/(hskp18))) -> (~(hskp18)) -> (~(hskp4)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp21)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp3)) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hdd zenon_Hd2 zenon_Hcf zenon_H13c zenon_H1c zenon_H13a zenon_H150 zenon_H14e zenon_H14d zenon_H156 zenon_H12d zenon_H12e zenon_H12f zenon_H47 zenon_H44 zenon_H33 zenon_H32 zenon_H31 zenon_Heb zenon_H128 zenon_Hd9 zenon_H162.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.83/1.03  apply (zenon_L83_); trivial.
% 0.83/1.03  apply (zenon_L94_); trivial.
% 0.83/1.03  apply (zenon_L76_); trivial.
% 0.83/1.03  (* end of lemma zenon_L95_ *)
% 0.83/1.03  assert (zenon_L96_ : (~(hskp25)) -> (hskp25) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H163 zenon_H164.
% 0.83/1.03  exact (zenon_H163 zenon_H164).
% 0.83/1.03  (* end of lemma zenon_L96_ *)
% 0.83/1.03  assert (zenon_L97_ : ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a249)) -> (c0_1 (a249)) -> (~(c2_1 (a249))) -> (ndr1_0) -> (~(hskp25)) -> (~(hskp19)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H165 zenon_H140 zenon_H148 zenon_H13e zenon_H7 zenon_H163 zenon_H7a.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H165); [ zenon_intro zenon_H152 | zenon_intro zenon_H166 ].
% 0.83/1.03  apply (zenon_L89_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H166); [ zenon_intro zenon_H164 | zenon_intro zenon_H7b ].
% 0.83/1.03  exact (zenon_H163 zenon_H164).
% 0.83/1.03  exact (zenon_H7a zenon_H7b).
% 0.83/1.03  (* end of lemma zenon_L97_ *)
% 0.83/1.03  assert (zenon_L98_ : (forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34)))))) -> (ndr1_0) -> (~(c0_1 (a256))) -> (c1_1 (a256)) -> (c2_1 (a256)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H167 zenon_H7 zenon_H168 zenon_H169 zenon_H16a.
% 0.83/1.03  generalize (zenon_H167 (a256)). zenon_intro zenon_H16b.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H16b); [ zenon_intro zenon_H6 | zenon_intro zenon_H16c ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H16c); [ zenon_intro zenon_H16e | zenon_intro zenon_H16d ].
% 0.83/1.03  exact (zenon_H168 zenon_H16e).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H16d); [ zenon_intro zenon_H170 | zenon_intro zenon_H16f ].
% 0.83/1.03  exact (zenon_H170 zenon_H169).
% 0.83/1.03  exact (zenon_H16f zenon_H16a).
% 0.83/1.03  (* end of lemma zenon_L98_ *)
% 0.83/1.03  assert (zenon_L99_ : ((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (~(c1_1 (a231))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H171 zenon_H172 zenon_H81 zenon_H80 zenon_H7f zenon_H6b zenon_H6c zenon_H6d.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H171). zenon_intro zenon_H7. zenon_intro zenon_H173.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H173). zenon_intro zenon_H169. zenon_intro zenon_H174.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H174). zenon_intro zenon_H16a. zenon_intro zenon_H168.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H172); [ zenon_intro zenon_H7e | zenon_intro zenon_H175 ].
% 0.83/1.03  apply (zenon_L37_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H175); [ zenon_intro zenon_H167 | zenon_intro zenon_H6a ].
% 0.83/1.03  apply (zenon_L98_); trivial.
% 0.83/1.03  apply (zenon_L31_); trivial.
% 0.83/1.03  (* end of lemma zenon_L99_ *)
% 0.83/1.03  assert (zenon_L100_ : ((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> (~(c1_1 (a231))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (~(hskp19)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H15f zenon_H176 zenon_H172 zenon_H6d zenon_H6c zenon_H6b zenon_H81 zenon_H80 zenon_H7f zenon_H7a zenon_H165.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.83/1.03  apply (zenon_L97_); trivial.
% 0.83/1.03  apply (zenon_L99_); trivial.
% 0.83/1.03  (* end of lemma zenon_L100_ *)
% 0.83/1.03  assert (zenon_L101_ : ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp21)) -> (~(hskp21)) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (~(c2_1 (a238))) -> (ndr1_0) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H14d zenon_Ha7 zenon_Hb9 zenon_Hb8 zenon_Hb7 zenon_H7.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H14d); [ zenon_intro zenon_Hb6 | zenon_intro zenon_Ha8 ].
% 0.83/1.03  apply (zenon_L47_); trivial.
% 0.83/1.03  exact (zenon_Ha7 zenon_Ha8).
% 0.83/1.03  (* end of lemma zenon_L101_ *)
% 0.83/1.03  assert (zenon_L102_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp21)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hdc zenon_Hdd zenon_Hd2 zenon_Hcf zenon_H12f zenon_H12e zenon_H12d zenon_H14d.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.83/1.03  apply (zenon_L101_); trivial.
% 0.83/1.03  apply (zenon_L76_); trivial.
% 0.83/1.03  (* end of lemma zenon_L102_ *)
% 0.83/1.03  assert (zenon_L103_ : ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37)))))) -> (ndr1_0) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Heb zenon_H12f zenon_H12e zenon_H12d zenon_H81 zenon_H80 zenon_H88 zenon_H7 zenon_H9c zenon_H9d zenon_H9e.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Heb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hec ].
% 0.83/1.03  apply (zenon_L75_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hec); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H9b ].
% 0.83/1.03  apply (zenon_L58_); trivial.
% 0.83/1.03  apply (zenon_L40_); trivial.
% 0.83/1.03  (* end of lemma zenon_L103_ *)
% 0.83/1.03  assert (zenon_L104_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c0_1 (a244))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hd1 zenon_Hf6 zenon_H7f zenon_H80 zenon_H81 zenon_H12d zenon_H12e zenon_H12f zenon_Heb zenon_Hed zenon_Hee zenon_Hef.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.83/1.03  apply (zenon_L37_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.83/1.03  apply (zenon_L103_); trivial.
% 0.83/1.03  apply (zenon_L60_); trivial.
% 0.83/1.03  (* end of lemma zenon_L104_ *)
% 0.83/1.03  assert (zenon_L105_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hf8 zenon_Hd9 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_H12d zenon_H12e zenon_H12f zenon_Heb zenon_H21 zenon_H22 zenon_H23 zenon_Hab.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.03  apply (zenon_L45_); trivial.
% 0.83/1.03  apply (zenon_L104_); trivial.
% 0.83/1.03  (* end of lemma zenon_L105_ *)
% 0.83/1.03  assert (zenon_L106_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c1_1 (a231))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H4b zenon_Hfb zenon_Hd9 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_H12d zenon_H12e zenon_H12f zenon_Heb zenon_Hab zenon_H6b zenon_H6c zenon_H6d zenon_H44 zenon_H76.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.03  apply (zenon_L33_); trivial.
% 0.83/1.03  apply (zenon_L105_); trivial.
% 0.83/1.03  (* end of lemma zenon_L106_ *)
% 0.83/1.03  assert (zenon_L107_ : ((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp4)) -> ((hskp24)\/((hskp4)\/(hskp18))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp21)) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H103 zenon_H4f zenon_Hd9 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Heb zenon_Hab zenon_Hfb zenon_H162 zenon_H176 zenon_H172 zenon_H165 zenon_H13a zenon_H13c zenon_H44 zenon_H76 zenon_H14d zenon_H12d zenon_H12e zenon_H12f zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H100.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.03  apply (zenon_L33_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.83/1.03  apply (zenon_L83_); trivial.
% 0.83/1.03  apply (zenon_L100_); trivial.
% 0.83/1.03  apply (zenon_L102_); trivial.
% 0.83/1.03  apply (zenon_L106_); trivial.
% 0.83/1.03  (* end of lemma zenon_L107_ *)
% 0.83/1.03  assert (zenon_L108_ : (forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31)))))) -> (ndr1_0) -> (~(c2_1 (a217))) -> (~(c3_1 (a217))) -> (c0_1 (a217)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H177 zenon_H7 zenon_H178 zenon_H179 zenon_H17a.
% 0.83/1.03  generalize (zenon_H177 (a217)). zenon_intro zenon_H17b.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H17b); [ zenon_intro zenon_H6 | zenon_intro zenon_H17c ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H17c); [ zenon_intro zenon_H17e | zenon_intro zenon_H17d ].
% 0.83/1.03  exact (zenon_H178 zenon_H17e).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H17d); [ zenon_intro zenon_H180 | zenon_intro zenon_H17f ].
% 0.83/1.03  exact (zenon_H179 zenon_H180).
% 0.83/1.03  exact (zenon_H17f zenon_H17a).
% 0.83/1.03  (* end of lemma zenon_L108_ *)
% 0.83/1.03  assert (zenon_L109_ : (~(hskp0)) -> (hskp0) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H181 zenon_H182.
% 0.83/1.03  exact (zenon_H181 zenon_H182).
% 0.83/1.03  (* end of lemma zenon_L109_ *)
% 0.83/1.03  assert (zenon_L110_ : ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> (c0_1 (a217)) -> (~(c3_1 (a217))) -> (~(c2_1 (a217))) -> (ndr1_0) -> (~(hskp0)) -> (~(hskp18)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H183 zenon_H17a zenon_H179 zenon_H178 zenon_H7 zenon_H181 zenon_H1c.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H183); [ zenon_intro zenon_H177 | zenon_intro zenon_H184 ].
% 0.83/1.03  apply (zenon_L108_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H184); [ zenon_intro zenon_H182 | zenon_intro zenon_H1d ].
% 0.83/1.03  exact (zenon_H181 zenon_H182).
% 0.83/1.03  exact (zenon_H1c zenon_H1d).
% 0.83/1.03  (* end of lemma zenon_L110_ *)
% 0.83/1.03  assert (zenon_L111_ : ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp3)) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (ndr1_0) -> (~(c2_1 (a217))) -> (~(c3_1 (a217))) -> (c0_1 (a217)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H4f zenon_H4c zenon_H47 zenon_H44 zenon_H33 zenon_H32 zenon_H31 zenon_H2c zenon_H2e zenon_H7 zenon_H178 zenon_H179 zenon_H17a zenon_H181 zenon_H183.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.03  apply (zenon_L110_); trivial.
% 0.83/1.03  apply (zenon_L21_); trivial.
% 0.83/1.03  (* end of lemma zenon_L111_ *)
% 0.83/1.03  assert (zenon_L112_ : ((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217)))))) -> ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> (~(hskp1)) -> ((forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38))))))\/((hskp1)\/(hskp14))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp3)) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(hskp8)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z))))))\/((hskp8)\/(hskp11))) -> (~(hskp11)) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H185 zenon_H186 zenon_H12 zenon_H136 zenon_Hff zenon_Heb zenon_He0 zenon_H4f zenon_H4c zenon_H47 zenon_H44 zenon_H33 zenon_H32 zenon_H31 zenon_H2e zenon_H18 zenon_H1e zenon_H69 zenon_H65 zenon_H54 zenon_Hfb zenon_Hd9 zenon_Hf6 zenon_Ha5 zenon_H7c zenon_H76 zenon_Ha9 zenon_Hab zenon_Hd3 zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H100 zenon_H101 zenon_H102 zenon_H128 zenon_H124 zenon_H121 zenon_H115 zenon_H181 zenon_H183 zenon_H129.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.03  apply (zenon_L65_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.03  apply (zenon_L72_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.83/1.03  apply (zenon_L111_); trivial.
% 0.83/1.03  apply (zenon_L73_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.03  apply (zenon_L80_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.03  apply (zenon_L72_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.83/1.03  apply (zenon_L111_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.03  apply (zenon_L110_); trivial.
% 0.83/1.03  apply (zenon_L106_); trivial.
% 0.83/1.03  (* end of lemma zenon_L112_ *)
% 0.83/1.03  assert (zenon_L113_ : (forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3))))) -> (ndr1_0) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H18c zenon_H7 zenon_H18d zenon_H18e zenon_H18f.
% 0.83/1.03  generalize (zenon_H18c (a216)). zenon_intro zenon_H190.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H190); [ zenon_intro zenon_H6 | zenon_intro zenon_H191 ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H191); [ zenon_intro zenon_H193 | zenon_intro zenon_H192 ].
% 0.83/1.03  exact (zenon_H18d zenon_H193).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H192); [ zenon_intro zenon_H195 | zenon_intro zenon_H194 ].
% 0.83/1.03  exact (zenon_H18e zenon_H195).
% 0.83/1.03  exact (zenon_H18f zenon_H194).
% 0.83/1.03  (* end of lemma zenon_L113_ *)
% 0.83/1.03  assert (zenon_L114_ : ((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216)))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((hskp4)\/(hskp5))) -> (~(hskp4)) -> (~(hskp5)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H196 zenon_H197 zenon_H13a zenon_Hcf.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H197); [ zenon_intro zenon_H18c | zenon_intro zenon_H19a ].
% 0.83/1.03  apply (zenon_L113_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H19a); [ zenon_intro zenon_H13b | zenon_intro zenon_Hd0 ].
% 0.83/1.03  exact (zenon_H13a zenon_H13b).
% 0.83/1.03  exact (zenon_Hcf zenon_Hd0).
% 0.83/1.03  (* end of lemma zenon_L114_ *)
% 0.83/1.03  assert (zenon_L115_ : ((~(hskp11))\/((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((hskp4)\/(hskp5))) -> ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((hskp24)\/((hskp4)\/(hskp18))) -> (~(hskp4)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp21)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> (~(hskp1)) -> ((forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38))))))\/((hskp1)\/(hskp14))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp3)) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(hskp8)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z))))))\/((hskp8)\/(hskp11))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> (~(hskp0)) -> ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H19b zenon_H197 zenon_H186 zenon_H176 zenon_H172 zenon_H165 zenon_H13c zenon_H13a zenon_H150 zenon_H14d zenon_H156 zenon_H162 zenon_H12 zenon_H136 zenon_Hff zenon_Heb zenon_He0 zenon_H4f zenon_H4c zenon_H47 zenon_H44 zenon_H33 zenon_H32 zenon_H31 zenon_H2e zenon_H18 zenon_H1e zenon_H69 zenon_H65 zenon_H54 zenon_Hfb zenon_Hd9 zenon_Hf6 zenon_Ha5 zenon_H7c zenon_H76 zenon_Ha9 zenon_Hab zenon_Hd3 zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H100 zenon_H101 zenon_H102 zenon_H128 zenon_H124 zenon_H115 zenon_H129 zenon_H183 zenon_H181 zenon_H19c.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.83/1.03  apply (zenon_L74_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.03  apply (zenon_L80_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.03  apply (zenon_L72_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.03  apply (zenon_L95_); trivial.
% 0.83/1.03  apply (zenon_L21_); trivial.
% 0.83/1.03  apply (zenon_L107_); trivial.
% 0.83/1.03  apply (zenon_L112_); trivial.
% 0.83/1.03  apply (zenon_L114_); trivial.
% 0.83/1.03  (* end of lemma zenon_L115_ *)
% 0.83/1.03  assert (zenon_L116_ : (forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))) -> (ndr1_0) -> (~(c2_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H152 zenon_H7 zenon_H19d zenon_H19e zenon_H19f.
% 0.83/1.03  generalize (zenon_H152 (a212)). zenon_intro zenon_H1a0.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H1a0); [ zenon_intro zenon_H6 | zenon_intro zenon_H1a1 ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1a1); [ zenon_intro zenon_H1a3 | zenon_intro zenon_H1a2 ].
% 0.83/1.03  exact (zenon_H19d zenon_H1a3).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1a2); [ zenon_intro zenon_H1a5 | zenon_intro zenon_H1a4 ].
% 0.83/1.03  exact (zenon_H1a5 zenon_H19e).
% 0.83/1.03  exact (zenon_H1a4 zenon_H19f).
% 0.83/1.03  (* end of lemma zenon_L116_ *)
% 0.83/1.03  assert (zenon_L117_ : (forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))) -> (ndr1_0) -> (c0_1 (a212)) -> (forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))) -> (c3_1 (a212)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H3a zenon_H7 zenon_H19e zenon_H152 zenon_H19f.
% 0.83/1.03  generalize (zenon_H3a (a212)). zenon_intro zenon_H1a6.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H1a6); [ zenon_intro zenon_H6 | zenon_intro zenon_H1a7 ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1a7); [ zenon_intro zenon_H1a5 | zenon_intro zenon_H1a8 ].
% 0.83/1.03  exact (zenon_H1a5 zenon_H19e).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1a8); [ zenon_intro zenon_H19d | zenon_intro zenon_H1a4 ].
% 0.83/1.03  apply (zenon_L116_); trivial.
% 0.83/1.03  exact (zenon_H1a4 zenon_H19f).
% 0.83/1.03  (* end of lemma zenon_L117_ *)
% 0.83/1.03  assert (zenon_L118_ : ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (ndr1_0) -> (forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))) -> (~(hskp25)) -> (~(hskp19)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H165 zenon_H19f zenon_H19e zenon_H7 zenon_H3a zenon_H163 zenon_H7a.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H165); [ zenon_intro zenon_H152 | zenon_intro zenon_H166 ].
% 0.83/1.03  apply (zenon_L117_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H166); [ zenon_intro zenon_H164 | zenon_intro zenon_H7b ].
% 0.83/1.03  exact (zenon_H163 zenon_H164).
% 0.83/1.03  exact (zenon_H7a zenon_H7b).
% 0.83/1.03  (* end of lemma zenon_L118_ *)
% 0.83/1.03  assert (zenon_L119_ : ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (~(hskp19)) -> (~(hskp25)) -> (ndr1_0) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp3)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H47 zenon_H33 zenon_H32 zenon_H31 zenon_H7a zenon_H163 zenon_H7 zenon_H19e zenon_H19f zenon_H165 zenon_H44.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H47); [ zenon_intro zenon_H30 | zenon_intro zenon_H4a ].
% 0.83/1.03  apply (zenon_L17_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H4a); [ zenon_intro zenon_H3a | zenon_intro zenon_H45 ].
% 0.83/1.03  apply (zenon_L118_); trivial.
% 0.83/1.03  exact (zenon_H44 zenon_H45).
% 0.83/1.03  (* end of lemma zenon_L119_ *)
% 0.83/1.03  assert (zenon_L120_ : ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (c3_1 (a212)) -> (forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))) -> (c0_1 (a212)) -> (ndr1_0) -> (~(hskp3)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H47 zenon_H33 zenon_H32 zenon_H31 zenon_H19f zenon_H152 zenon_H19e zenon_H7 zenon_H44.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H47); [ zenon_intro zenon_H30 | zenon_intro zenon_H4a ].
% 0.83/1.03  apply (zenon_L17_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H4a); [ zenon_intro zenon_H3a | zenon_intro zenon_H45 ].
% 0.83/1.03  apply (zenon_L117_); trivial.
% 0.83/1.03  exact (zenon_H44 zenon_H45).
% 0.83/1.03  (* end of lemma zenon_L120_ *)
% 0.83/1.03  assert (zenon_L121_ : ((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256)))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp3)) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp14)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H171 zenon_H1a9 zenon_H44 zenon_H19e zenon_H19f zenon_H31 zenon_H32 zenon_H33 zenon_H47 zenon_H60.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H171). zenon_intro zenon_H7. zenon_intro zenon_H173.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H173). zenon_intro zenon_H169. zenon_intro zenon_H174.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H174). zenon_intro zenon_H16a. zenon_intro zenon_H168.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1a9); [ zenon_intro zenon_H167 | zenon_intro zenon_H1aa ].
% 0.83/1.03  apply (zenon_L98_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1aa); [ zenon_intro zenon_H152 | zenon_intro zenon_H61 ].
% 0.83/1.03  apply (zenon_L120_); trivial.
% 0.83/1.03  exact (zenon_H60 zenon_H61).
% 0.83/1.03  (* end of lemma zenon_L121_ *)
% 0.83/1.03  assert (zenon_L122_ : ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp14)) -> (ndr1_0) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp19)) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H176 zenon_H1a9 zenon_H60 zenon_H7 zenon_H31 zenon_H32 zenon_H33 zenon_H165 zenon_H7a zenon_H19f zenon_H19e zenon_H44 zenon_H47.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.83/1.03  apply (zenon_L119_); trivial.
% 0.83/1.03  apply (zenon_L121_); trivial.
% 0.83/1.03  (* end of lemma zenon_L122_ *)
% 0.83/1.03  assert (zenon_L123_ : ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))) -> (~(c1_1 (a212))) -> (ndr1_0) -> (~(hskp27)) -> (~(hskp12)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H150 zenon_H19f zenon_H19e zenon_H3a zenon_H1ab zenon_H7 zenon_H78 zenon_H14e.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H150); [ zenon_intro zenon_H147 | zenon_intro zenon_H151 ].
% 0.83/1.03  generalize (zenon_H147 (a212)). zenon_intro zenon_H1ac.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H1ac); [ zenon_intro zenon_H6 | zenon_intro zenon_H1ad ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1ad); [ zenon_intro zenon_H1af | zenon_intro zenon_H1ae ].
% 0.83/1.03  exact (zenon_H1ab zenon_H1af).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1ae); [ zenon_intro zenon_H1a3 | zenon_intro zenon_H1a5 ].
% 0.83/1.03  generalize (zenon_H3a (a212)). zenon_intro zenon_H1a6.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H1a6); [ zenon_intro zenon_H6 | zenon_intro zenon_H1a7 ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1a7); [ zenon_intro zenon_H1a5 | zenon_intro zenon_H1a8 ].
% 0.83/1.03  exact (zenon_H1a5 zenon_H19e).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1a8); [ zenon_intro zenon_H19d | zenon_intro zenon_H1a4 ].
% 0.83/1.03  exact (zenon_H19d zenon_H1a3).
% 0.83/1.03  exact (zenon_H1a4 zenon_H19f).
% 0.83/1.03  exact (zenon_H1a5 zenon_H19e).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H151); [ zenon_intro zenon_H79 | zenon_intro zenon_H14f ].
% 0.83/1.03  exact (zenon_H78 zenon_H79).
% 0.83/1.03  exact (zenon_H14e zenon_H14f).
% 0.83/1.03  (* end of lemma zenon_L123_ *)
% 0.83/1.03  assert (zenon_L124_ : ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (~(hskp12)) -> (~(hskp27)) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp3)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H47 zenon_H33 zenon_H32 zenon_H31 zenon_H14e zenon_H78 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H150 zenon_H44.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H47); [ zenon_intro zenon_H30 | zenon_intro zenon_H4a ].
% 0.83/1.03  apply (zenon_L17_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H4a); [ zenon_intro zenon_H3a | zenon_intro zenon_H45 ].
% 0.83/1.03  apply (zenon_L123_); trivial.
% 0.83/1.03  exact (zenon_H44 zenon_H45).
% 0.83/1.03  (* end of lemma zenon_L124_ *)
% 0.83/1.03  assert (zenon_L125_ : ((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hd8 zenon_Hd9 zenon_Hd2 zenon_Hcf zenon_Hb7 zenon_Hb8 zenon_Hb9 zenon_Hd3 zenon_H31 zenon_H32 zenon_H33 zenon_H150 zenon_H14e zenon_H19f zenon_H19e zenon_H1ab zenon_H44 zenon_H47.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd8). zenon_intro zenon_H7. zenon_intro zenon_Hda.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hda). zenon_intro zenon_Haf. zenon_intro zenon_Hdb.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hdb). zenon_intro zenon_Had. zenon_intro zenon_Hae.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.03  apply (zenon_L124_); trivial.
% 0.83/1.03  apply (zenon_L53_); trivial.
% 0.83/1.03  (* end of lemma zenon_L125_ *)
% 0.83/1.03  assert (zenon_L126_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp21)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hdc zenon_Hdd zenon_Hd9 zenon_Hd2 zenon_Hcf zenon_Hd3 zenon_H31 zenon_H32 zenon_H33 zenon_H150 zenon_H14e zenon_H19f zenon_H19e zenon_H1ab zenon_H44 zenon_H47 zenon_H14d.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.83/1.03  apply (zenon_L101_); trivial.
% 0.83/1.03  apply (zenon_L125_); trivial.
% 0.83/1.03  (* end of lemma zenon_L126_ *)
% 0.83/1.03  assert (zenon_L127_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (~(c1_1 (a212))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp21)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp3)) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (ndr1_0) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H100 zenon_Hdd zenon_Hd9 zenon_Hd2 zenon_Hcf zenon_Hd3 zenon_H150 zenon_H14e zenon_H1ab zenon_H14d zenon_H47 zenon_H44 zenon_H19e zenon_H19f zenon_H165 zenon_H33 zenon_H32 zenon_H31 zenon_H7 zenon_H60 zenon_H1a9 zenon_H176.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.03  apply (zenon_L122_); trivial.
% 0.83/1.03  apply (zenon_L126_); trivial.
% 0.83/1.03  (* end of lemma zenon_L127_ *)
% 0.83/1.03  assert (zenon_L128_ : (forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16)))))) -> (ndr1_0) -> (~(c0_1 (a219))) -> (~(c1_1 (a219))) -> (c3_1 (a219)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H1b0 zenon_H7 zenon_H10a zenon_H1b1 zenon_H10c.
% 0.83/1.03  generalize (zenon_H1b0 (a219)). zenon_intro zenon_H1b2.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H1b2); [ zenon_intro zenon_H6 | zenon_intro zenon_H1b3 ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1b3); [ zenon_intro zenon_H110 | zenon_intro zenon_H1b4 ].
% 0.83/1.03  exact (zenon_H10a zenon_H110).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1b4); [ zenon_intro zenon_H1b5 | zenon_intro zenon_H111 ].
% 0.83/1.03  exact (zenon_H1b1 zenon_H1b5).
% 0.83/1.03  exact (zenon_H111 zenon_H10c).
% 0.83/1.03  (* end of lemma zenon_L128_ *)
% 0.83/1.03  assert (zenon_L129_ : (forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59)))))) -> (ndr1_0) -> (~(c0_1 (a219))) -> (forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16)))))) -> (c3_1 (a219)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hc0 zenon_H7 zenon_H10a zenon_H1b0 zenon_H10c.
% 0.83/1.03  generalize (zenon_Hc0 (a219)). zenon_intro zenon_H1b6.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H1b6); [ zenon_intro zenon_H6 | zenon_intro zenon_H1b7 ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1b7); [ zenon_intro zenon_H110 | zenon_intro zenon_H1b8 ].
% 0.83/1.03  exact (zenon_H10a zenon_H110).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1b8); [ zenon_intro zenon_H1b1 | zenon_intro zenon_H111 ].
% 0.83/1.03  apply (zenon_L128_); trivial.
% 0.83/1.03  exact (zenon_H111 zenon_H10c).
% 0.83/1.03  (* end of lemma zenon_L129_ *)
% 0.83/1.03  assert (zenon_L130_ : ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a219)) -> (forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16)))))) -> (~(c0_1 (a219))) -> (~(hskp3)) -> (c0_1 (a227)) -> (c1_1 (a227)) -> (c3_1 (a227)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (ndr1_0) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Heb zenon_H10c zenon_H1b0 zenon_H10a zenon_H44 zenon_H118 zenon_H119 zenon_H11a zenon_H31 zenon_H32 zenon_H33 zenon_H47 zenon_H7 zenon_H9c zenon_H9d zenon_H9e.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Heb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hec ].
% 0.83/1.03  apply (zenon_L129_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hec); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H9b ].
% 0.83/1.03  apply (zenon_L92_); trivial.
% 0.83/1.03  apply (zenon_L40_); trivial.
% 0.83/1.03  (* end of lemma zenon_L130_ *)
% 0.83/1.03  assert (zenon_L131_ : ((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp18)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H15f zenon_Hd9 zenon_H128 zenon_H1b9 zenon_H10a zenon_H10c zenon_Heb zenon_H1c zenon_H156 zenon_H31 zenon_H32 zenon_H33 zenon_H150 zenon_H14e zenon_H19f zenon_H19e zenon_H1ab zenon_H44 zenon_H47.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.03  apply (zenon_L124_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H128); [ zenon_intro zenon_H113 | zenon_intro zenon_H123 ].
% 0.83/1.03  apply (zenon_L90_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H123). zenon_intro zenon_H7. zenon_intro zenon_H125.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H125). zenon_intro zenon_H118. zenon_intro zenon_H126.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H126). zenon_intro zenon_H119. zenon_intro zenon_H11a.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1b9); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1ba ].
% 0.83/1.03  apply (zenon_L130_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1ba); [ zenon_intro zenon_H30 | zenon_intro zenon_Hb6 ].
% 0.83/1.03  apply (zenon_L17_); trivial.
% 0.83/1.03  apply (zenon_L92_); trivial.
% 0.83/1.03  (* end of lemma zenon_L131_ *)
% 0.83/1.03  assert (zenon_L132_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> (~(c1_1 (a231))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp19)) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hf8 zenon_H176 zenon_H172 zenon_H6d zenon_H6c zenon_H6b zenon_H31 zenon_H32 zenon_H33 zenon_H165 zenon_H7a zenon_H19f zenon_H19e zenon_H44 zenon_H47.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.83/1.03  apply (zenon_L119_); trivial.
% 0.83/1.03  apply (zenon_L99_); trivial.
% 0.83/1.03  (* end of lemma zenon_L132_ *)
% 0.83/1.03  assert (zenon_L133_ : ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp19)) -> (c3_1 (a212)) -> (c0_1 (a212)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (ndr1_0) -> (~(c1_1 (a231))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hfb zenon_H176 zenon_H172 zenon_H31 zenon_H32 zenon_H33 zenon_H165 zenon_H7a zenon_H19f zenon_H19e zenon_H47 zenon_H7 zenon_H6b zenon_H6c zenon_H6d zenon_H44 zenon_H76.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.03  apply (zenon_L33_); trivial.
% 0.83/1.03  apply (zenon_L132_); trivial.
% 0.83/1.03  (* end of lemma zenon_L133_ *)
% 0.83/1.03  assert (zenon_L134_ : ((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (~(c1_1 (a212))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp21)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H103 zenon_H100 zenon_Hdd zenon_Hd9 zenon_Hd2 zenon_Hcf zenon_Hd3 zenon_H150 zenon_H14e zenon_H1ab zenon_H14d zenon_H76 zenon_H44 zenon_H47 zenon_H19e zenon_H19f zenon_H165 zenon_H33 zenon_H32 zenon_H31 zenon_H172 zenon_H176 zenon_Hfb.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.03  apply (zenon_L133_); trivial.
% 0.83/1.03  apply (zenon_L126_); trivial.
% 0.83/1.03  (* end of lemma zenon_L134_ *)
% 0.83/1.03  assert (zenon_L135_ : (forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))) -> (ndr1_0) -> (c0_1 (a212)) -> (forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37)))))) -> (~(c1_1 (a212))) -> (c3_1 (a212)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H3a zenon_H7 zenon_H19e zenon_H88 zenon_H1ab zenon_H19f.
% 0.83/1.03  generalize (zenon_H3a (a212)). zenon_intro zenon_H1a6.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H1a6); [ zenon_intro zenon_H6 | zenon_intro zenon_H1a7 ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1a7); [ zenon_intro zenon_H1a5 | zenon_intro zenon_H1a8 ].
% 0.83/1.03  exact (zenon_H1a5 zenon_H19e).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1a8); [ zenon_intro zenon_H19d | zenon_intro zenon_H1a4 ].
% 0.83/1.03  generalize (zenon_H88 (a212)). zenon_intro zenon_H1bb.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H1bb); [ zenon_intro zenon_H6 | zenon_intro zenon_H1bc ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1bc); [ zenon_intro zenon_H1af | zenon_intro zenon_H1bd ].
% 0.83/1.03  exact (zenon_H1ab zenon_H1af).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1bd); [ zenon_intro zenon_H1a3 | zenon_intro zenon_H1a4 ].
% 0.83/1.03  exact (zenon_H19d zenon_H1a3).
% 0.83/1.03  exact (zenon_H1a4 zenon_H19f).
% 0.83/1.03  exact (zenon_H1a4 zenon_H19f).
% 0.83/1.03  (* end of lemma zenon_L135_ *)
% 0.83/1.03  assert (zenon_L136_ : ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59)))))) -> (~(c2_1 (a238))) -> (c3_1 (a212)) -> (~(c1_1 (a212))) -> (forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37)))))) -> (c0_1 (a212)) -> (ndr1_0) -> (~(hskp3)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H47 zenon_Hb9 zenon_Hb8 zenon_Hc0 zenon_Hb7 zenon_H19f zenon_H1ab zenon_H88 zenon_H19e zenon_H7 zenon_H44.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H47); [ zenon_intro zenon_H30 | zenon_intro zenon_H4a ].
% 0.83/1.03  apply (zenon_L49_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H4a); [ zenon_intro zenon_H3a | zenon_intro zenon_H45 ].
% 0.83/1.03  apply (zenon_L135_); trivial.
% 0.83/1.03  exact (zenon_H44 zenon_H45).
% 0.83/1.03  (* end of lemma zenon_L136_ *)
% 0.83/1.03  assert (zenon_L137_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp21)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp3)) -> (c3_1 (a212)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (~(c2_1 (a238))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hd1 zenon_Heb zenon_Ha7 zenon_H47 zenon_H44 zenon_H19f zenon_H1ab zenon_H19e zenon_Ha9 zenon_Hb9 zenon_Hb8 zenon_Hb7.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Heb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hec ].
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Ha9); [ zenon_intro zenon_H88 | zenon_intro zenon_Haa ].
% 0.83/1.03  apply (zenon_L136_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Haa); [ zenon_intro zenon_H56 | zenon_intro zenon_Ha8 ].
% 0.83/1.03  apply (zenon_L51_); trivial.
% 0.83/1.03  exact (zenon_Ha7 zenon_Ha8).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hec); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H9b ].
% 0.83/1.03  apply (zenon_L47_); trivial.
% 0.83/1.03  apply (zenon_L40_); trivial.
% 0.83/1.03  (* end of lemma zenon_L137_ *)
% 0.83/1.03  assert (zenon_L138_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c3_1 (a233))) -> (~(c2_1 (a233))) -> (~(c1_1 (a233))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (c3_1 (a212)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hdc zenon_Hdd zenon_Hd2 zenon_Hcf zenon_Hd3 zenon_Hab zenon_H23 zenon_H22 zenon_H21 zenon_Ha9 zenon_H19e zenon_H1ab zenon_H19f zenon_H44 zenon_H47 zenon_Heb zenon_Hd9.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.03  apply (zenon_L45_); trivial.
% 0.83/1.03  apply (zenon_L137_); trivial.
% 0.83/1.03  apply (zenon_L54_); trivial.
% 0.83/1.03  (* end of lemma zenon_L138_ *)
% 0.83/1.03  assert (zenon_L139_ : ((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217)))))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(c1_1 (a212))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> (~(hskp0)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H185 zenon_H102 zenon_H100 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_Hd3 zenon_Hab zenon_Ha9 zenon_H1ab zenon_Heb zenon_Hd9 zenon_H76 zenon_H19e zenon_H19f zenon_H165 zenon_H172 zenon_H176 zenon_Hfb zenon_H183 zenon_H181 zenon_H2e zenon_H31 zenon_H32 zenon_H33 zenon_H44 zenon_H47 zenon_H4c zenon_H4f.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.83/1.03  apply (zenon_L111_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.03  apply (zenon_L110_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.03  apply (zenon_L133_); trivial.
% 0.83/1.03  apply (zenon_L138_); trivial.
% 0.83/1.03  (* end of lemma zenon_L139_ *)
% 0.83/1.03  assert (zenon_L140_ : ((ndr1_0)/\((~(c0_1 (a213)))/\((~(c1_1 (a213)))/\(~(c2_1 (a213)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((hskp1)\/(hskp2))) -> (~(hskp1)) -> (~(hskp2)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H1be zenon_H16 zenon_H12 zenon_H14.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.83/1.03  apply (zenon_L8_); trivial.
% 0.83/1.03  (* end of lemma zenon_L140_ *)
% 0.83/1.03  assert (zenon_L141_ : ((~(hskp9))\/((ndr1_0)/\((~(c0_1 (a213)))/\((~(c1_1 (a213)))/\(~(c2_1 (a213))))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((hskp1)\/(hskp2))) -> (~(hskp2)) -> (~(hskp1)) -> (~(hskp6)) -> ((hskp6)\/(hskp9)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H1c1 zenon_H16 zenon_H14 zenon_H12 zenon_H1 zenon_H5.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.83/1.03  apply (zenon_L3_); trivial.
% 0.83/1.03  apply (zenon_L140_); trivial.
% 0.83/1.03  (* end of lemma zenon_L141_ *)
% 0.83/1.03  assert (zenon_L142_ : (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (ndr1_0) -> (~(c0_1 (a205))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H1c2 zenon_H7 zenon_H1c3 zenon_H1c4 zenon_H1c5.
% 0.83/1.03  generalize (zenon_H1c2 (a205)). zenon_intro zenon_H1c6.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H1c6); [ zenon_intro zenon_H6 | zenon_intro zenon_H1c7 ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1c7); [ zenon_intro zenon_H1c9 | zenon_intro zenon_H1c8 ].
% 0.83/1.03  exact (zenon_H1c3 zenon_H1c9).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1c8); [ zenon_intro zenon_H1cb | zenon_intro zenon_H1ca ].
% 0.83/1.03  exact (zenon_H1c4 zenon_H1cb).
% 0.83/1.03  exact (zenon_H1ca zenon_H1c5).
% 0.83/1.03  (* end of lemma zenon_L142_ *)
% 0.83/1.03  assert (zenon_L143_ : (forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))) -> (ndr1_0) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H3a zenon_H7 zenon_H1c2 zenon_H1c4 zenon_H1c5 zenon_H1cc.
% 0.83/1.03  generalize (zenon_H3a (a205)). zenon_intro zenon_H1cd.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H1cd); [ zenon_intro zenon_H6 | zenon_intro zenon_H1ce ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1ce); [ zenon_intro zenon_H1c3 | zenon_intro zenon_H1cf ].
% 0.83/1.03  apply (zenon_L142_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1cf); [ zenon_intro zenon_H1ca | zenon_intro zenon_H1d0 ].
% 0.83/1.03  exact (zenon_H1ca zenon_H1c5).
% 0.83/1.03  exact (zenon_H1d0 zenon_H1cc).
% 0.83/1.03  (* end of lemma zenon_L143_ *)
% 0.83/1.03  assert (zenon_L144_ : ((ndr1_0)/\((c0_1 (a208))/\((c1_1 (a208))/\(~(c2_1 (a208)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(hskp3))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp3)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H1d1 zenon_H1d2 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H47 zenon_H44.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1d2); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H1d5 ].
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H47); [ zenon_intro zenon_H30 | zenon_intro zenon_H4a ].
% 0.83/1.03  apply (zenon_L17_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H4a); [ zenon_intro zenon_H3a | zenon_intro zenon_H45 ].
% 0.83/1.03  apply (zenon_L143_); trivial.
% 0.83/1.03  exact (zenon_H44 zenon_H45).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1d5); [ zenon_intro zenon_H30 | zenon_intro zenon_H45 ].
% 0.83/1.03  apply (zenon_L17_); trivial.
% 0.83/1.03  exact (zenon_H44 zenon_H45).
% 0.83/1.03  (* end of lemma zenon_L144_ *)
% 0.83/1.03  assert (zenon_L145_ : ((~(hskp6))\/((ndr1_0)/\((c0_1 (a208))/\((c1_1 (a208))/\(~(c2_1 (a208))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(hskp3))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((hskp6)\/(hskp9)) -> (~(hskp1)) -> (~(hskp2)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((hskp1)\/(hskp2))) -> ((~(hskp9))\/((ndr1_0)/\((~(c0_1 (a213)))/\((~(c1_1 (a213)))/\(~(c2_1 (a213))))))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H1d6 zenon_H1d2 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H44 zenon_H47 zenon_H5 zenon_H12 zenon_H14 zenon_H16 zenon_H1c1.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.83/1.03  apply (zenon_L141_); trivial.
% 0.83/1.03  apply (zenon_L144_); trivial.
% 0.83/1.03  (* end of lemma zenon_L145_ *)
% 0.83/1.03  assert (zenon_L146_ : (forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34)))))) -> (ndr1_0) -> (~(c0_1 (a219))) -> (forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16)))))) -> (c3_1 (a219)) -> (c2_1 (a219)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H167 zenon_H7 zenon_H10a zenon_H1b0 zenon_H10c zenon_H10b.
% 0.83/1.03  generalize (zenon_H167 (a219)). zenon_intro zenon_H1d7.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H1d7); [ zenon_intro zenon_H6 | zenon_intro zenon_H1d8 ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1d8); [ zenon_intro zenon_H110 | zenon_intro zenon_H1d9 ].
% 0.83/1.03  exact (zenon_H10a zenon_H110).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1d9); [ zenon_intro zenon_H1b1 | zenon_intro zenon_H112 ].
% 0.83/1.03  apply (zenon_L128_); trivial.
% 0.83/1.03  exact (zenon_H112 zenon_H10b).
% 0.83/1.03  (* end of lemma zenon_L146_ *)
% 0.83/1.03  assert (zenon_L147_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16)))))) -> (~(c0_1 (a219))) -> (ndr1_0) -> (~(c1_1 (a231))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H172 zenon_H81 zenon_H80 zenon_H7f zenon_H10b zenon_H10c zenon_H1b0 zenon_H10a zenon_H7 zenon_H6b zenon_H6c zenon_H6d.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H172); [ zenon_intro zenon_H7e | zenon_intro zenon_H175 ].
% 0.83/1.03  apply (zenon_L37_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H175); [ zenon_intro zenon_H167 | zenon_intro zenon_H6a ].
% 0.83/1.03  apply (zenon_L146_); trivial.
% 0.83/1.03  apply (zenon_L31_); trivial.
% 0.83/1.03  (* end of lemma zenon_L147_ *)
% 0.83/1.03  assert (zenon_L148_ : (forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y)))))) -> (ndr1_0) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H1da zenon_H7 zenon_H1db zenon_H1dc zenon_H1dd.
% 0.83/1.03  generalize (zenon_H1da (a204)). zenon_intro zenon_H1de.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H1de); [ zenon_intro zenon_H6 | zenon_intro zenon_H1df ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1df); [ zenon_intro zenon_H1e1 | zenon_intro zenon_H1e0 ].
% 0.83/1.03  exact (zenon_H1db zenon_H1e1).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1e0); [ zenon_intro zenon_H1e3 | zenon_intro zenon_H1e2 ].
% 0.83/1.03  exact (zenon_H1dc zenon_H1e3).
% 0.83/1.03  exact (zenon_H1e2 zenon_H1dd).
% 0.83/1.03  (* end of lemma zenon_L148_ *)
% 0.83/1.03  assert (zenon_L149_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> (~(c1_1 (a231))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hf8 zenon_H1e4 zenon_H6d zenon_H6c zenon_H6b zenon_H172 zenon_H1dd zenon_H1dc zenon_H1db zenon_H10a zenon_H10b zenon_H10c.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.83/1.03  apply (zenon_L147_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.83/1.03  apply (zenon_L148_); trivial.
% 0.83/1.03  apply (zenon_L66_); trivial.
% 0.83/1.03  (* end of lemma zenon_L149_ *)
% 0.83/1.03  assert (zenon_L150_ : ((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> (c2_1 (a219)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H103 zenon_Hfb zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H10a zenon_H10c zenon_H10b zenon_H172 zenon_H44 zenon_H76.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.03  apply (zenon_L33_); trivial.
% 0.83/1.03  apply (zenon_L149_); trivial.
% 0.83/1.03  (* end of lemma zenon_L150_ *)
% 0.83/1.03  assert (zenon_L151_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (~(hskp15)) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hd1 zenon_H128 zenon_Heb zenon_H31 zenon_H32 zenon_H33 zenon_H44 zenon_H47 zenon_H12f zenon_H12e zenon_H12d zenon_H10a zenon_H10b zenon_H10c zenon_H50 zenon_H115.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H128); [ zenon_intro zenon_H113 | zenon_intro zenon_H123 ].
% 0.83/1.03  apply (zenon_L68_); trivial.
% 0.83/1.03  apply (zenon_L93_); trivial.
% 0.83/1.03  (* end of lemma zenon_L151_ *)
% 0.83/1.03  assert (zenon_L152_ : (~(hskp23)) -> (hskp23) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H1e6 zenon_H1e7.
% 0.83/1.03  exact (zenon_H1e6 zenon_H1e7).
% 0.83/1.03  (* end of lemma zenon_L152_ *)
% 0.83/1.03  assert (zenon_L153_ : ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (c3_1 (a219)) -> (forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16)))))) -> (~(c0_1 (a219))) -> (~(hskp23)) -> (~(hskp30)) -> (ndr1_0) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> (~(hskp5)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hd2 zenon_H10c zenon_H1b0 zenon_H10a zenon_H1e6 zenon_H2a zenon_H7 zenon_Hed zenon_Hee zenon_H1e8 zenon_Hcf.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hd2); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hd6 ].
% 0.83/1.03  apply (zenon_L129_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hd6); [ zenon_intro zenon_Hac | zenon_intro zenon_Hd0 ].
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1e8); [ zenon_intro zenon_H1ea | zenon_intro zenon_H1e9 ].
% 0.83/1.03  generalize (zenon_Hac (a228)). zenon_intro zenon_H1eb.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H1eb); [ zenon_intro zenon_H6 | zenon_intro zenon_H1ec ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1ec); [ zenon_intro zenon_Hf3 | zenon_intro zenon_H1ed ].
% 0.83/1.03  exact (zenon_Hed zenon_Hf3).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1ed); [ zenon_intro zenon_H1ee | zenon_intro zenon_Hf5 ].
% 0.83/1.03  generalize (zenon_H1ea (a228)). zenon_intro zenon_H1ef.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H1ef); [ zenon_intro zenon_H6 | zenon_intro zenon_H1f0 ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1f0); [ zenon_intro zenon_Hf3 | zenon_intro zenon_H1f1 ].
% 0.83/1.03  exact (zenon_Hed zenon_Hf3).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1f1); [ zenon_intro zenon_Hf5 | zenon_intro zenon_H1f2 ].
% 0.83/1.03  exact (zenon_Hf5 zenon_Hee).
% 0.83/1.03  exact (zenon_H1f2 zenon_H1ee).
% 0.83/1.03  exact (zenon_Hf5 zenon_Hee).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1e9); [ zenon_intro zenon_H2b | zenon_intro zenon_H1e7 ].
% 0.83/1.03  exact (zenon_H2a zenon_H2b).
% 0.83/1.03  exact (zenon_H1e6 zenon_H1e7).
% 0.83/1.03  exact (zenon_Hcf zenon_Hd0).
% 0.83/1.03  (* end of lemma zenon_L153_ *)
% 0.83/1.03  assert (zenon_L154_ : (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (~(c0_1 (a248))) -> (~(c2_1 (a248))) -> (~(c3_1 (a248))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H1f3 zenon_H7 zenon_H1f4 zenon_H1f5 zenon_H1f6.
% 0.83/1.03  generalize (zenon_H1f3 (a248)). zenon_intro zenon_H1f7.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H1f7); [ zenon_intro zenon_H6 | zenon_intro zenon_H1f8 ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1f8); [ zenon_intro zenon_H1fa | zenon_intro zenon_H1f9 ].
% 0.83/1.03  exact (zenon_H1f4 zenon_H1fa).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1f9); [ zenon_intro zenon_H1fc | zenon_intro zenon_H1fb ].
% 0.83/1.03  exact (zenon_H1f5 zenon_H1fc).
% 0.83/1.03  exact (zenon_H1f6 zenon_H1fb).
% 0.83/1.03  (* end of lemma zenon_L154_ *)
% 0.83/1.03  assert (zenon_L155_ : ((ndr1_0)/\((~(c0_1 (a248)))/\((~(c2_1 (a248)))/\(~(c3_1 (a248)))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((hskp8)\/(hskp9))) -> (~(hskp8)) -> (~(hskp9)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H1fd zenon_H1fe zenon_H18 zenon_H3.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H1fd). zenon_intro zenon_H7. zenon_intro zenon_H1ff.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H1ff). zenon_intro zenon_H1f4. zenon_intro zenon_H200.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H200). zenon_intro zenon_H1f5. zenon_intro zenon_H1f6.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1fe); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H201 ].
% 0.83/1.03  apply (zenon_L154_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H201); [ zenon_intro zenon_H19 | zenon_intro zenon_H4 ].
% 0.83/1.03  exact (zenon_H18 zenon_H19).
% 0.83/1.03  exact (zenon_H3 zenon_H4).
% 0.83/1.03  (* end of lemma zenon_L155_ *)
% 0.83/1.03  assert (zenon_L156_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((~(hskp23))\/((ndr1_0)/\((~(c0_1 (a248)))/\((~(c2_1 (a248)))/\(~(c3_1 (a248))))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((hskp8)\/(hskp9))) -> (~(hskp9)) -> (~(hskp8)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c2_1 (a219)) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hfc zenon_H202 zenon_H1fe zenon_H3 zenon_H18 zenon_H1e4 zenon_H10b zenon_H1dd zenon_H1dc zenon_H1db zenon_H10a zenon_H10c zenon_H1e8 zenon_Hcf zenon_Hd2 zenon_H31 zenon_H32 zenon_H33 zenon_H44 zenon_H47 zenon_H4c.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H202); [ zenon_intro zenon_H1e6 | zenon_intro zenon_H1fd ].
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H4c); [ zenon_intro zenon_H2a | zenon_intro zenon_H46 ].
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.83/1.03  apply (zenon_L153_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.83/1.03  apply (zenon_L148_); trivial.
% 0.83/1.03  apply (zenon_L66_); trivial.
% 0.83/1.03  apply (zenon_L20_); trivial.
% 0.83/1.03  apply (zenon_L155_); trivial.
% 0.83/1.03  (* end of lemma zenon_L156_ *)
% 0.83/1.03  assert (zenon_L157_ : ((~(hskp9))\/((ndr1_0)/\((~(c0_1 (a213)))/\((~(c1_1 (a213)))/\(~(c2_1 (a213))))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((hskp1)\/(hskp2))) -> (~(hskp2)) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((hskp8)\/((hskp13)\/(hskp18))) -> (~(hskp8)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38))))))\/((hskp1)\/(hskp14))) -> (~(hskp1)) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp21)) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((hskp8)\/(hskp9))) -> ((~(hskp23))\/((ndr1_0)/\((~(c0_1 (a248)))/\((~(c2_1 (a248)))/\(~(c3_1 (a248))))))) -> ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H1c1 zenon_H16 zenon_H14 zenon_H129 zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H172 zenon_H102 zenon_H101 zenon_H100 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_Hd3 zenon_Hab zenon_Ha9 zenon_H76 zenon_H7c zenon_Ha5 zenon_Hf6 zenon_Hd9 zenon_Hfb zenon_H54 zenon_H65 zenon_H69 zenon_H1e zenon_H18 zenon_H2e zenon_H31 zenon_H32 zenon_H33 zenon_H44 zenon_H47 zenon_H4c zenon_H4f zenon_He0 zenon_Heb zenon_Hff zenon_H136 zenon_H12 zenon_H14d zenon_H115 zenon_H128 zenon_H1e8 zenon_H1fe zenon_H202 zenon_H186.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.03  apply (zenon_L65_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.83/1.03  apply (zenon_L22_); trivial.
% 0.83/1.03  apply (zenon_L150_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.03  apply (zenon_L80_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H69); [ zenon_intro zenon_H52 | zenon_intro zenon_H64 ].
% 0.83/1.03  apply (zenon_L25_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H64). zenon_intro zenon_H7. zenon_intro zenon_H66.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H66). zenon_intro zenon_H58. zenon_intro zenon_H67.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H67). zenon_intro zenon_H59. zenon_intro zenon_H57.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.03  apply (zenon_L36_); trivial.
% 0.83/1.03  apply (zenon_L151_); trivial.
% 0.83/1.03  apply (zenon_L102_); trivial.
% 0.83/1.03  apply (zenon_L156_); trivial.
% 0.83/1.03  apply (zenon_L140_); trivial.
% 0.83/1.03  (* end of lemma zenon_L157_ *)
% 0.83/1.03  assert (zenon_L158_ : (forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86)))))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H1ea zenon_H7 zenon_H1ab zenon_H19e zenon_H19f.
% 0.83/1.03  generalize (zenon_H1ea (a212)). zenon_intro zenon_H203.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H203); [ zenon_intro zenon_H6 | zenon_intro zenon_H204 ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H204); [ zenon_intro zenon_H1af | zenon_intro zenon_H1a2 ].
% 0.83/1.03  exact (zenon_H1ab zenon_H1af).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1a2); [ zenon_intro zenon_H1a5 | zenon_intro zenon_H1a4 ].
% 0.83/1.03  exact (zenon_H1a5 zenon_H19e).
% 0.83/1.03  exact (zenon_H1a4 zenon_H19f).
% 0.83/1.03  (* end of lemma zenon_L158_ *)
% 0.83/1.03  assert (zenon_L159_ : ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> (~(hskp24)) -> (~(hskp22)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H138 zenon_H74.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H205); [ zenon_intro zenon_H1ea | zenon_intro zenon_H206 ].
% 0.83/1.03  apply (zenon_L158_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H206); [ zenon_intro zenon_H139 | zenon_intro zenon_H75 ].
% 0.83/1.03  exact (zenon_H138 zenon_H139).
% 0.83/1.03  exact (zenon_H74 zenon_H75).
% 0.83/1.03  (* end of lemma zenon_L159_ *)
% 0.83/1.03  assert (zenon_L160_ : (~(hskp20)) -> (hskp20) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H207 zenon_H208.
% 0.83/1.03  exact (zenon_H207 zenon_H208).
% 0.83/1.03  (* end of lemma zenon_L160_ *)
% 0.83/1.03  assert (zenon_L161_ : ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a249)) -> (c3_1 (a249)) -> (~(c2_1 (a249))) -> (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (ndr1_0) -> (~(hskp19)) -> (~(hskp20)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H209 zenon_H148 zenon_H140 zenon_H13e zenon_Hb6 zenon_H7 zenon_H7a zenon_H207.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H209); [ zenon_intro zenon_H147 | zenon_intro zenon_H20a ].
% 0.83/1.03  apply (zenon_L85_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H20a); [ zenon_intro zenon_H7b | zenon_intro zenon_H208 ].
% 0.83/1.03  exact (zenon_H7a zenon_H7b).
% 0.83/1.03  exact (zenon_H207 zenon_H208).
% 0.83/1.03  (* end of lemma zenon_L161_ *)
% 0.83/1.03  assert (zenon_L162_ : ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a219)) -> (forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16)))))) -> (~(c0_1 (a219))) -> (~(hskp20)) -> (~(hskp19)) -> (~(c2_1 (a249))) -> (c3_1 (a249)) -> (c0_1 (a249)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (ndr1_0) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Heb zenon_H10c zenon_H1b0 zenon_H10a zenon_H207 zenon_H7a zenon_H13e zenon_H140 zenon_H148 zenon_H209 zenon_H7 zenon_H9c zenon_H9d zenon_H9e.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Heb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hec ].
% 0.83/1.03  apply (zenon_L129_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hec); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H9b ].
% 0.83/1.03  apply (zenon_L161_); trivial.
% 0.83/1.03  apply (zenon_L40_); trivial.
% 0.83/1.03  (* end of lemma zenon_L162_ *)
% 0.83/1.03  assert (zenon_L163_ : ((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c2_1 (a219)) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (~(hskp20)) -> (~(hskp19)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp21)) -> (~(hskp21)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H15f zenon_Hd9 zenon_H1e4 zenon_H10b zenon_H1dd zenon_H1dc zenon_H1db zenon_H10a zenon_H10c zenon_H209 zenon_H207 zenon_H7a zenon_Heb zenon_H14d zenon_Ha7 zenon_H14e zenon_H150.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.03  apply (zenon_L88_); trivial.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.83/1.03  apply (zenon_L162_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.83/1.03  apply (zenon_L148_); trivial.
% 0.83/1.03  apply (zenon_L66_); trivial.
% 0.83/1.03  (* end of lemma zenon_L163_ *)
% 0.83/1.03  assert (zenon_L164_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c2_1 (a219)) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (~(hskp20)) -> (~(hskp19)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp21)) -> (~(hskp21)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp22)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H162 zenon_Hd9 zenon_H1e4 zenon_H10b zenon_H1dd zenon_H1dc zenon_H1db zenon_H10a zenon_H10c zenon_H209 zenon_H207 zenon_H7a zenon_Heb zenon_H14d zenon_Ha7 zenon_H14e zenon_H150 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H74 zenon_H205.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.83/1.03  apply (zenon_L159_); trivial.
% 0.83/1.03  apply (zenon_L163_); trivial.
% 0.83/1.03  (* end of lemma zenon_L164_ *)
% 0.83/1.03  assert (zenon_L165_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hf8 zenon_Hd9 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Heb zenon_H31 zenon_H32 zenon_H33 zenon_H150 zenon_H14e zenon_H19f zenon_H19e zenon_H1ab zenon_H44 zenon_H47.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.03  apply (zenon_L124_); trivial.
% 0.83/1.03  apply (zenon_L61_); trivial.
% 0.83/1.03  (* end of lemma zenon_L165_ *)
% 0.83/1.03  assert (zenon_L166_ : ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (c3_1 (a219)) -> (forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16)))))) -> (~(c0_1 (a219))) -> (c0_1 (a241)) -> (~(c3_1 (a241))) -> (~(c1_1 (a241))) -> (ndr1_0) -> (~(hskp5)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hd2 zenon_H10c zenon_H1b0 zenon_H10a zenon_Haf zenon_Hae zenon_Had zenon_H7 zenon_Hcf.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hd2); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hd6 ].
% 0.83/1.03  apply (zenon_L129_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_Hd6); [ zenon_intro zenon_Hac | zenon_intro zenon_Hd0 ].
% 0.83/1.03  apply (zenon_L46_); trivial.
% 0.83/1.03  exact (zenon_Hcf zenon_Hd0).
% 0.83/1.03  (* end of lemma zenon_L166_ *)
% 0.83/1.03  assert (zenon_L167_ : ((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_Hd8 zenon_H1e4 zenon_Hcf zenon_Hd2 zenon_H1dd zenon_H1dc zenon_H1db zenon_H10a zenon_H10b zenon_H10c.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hd8). zenon_intro zenon_H7. zenon_intro zenon_Hda.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hda). zenon_intro zenon_Haf. zenon_intro zenon_Hdb.
% 0.83/1.03  apply (zenon_and_s _ _ zenon_Hdb). zenon_intro zenon_Had. zenon_intro zenon_Hae.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.83/1.03  apply (zenon_L166_); trivial.
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.83/1.03  apply (zenon_L148_); trivial.
% 0.83/1.03  apply (zenon_L66_); trivial.
% 0.83/1.03  (* end of lemma zenon_L167_ *)
% 0.83/1.03  assert (zenon_L168_ : (forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))) -> (ndr1_0) -> (~(c3_1 (a239))) -> (forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))) -> (c2_1 (a239)) -> False).
% 0.83/1.03  do 0 intro. intros zenon_H56 zenon_H7 zenon_H20b zenon_H6a zenon_H20c.
% 0.83/1.03  generalize (zenon_H56 (a239)). zenon_intro zenon_H20d.
% 0.83/1.03  apply (zenon_imply_s _ _ zenon_H20d); [ zenon_intro zenon_H6 | zenon_intro zenon_H20e ].
% 0.83/1.03  exact (zenon_H6 zenon_H7).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H20e); [ zenon_intro zenon_H210 | zenon_intro zenon_H20f ].
% 0.83/1.03  exact (zenon_H20b zenon_H210).
% 0.83/1.03  apply (zenon_or_s _ _ zenon_H20f); [ zenon_intro zenon_H212 | zenon_intro zenon_H211 ].
% 0.83/1.03  generalize (zenon_H6a (a239)). zenon_intro zenon_H213.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H213); [ zenon_intro zenon_H6 | zenon_intro zenon_H214 ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H214); [ zenon_intro zenon_H216 | zenon_intro zenon_H215 ].
% 0.83/1.04  exact (zenon_H212 zenon_H216).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H215); [ zenon_intro zenon_H210 | zenon_intro zenon_H211 ].
% 0.83/1.04  exact (zenon_H20b zenon_H210).
% 0.83/1.04  exact (zenon_H211 zenon_H20c).
% 0.83/1.04  exact (zenon_H211 zenon_H20c).
% 0.83/1.04  (* end of lemma zenon_L168_ *)
% 0.83/1.04  assert (zenon_L169_ : ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (c2_1 (a239)) -> (forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))) -> (~(c3_1 (a239))) -> (ndr1_0) -> (~(hskp27)) -> (~(hskp19)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H7c zenon_H20c zenon_H6a zenon_H20b zenon_H7 zenon_H78 zenon_H7a.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H7c); [ zenon_intro zenon_H56 | zenon_intro zenon_H7d ].
% 0.83/1.04  apply (zenon_L168_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H7d); [ zenon_intro zenon_H79 | zenon_intro zenon_H7b ].
% 0.83/1.04  exact (zenon_H78 zenon_H79).
% 0.83/1.04  exact (zenon_H7a zenon_H7b).
% 0.83/1.04  (* end of lemma zenon_L169_ *)
% 0.83/1.04  assert (zenon_L170_ : ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> (~(hskp19)) -> (~(hskp27)) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (c3_1 (a249)) -> (c0_1 (a249)) -> (~(c2_1 (a249))) -> (ndr1_0) -> (~(hskp17)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H217 zenon_H7a zenon_H78 zenon_H20b zenon_H20c zenon_H7c zenon_H140 zenon_H148 zenon_H13e zenon_H7 zenon_H62.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H217); [ zenon_intro zenon_H6a | zenon_intro zenon_H218 ].
% 0.83/1.04  apply (zenon_L169_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H218); [ zenon_intro zenon_H152 | zenon_intro zenon_H63 ].
% 0.83/1.04  apply (zenon_L89_); trivial.
% 0.83/1.04  exact (zenon_H62 zenon_H63).
% 0.83/1.04  (* end of lemma zenon_L170_ *)
% 0.83/1.04  assert (zenon_L171_ : (forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25)))))) -> (ndr1_0) -> (~(c0_1 (a239))) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H92 zenon_H7 zenon_H219 zenon_H20b zenon_H20c.
% 0.83/1.04  generalize (zenon_H92 (a239)). zenon_intro zenon_H21a.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H21a); [ zenon_intro zenon_H6 | zenon_intro zenon_H21b ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H21b); [ zenon_intro zenon_H21c | zenon_intro zenon_H215 ].
% 0.83/1.04  exact (zenon_H219 zenon_H21c).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H215); [ zenon_intro zenon_H210 | zenon_intro zenon_H211 ].
% 0.83/1.04  exact (zenon_H20b zenon_H210).
% 0.83/1.04  exact (zenon_H211 zenon_H20c).
% 0.83/1.04  (* end of lemma zenon_L171_ *)
% 0.83/1.04  assert (zenon_L172_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hd1 zenon_Ha5 zenon_H20c zenon_H20b zenon_H219 zenon_H33 zenon_H32 zenon_H31.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Ha5); [ zenon_intro zenon_H92 | zenon_intro zenon_Ha6 ].
% 0.83/1.04  apply (zenon_L171_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Ha6); [ zenon_intro zenon_H30 | zenon_intro zenon_H9b ].
% 0.83/1.04  apply (zenon_L17_); trivial.
% 0.83/1.04  apply (zenon_L40_); trivial.
% 0.83/1.04  (* end of lemma zenon_L172_ *)
% 0.83/1.04  assert (zenon_L173_ : ((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (~(c0_1 (a239))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp19)) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(hskp17)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H15f zenon_Hd9 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_H219 zenon_H7c zenon_H7a zenon_H20c zenon_H20b zenon_H62 zenon_H217.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.04  apply (zenon_L170_); trivial.
% 0.83/1.04  apply (zenon_L172_); trivial.
% 0.83/1.04  (* end of lemma zenon_L173_ *)
% 0.83/1.04  assert (zenon_L174_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (~(c0_1 (a239))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp19)) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(hskp17)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp22)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H162 zenon_Hd9 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_H219 zenon_H7c zenon_H7a zenon_H20c zenon_H20b zenon_H62 zenon_H217 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H74 zenon_H205.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.83/1.04  apply (zenon_L159_); trivial.
% 0.83/1.04  apply (zenon_L173_); trivial.
% 0.83/1.04  (* end of lemma zenon_L174_ *)
% 0.83/1.04  assert (zenon_L175_ : (forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34)))))) -> (ndr1_0) -> (~(c0_1 (a219))) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (c2_1 (a219)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H167 zenon_H7 zenon_H10a zenon_H1c2 zenon_H10b.
% 0.83/1.04  generalize (zenon_H167 (a219)). zenon_intro zenon_H1d7.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H1d7); [ zenon_intro zenon_H6 | zenon_intro zenon_H1d8 ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H1d8); [ zenon_intro zenon_H110 | zenon_intro zenon_H1d9 ].
% 0.83/1.04  exact (zenon_H10a zenon_H110).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H1d9); [ zenon_intro zenon_H1b1 | zenon_intro zenon_H112 ].
% 0.83/1.04  generalize (zenon_H1c2 (a219)). zenon_intro zenon_H21d.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H21d); [ zenon_intro zenon_H6 | zenon_intro zenon_H21e ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H21e); [ zenon_intro zenon_H110 | zenon_intro zenon_H21f ].
% 0.83/1.04  exact (zenon_H10a zenon_H110).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H21f); [ zenon_intro zenon_H1b5 | zenon_intro zenon_H112 ].
% 0.83/1.04  exact (zenon_H1b1 zenon_H1b5).
% 0.83/1.04  exact (zenon_H112 zenon_H10b).
% 0.83/1.04  exact (zenon_H112 zenon_H10b).
% 0.83/1.04  (* end of lemma zenon_L175_ *)
% 0.83/1.04  assert (zenon_L176_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (c2_1 (a219)) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (~(c0_1 (a219))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (ndr1_0) -> (~(hskp27)) -> (~(hskp19)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H172 zenon_H81 zenon_H80 zenon_H7f zenon_H10b zenon_H1c2 zenon_H10a zenon_H7c zenon_H20c zenon_H20b zenon_H7 zenon_H78 zenon_H7a.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H172); [ zenon_intro zenon_H7e | zenon_intro zenon_H175 ].
% 0.83/1.04  apply (zenon_L37_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H175); [ zenon_intro zenon_H167 | zenon_intro zenon_H6a ].
% 0.83/1.04  apply (zenon_L175_); trivial.
% 0.83/1.04  apply (zenon_L169_); trivial.
% 0.83/1.04  (* end of lemma zenon_L176_ *)
% 0.83/1.04  assert (zenon_L177_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c0_1 (a239))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> (~(hskp19)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (c2_1 (a219)) -> (~(c0_1 (a219))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> (~(hskp3)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(hskp3))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hf8 zenon_Hd9 zenon_Ha5 zenon_H219 zenon_H172 zenon_H20b zenon_H20c zenon_H7a zenon_H7c zenon_H10b zenon_H10a zenon_H31 zenon_H32 zenon_H33 zenon_H44 zenon_H1d2.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H1d2); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H1d5 ].
% 0.83/1.04  apply (zenon_L176_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H1d5); [ zenon_intro zenon_H30 | zenon_intro zenon_H45 ].
% 0.83/1.04  apply (zenon_L17_); trivial.
% 0.83/1.04  exact (zenon_H44 zenon_H45).
% 0.83/1.04  apply (zenon_L172_); trivial.
% 0.83/1.04  (* end of lemma zenon_L177_ *)
% 0.83/1.04  assert (zenon_L178_ : ((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c2_1 (a219)) -> (~(c0_1 (a219))) -> (~(hskp3)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(hskp3))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> (~(hskp17)) -> (~(hskp19)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H220 zenon_Hfb zenon_H172 zenon_H10b zenon_H10a zenon_H44 zenon_H1d2 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H217 zenon_H62 zenon_H7a zenon_H7c zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9 zenon_H162.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.04  apply (zenon_L174_); trivial.
% 0.83/1.04  apply (zenon_L177_); trivial.
% 0.83/1.04  (* end of lemma zenon_L178_ *)
% 0.83/1.04  assert (zenon_L179_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c3_1 (a232)) -> (~(c2_1 (a232))) -> (~(c1_1 (a232))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hf8 zenon_Hf6 zenon_H8b zenon_H8a zenon_H89 zenon_Hed zenon_Hee zenon_Hef.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.83/1.04  apply (zenon_L37_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.83/1.04  apply (zenon_L38_); trivial.
% 0.83/1.04  apply (zenon_L60_); trivial.
% 0.83/1.04  (* end of lemma zenon_L179_ *)
% 0.83/1.04  assert (zenon_L180_ : ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp19)) -> (~(hskp27)) -> (ndr1_0) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> (~(hskp22)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H76 zenon_H7a zenon_H78 zenon_H7 zenon_H20b zenon_H20c zenon_H7c zenon_H44 zenon_H74.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H76); [ zenon_intro zenon_H6a | zenon_intro zenon_H77 ].
% 0.83/1.04  apply (zenon_L169_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H77); [ zenon_intro zenon_H45 | zenon_intro zenon_H75 ].
% 0.83/1.04  exact (zenon_H44 zenon_H45).
% 0.83/1.04  exact (zenon_H74 zenon_H75).
% 0.83/1.04  (* end of lemma zenon_L180_ *)
% 0.83/1.04  assert (zenon_L181_ : ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (~(c0_1 (a239))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp19)) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (ndr1_0) -> (~(hskp3)) -> (~(hskp22)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hd9 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_H219 zenon_H7c zenon_H7a zenon_H20c zenon_H20b zenon_H7 zenon_H44 zenon_H74 zenon_H76.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.04  apply (zenon_L180_); trivial.
% 0.83/1.04  apply (zenon_L172_); trivial.
% 0.83/1.04  (* end of lemma zenon_L181_ *)
% 0.83/1.04  assert (zenon_L182_ : (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (ndr1_0) -> (~(c0_1 (a239))) -> (~(c1_1 (a239))) -> (c2_1 (a239)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H1c2 zenon_H7 zenon_H219 zenon_H212 zenon_H20c.
% 0.83/1.04  generalize (zenon_H1c2 (a239)). zenon_intro zenon_H223.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H223); [ zenon_intro zenon_H6 | zenon_intro zenon_H224 ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H224); [ zenon_intro zenon_H21c | zenon_intro zenon_H225 ].
% 0.83/1.04  exact (zenon_H219 zenon_H21c).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H225); [ zenon_intro zenon_H216 | zenon_intro zenon_H211 ].
% 0.83/1.04  exact (zenon_H212 zenon_H216).
% 0.83/1.04  exact (zenon_H211 zenon_H20c).
% 0.83/1.04  (* end of lemma zenon_L182_ *)
% 0.83/1.04  assert (zenon_L183_ : (forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34)))))) -> (ndr1_0) -> (~(c0_1 (a239))) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (c2_1 (a239)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H167 zenon_H7 zenon_H219 zenon_H1c2 zenon_H20c.
% 0.83/1.04  generalize (zenon_H167 (a239)). zenon_intro zenon_H226.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H226); [ zenon_intro zenon_H6 | zenon_intro zenon_H227 ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H227); [ zenon_intro zenon_H21c | zenon_intro zenon_H20f ].
% 0.83/1.04  exact (zenon_H219 zenon_H21c).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H20f); [ zenon_intro zenon_H212 | zenon_intro zenon_H211 ].
% 0.83/1.04  apply (zenon_L182_); trivial.
% 0.83/1.04  exact (zenon_H211 zenon_H20c).
% 0.83/1.04  (* end of lemma zenon_L183_ *)
% 0.83/1.04  assert (zenon_L184_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (~(c0_1 (a239))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (ndr1_0) -> (~(hskp27)) -> (~(hskp19)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H172 zenon_H81 zenon_H80 zenon_H7f zenon_H1c2 zenon_H219 zenon_H7c zenon_H20c zenon_H20b zenon_H7 zenon_H78 zenon_H7a.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H172); [ zenon_intro zenon_H7e | zenon_intro zenon_H175 ].
% 0.83/1.04  apply (zenon_L37_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H175); [ zenon_intro zenon_H167 | zenon_intro zenon_H6a ].
% 0.83/1.04  apply (zenon_L183_); trivial.
% 0.83/1.04  apply (zenon_L169_); trivial.
% 0.83/1.04  (* end of lemma zenon_L184_ *)
% 0.83/1.04  assert (zenon_L185_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c3_1 (a239))) -> (~(hskp19)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (c2_1 (a239)) -> (~(c0_1 (a239))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> (~(hskp3)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(hskp3))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hf8 zenon_Hd9 zenon_Ha5 zenon_H172 zenon_H20b zenon_H7a zenon_H7c zenon_H20c zenon_H219 zenon_H31 zenon_H32 zenon_H33 zenon_H44 zenon_H1d2.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H1d2); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H1d5 ].
% 0.83/1.04  apply (zenon_L184_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H1d5); [ zenon_intro zenon_H30 | zenon_intro zenon_H45 ].
% 0.83/1.04  apply (zenon_L17_); trivial.
% 0.83/1.04  exact (zenon_H44 zenon_H45).
% 0.83/1.04  apply (zenon_L172_); trivial.
% 0.83/1.04  (* end of lemma zenon_L185_ *)
% 0.83/1.04  assert (zenon_L186_ : ((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(hskp3))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> (~(hskp19)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H220 zenon_Hfb zenon_H172 zenon_H1d2 zenon_H76 zenon_H44 zenon_H7a zenon_H7c zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.04  apply (zenon_L181_); trivial.
% 0.83/1.04  apply (zenon_L185_); trivial.
% 0.83/1.04  (* end of lemma zenon_L186_ *)
% 0.83/1.04  assert (zenon_L187_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(hskp3))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp21)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c3_1 (a219)) -> (~(c0_1 (a219))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> (c2_1 (a219)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hfc zenon_H101 zenon_H76 zenon_H228 zenon_H172 zenon_H1d2 zenon_H217 zenon_H7c zenon_Ha5 zenon_Hfb zenon_Hf6 zenon_H31 zenon_H32 zenon_H33 zenon_H44 zenon_H47 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H150 zenon_H14e zenon_H14d zenon_Heb zenon_H209 zenon_H10c zenon_H10a zenon_H1db zenon_H1dc zenon_H1dd zenon_H10b zenon_H1e4 zenon_Hd9 zenon_H162 zenon_Hd2 zenon_Hcf zenon_Hdd zenon_Hd3 zenon_H100.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.04  apply (zenon_L164_); trivial.
% 0.83/1.04  apply (zenon_L165_); trivial.
% 0.83/1.04  apply (zenon_L167_); trivial.
% 0.83/1.04  apply (zenon_L178_); trivial.
% 0.83/1.04  apply (zenon_L126_); trivial.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.04  apply (zenon_L164_); trivial.
% 0.83/1.04  apply (zenon_L179_); trivial.
% 0.83/1.04  apply (zenon_L167_); trivial.
% 0.83/1.04  apply (zenon_L186_); trivial.
% 0.83/1.04  apply (zenon_L126_); trivial.
% 0.83/1.04  (* end of lemma zenon_L187_ *)
% 0.83/1.04  assert (zenon_L188_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c0_1 (a217)) -> (~(c3_1 (a217))) -> (~(c2_1 (a217))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hd1 zenon_H229 zenon_H1dd zenon_H1dc zenon_H1db zenon_H17a zenon_H179 zenon_H178.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H229); [ zenon_intro zenon_H1da | zenon_intro zenon_H22a ].
% 0.83/1.04  apply (zenon_L148_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H22a); [ zenon_intro zenon_H177 | zenon_intro zenon_H9b ].
% 0.83/1.04  apply (zenon_L108_); trivial.
% 0.83/1.04  apply (zenon_L40_); trivial.
% 0.83/1.04  (* end of lemma zenon_L188_ *)
% 0.83/1.04  assert (zenon_L189_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c0_1 (a217)) -> (~(c3_1 (a217))) -> (~(c2_1 (a217))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H4b zenon_Hd9 zenon_H229 zenon_H17a zenon_H179 zenon_H178 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hab.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.04  apply (zenon_L45_); trivial.
% 0.83/1.04  apply (zenon_L188_); trivial.
% 0.83/1.04  (* end of lemma zenon_L189_ *)
% 0.83/1.04  assert (zenon_L190_ : ((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H185 zenon_H4f zenon_Hd9 zenon_H229 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hab zenon_H181 zenon_H183.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.04  apply (zenon_L110_); trivial.
% 0.83/1.04  apply (zenon_L189_); trivial.
% 0.83/1.04  (* end of lemma zenon_L190_ *)
% 0.83/1.04  assert (zenon_L191_ : ((ndr1_0)/\((c2_1 (a205))/\((c3_1 (a205))/\(~(c1_1 (a205)))))) -> ((~(hskp6))\/((ndr1_0)/\((c0_1 (a208))/\((c1_1 (a208))/\(~(c2_1 (a208))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(hskp3))) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((hskp6)\/(hskp9)) -> (~(hskp1)) -> (~(hskp2)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((hskp1)\/(hskp2))) -> ((~(hskp9))\/((ndr1_0)/\((~(c0_1 (a213)))/\((~(c1_1 (a213)))/\(~(c2_1 (a213))))))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H22b zenon_H1d6 zenon_H1d2 zenon_H44 zenon_H47 zenon_H5 zenon_H12 zenon_H14 zenon_H16 zenon_H1c1.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H22b). zenon_intro zenon_H7. zenon_intro zenon_H22c.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H22c). zenon_intro zenon_H1c5. zenon_intro zenon_H22d.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H22d). zenon_intro zenon_H1cc. zenon_intro zenon_H1c4.
% 0.83/1.04  apply (zenon_L145_); trivial.
% 0.83/1.04  (* end of lemma zenon_L191_ *)
% 0.83/1.04  assert (zenon_L192_ : (forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9)))))) -> (ndr1_0) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H22e zenon_H7 zenon_H22f zenon_H230 zenon_H231.
% 0.83/1.04  generalize (zenon_H22e (a203)). zenon_intro zenon_H232.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H232); [ zenon_intro zenon_H6 | zenon_intro zenon_H233 ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H233); [ zenon_intro zenon_H235 | zenon_intro zenon_H234 ].
% 0.83/1.04  exact (zenon_H22f zenon_H235).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H234); [ zenon_intro zenon_H237 | zenon_intro zenon_H236 ].
% 0.83/1.04  exact (zenon_H230 zenon_H237).
% 0.83/1.04  exact (zenon_H236 zenon_H231).
% 0.83/1.04  (* end of lemma zenon_L192_ *)
% 0.83/1.04  assert (zenon_L193_ : (~(hskp10)) -> (hskp10) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H238 zenon_H239.
% 0.83/1.04  exact (zenon_H238 zenon_H239).
% 0.83/1.04  (* end of lemma zenon_L193_ *)
% 0.83/1.04  assert (zenon_L194_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(hskp10)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hd1 zenon_H23a zenon_H231 zenon_H230 zenon_H22f zenon_H238.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H23a); [ zenon_intro zenon_H22e | zenon_intro zenon_H23b ].
% 0.83/1.04  apply (zenon_L192_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H23b); [ zenon_intro zenon_H9b | zenon_intro zenon_H239 ].
% 0.83/1.04  apply (zenon_L40_); trivial.
% 0.83/1.04  exact (zenon_H238 zenon_H239).
% 0.83/1.04  (* end of lemma zenon_L194_ *)
% 0.83/1.04  assert (zenon_L195_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H4b zenon_Hd9 zenon_H23a zenon_H238 zenon_H231 zenon_H230 zenon_H22f zenon_Hab.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.04  apply (zenon_L45_); trivial.
% 0.83/1.04  apply (zenon_L194_); trivial.
% 0.83/1.04  (* end of lemma zenon_L195_ *)
% 0.83/1.04  assert (zenon_L196_ : ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp8)) -> (~(hskp13)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H4f zenon_Hd9 zenon_H23a zenon_H238 zenon_H231 zenon_H230 zenon_H22f zenon_Hab zenon_H18 zenon_H1a zenon_H1e.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.04  apply (zenon_L12_); trivial.
% 0.83/1.04  apply (zenon_L195_); trivial.
% 0.83/1.04  (* end of lemma zenon_L196_ *)
% 0.83/1.04  assert (zenon_L197_ : ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp5)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> (~(hskp30)) -> (~(hskp23)) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (ndr1_0) -> (~(hskp4)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H23c zenon_Hcf zenon_H1e8 zenon_Hee zenon_Hed zenon_H2a zenon_H1e6 zenon_H10a zenon_H10c zenon_Hd2 zenon_H231 zenon_H230 zenon_H22f zenon_H7 zenon_H13a.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H23c); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H23d ].
% 0.83/1.04  apply (zenon_L153_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H23d); [ zenon_intro zenon_H22e | zenon_intro zenon_H13b ].
% 0.83/1.04  apply (zenon_L192_); trivial.
% 0.83/1.04  exact (zenon_H13a zenon_H13b).
% 0.83/1.04  (* end of lemma zenon_L197_ *)
% 0.83/1.04  assert (zenon_L198_ : ((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(hskp11)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H46 zenon_H23e zenon_H231 zenon_H230 zenon_H22f zenon_H121.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H46). zenon_intro zenon_H7. zenon_intro zenon_H48.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H48). zenon_intro zenon_H3b. zenon_intro zenon_H49.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H49). zenon_intro zenon_H3c. zenon_intro zenon_H3d.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H23e); [ zenon_intro zenon_H22e | zenon_intro zenon_H23f ].
% 0.83/1.04  apply (zenon_L192_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H23f); [ zenon_intro zenon_H3a | zenon_intro zenon_H122 ].
% 0.83/1.04  apply (zenon_L18_); trivial.
% 0.83/1.04  exact (zenon_H121 zenon_H122).
% 0.83/1.04  (* end of lemma zenon_L198_ *)
% 0.83/1.04  assert (zenon_L199_ : ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp11)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (~(hskp23)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> (c3_1 (a219)) -> (~(c0_1 (a219))) -> (ndr1_0) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp4)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H4c zenon_H23e zenon_H121 zenon_Hd2 zenon_Hcf zenon_Hed zenon_Hee zenon_H1e6 zenon_H1e8 zenon_H10c zenon_H10a zenon_H7 zenon_H22f zenon_H230 zenon_H231 zenon_H13a zenon_H23c.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H4c); [ zenon_intro zenon_H2a | zenon_intro zenon_H46 ].
% 0.83/1.04  apply (zenon_L197_); trivial.
% 0.83/1.04  apply (zenon_L198_); trivial.
% 0.83/1.04  (* end of lemma zenon_L199_ *)
% 0.83/1.04  assert (zenon_L200_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp23))\/((ndr1_0)/\((~(c0_1 (a248)))/\((~(c2_1 (a248)))/\(~(c3_1 (a248))))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((hskp8)\/(hskp9))) -> (~(hskp9)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp4)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> (~(hskp8)) -> (~(hskp11)) -> ((forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z))))))\/((hskp8)\/(hskp11))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H12a zenon_Hff zenon_H202 zenon_H1fe zenon_H3 zenon_H23c zenon_H13a zenon_H231 zenon_H230 zenon_H22f zenon_H1e8 zenon_Hcf zenon_Hd2 zenon_H23e zenon_H4c zenon_H115 zenon_H18 zenon_H121 zenon_H124 zenon_H128.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.04  apply (zenon_L72_); trivial.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H202); [ zenon_intro zenon_H1e6 | zenon_intro zenon_H1fd ].
% 0.83/1.04  apply (zenon_L199_); trivial.
% 0.83/1.04  apply (zenon_L155_); trivial.
% 0.83/1.04  (* end of lemma zenon_L200_ *)
% 0.83/1.04  assert (zenon_L201_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((~(hskp23))\/((ndr1_0)/\((~(c0_1 (a248)))/\((~(c2_1 (a248)))/\(~(c3_1 (a248))))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((hskp8)\/(hskp9))) -> (~(hskp9)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp4)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> (~(hskp11)) -> ((forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z))))))\/((hskp8)\/(hskp11))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp8)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> (~(hskp1)) -> ((forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38))))))\/((hskp1)\/(hskp14))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H189 zenon_H129 zenon_H202 zenon_H1fe zenon_H3 zenon_H23c zenon_H13a zenon_H231 zenon_H230 zenon_H22f zenon_H1e8 zenon_H23e zenon_H4c zenon_H115 zenon_H121 zenon_H124 zenon_H128 zenon_H101 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_Ha9 zenon_H54 zenon_H18 zenon_H65 zenon_H69 zenon_H12 zenon_H136 zenon_Hff.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.04  apply (zenon_L80_); trivial.
% 0.83/1.04  apply (zenon_L200_); trivial.
% 0.83/1.04  (* end of lemma zenon_L201_ *)
% 0.83/1.04  assert (zenon_L202_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp11)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H4b zenon_H4c zenon_H23e zenon_H121 zenon_H231 zenon_H230 zenon_H22f zenon_H2c zenon_H2e.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H4c); [ zenon_intro zenon_H2a | zenon_intro zenon_H46 ].
% 0.83/1.04  apply (zenon_L16_); trivial.
% 0.83/1.04  apply (zenon_L198_); trivial.
% 0.83/1.04  (* end of lemma zenon_L202_ *)
% 0.83/1.04  assert (zenon_L203_ : ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp11)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(hskp8)) -> (~(hskp13)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H4f zenon_H4c zenon_H23e zenon_H121 zenon_H231 zenon_H230 zenon_H22f zenon_H2c zenon_H2e zenon_H18 zenon_H1a zenon_H1e.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.04  apply (zenon_L12_); trivial.
% 0.83/1.04  apply (zenon_L202_); trivial.
% 0.83/1.04  (* end of lemma zenon_L203_ *)
% 0.83/1.04  assert (zenon_L204_ : (forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12)))))) -> (ndr1_0) -> (~(c2_1 (a214))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H30 zenon_H7 zenon_H240 zenon_H1f3 zenon_H241 zenon_H242.
% 0.83/1.04  generalize (zenon_H30 (a214)). zenon_intro zenon_H243.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H243); [ zenon_intro zenon_H6 | zenon_intro zenon_H244 ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H244); [ zenon_intro zenon_H246 | zenon_intro zenon_H245 ].
% 0.83/1.04  exact (zenon_H240 zenon_H246).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H245); [ zenon_intro zenon_H248 | zenon_intro zenon_H247 ].
% 0.83/1.04  generalize (zenon_H1f3 (a214)). zenon_intro zenon_H249.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H249); [ zenon_intro zenon_H6 | zenon_intro zenon_H24a ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H24a); [ zenon_intro zenon_H24c | zenon_intro zenon_H24b ].
% 0.83/1.04  exact (zenon_H248 zenon_H24c).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H24b); [ zenon_intro zenon_H246 | zenon_intro zenon_H24d ].
% 0.83/1.04  exact (zenon_H240 zenon_H246).
% 0.83/1.04  exact (zenon_H241 zenon_H24d).
% 0.83/1.04  exact (zenon_H247 zenon_H242).
% 0.83/1.04  (* end of lemma zenon_L204_ *)
% 0.83/1.04  assert (zenon_L205_ : ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> (~(c1_1 (a231))) -> (forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (~(c2_1 (a214))) -> (ndr1_0) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Ha5 zenon_H6c zenon_H6d zenon_H6b zenon_H93 zenon_H242 zenon_H241 zenon_H1f3 zenon_H240 zenon_H7 zenon_H9c zenon_H9d zenon_H9e.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Ha5); [ zenon_intro zenon_H92 | zenon_intro zenon_Ha6 ].
% 0.83/1.04  apply (zenon_L39_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Ha6); [ zenon_intro zenon_H30 | zenon_intro zenon_H9b ].
% 0.83/1.04  apply (zenon_L204_); trivial.
% 0.83/1.04  apply (zenon_L40_); trivial.
% 0.83/1.04  (* end of lemma zenon_L205_ *)
% 0.83/1.04  assert (zenon_L206_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> (~(c0_1 (a244))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> (~(c1_1 (a231))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (~(c2_1 (a214))) -> (ndr1_0) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hf6 zenon_H80 zenon_H81 zenon_H7f zenon_Heb zenon_Ha5 zenon_H6c zenon_H6d zenon_H6b zenon_H242 zenon_H241 zenon_H1f3 zenon_H240 zenon_H7 zenon_H9c zenon_H9d zenon_H9e.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.83/1.04  apply (zenon_L37_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.83/1.04  apply (zenon_L59_); trivial.
% 0.83/1.04  apply (zenon_L205_); trivial.
% 0.83/1.04  (* end of lemma zenon_L206_ *)
% 0.83/1.04  assert (zenon_L207_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (c3_1 (a232)) -> (~(c2_1 (a232))) -> (~(c1_1 (a232))) -> (forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25)))))) -> (ndr1_0) -> (~(c1_1 (a231))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hf6 zenon_H81 zenon_H80 zenon_H7f zenon_H8b zenon_H8a zenon_H89 zenon_H92 zenon_H7 zenon_H6b zenon_H6d zenon_H6c.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.83/1.04  apply (zenon_L37_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.83/1.04  apply (zenon_L38_); trivial.
% 0.83/1.04  apply (zenon_L39_); trivial.
% 0.83/1.04  (* end of lemma zenon_L207_ *)
% 0.83/1.04  assert (zenon_L208_ : (forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))) -> (ndr1_0) -> (~(c3_1 (a214))) -> (c0_1 (a214)) -> (c1_1 (a214)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H24e zenon_H7 zenon_H241 zenon_H24c zenon_H242.
% 0.83/1.04  generalize (zenon_H24e (a214)). zenon_intro zenon_H24f.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H24f); [ zenon_intro zenon_H6 | zenon_intro zenon_H250 ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H250); [ zenon_intro zenon_H24d | zenon_intro zenon_H245 ].
% 0.83/1.04  exact (zenon_H241 zenon_H24d).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H245); [ zenon_intro zenon_H248 | zenon_intro zenon_H247 ].
% 0.83/1.04  exact (zenon_H248 zenon_H24c).
% 0.83/1.04  exact (zenon_H247 zenon_H242).
% 0.83/1.04  (* end of lemma zenon_L208_ *)
% 0.83/1.04  assert (zenon_L209_ : (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H1f3 zenon_H7 zenon_H24e zenon_H241 zenon_H242 zenon_H240.
% 0.83/1.04  generalize (zenon_H1f3 (a214)). zenon_intro zenon_H249.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H249); [ zenon_intro zenon_H6 | zenon_intro zenon_H24a ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H24a); [ zenon_intro zenon_H24c | zenon_intro zenon_H24b ].
% 0.83/1.04  apply (zenon_L208_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H24b); [ zenon_intro zenon_H246 | zenon_intro zenon_H24d ].
% 0.83/1.04  exact (zenon_H240 zenon_H246).
% 0.83/1.04  exact (zenon_H241 zenon_H24d).
% 0.83/1.04  (* end of lemma zenon_L209_ *)
% 0.83/1.04  assert (zenon_L210_ : ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))) -> (c2_1 (a281)) -> (c1_1 (a281)) -> (~(c3_1 (a281))) -> (ndr1_0) -> (~(hskp0)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H251 zenon_H240 zenon_H242 zenon_H241 zenon_H24e zenon_H59 zenon_H58 zenon_H57 zenon_H7 zenon_H181.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H251); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H252 ].
% 0.83/1.04  apply (zenon_L209_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H252); [ zenon_intro zenon_H56 | zenon_intro zenon_H182 ].
% 0.83/1.04  apply (zenon_L26_); trivial.
% 0.83/1.04  exact (zenon_H181 zenon_H182).
% 0.83/1.04  (* end of lemma zenon_L210_ *)
% 0.83/1.04  assert (zenon_L211_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(hskp0)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(c1_1 (a232))) -> (~(c2_1 (a232))) -> (c3_1 (a232)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> (~(c1_1 (a231))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(hskp19)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp15)) -> (~(hskp8)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hf8 zenon_H69 zenon_Hd9 zenon_H253 zenon_H181 zenon_H251 zenon_H89 zenon_H8a zenon_H8b zenon_Heb zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H6c zenon_H6d zenon_H6b zenon_Hf6 zenon_H7a zenon_H7c zenon_H50 zenon_H18 zenon_H54.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H69); [ zenon_intro zenon_H52 | zenon_intro zenon_H64 ].
% 0.83/1.04  apply (zenon_L25_); trivial.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H64). zenon_intro zenon_H7. zenon_intro zenon_H66.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H66). zenon_intro zenon_H58. zenon_intro zenon_H67.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H67). zenon_intro zenon_H59. zenon_intro zenon_H57.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.04  apply (zenon_L36_); trivial.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H253); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H254 ].
% 0.83/1.04  apply (zenon_L206_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H254); [ zenon_intro zenon_H92 | zenon_intro zenon_H24e ].
% 0.83/1.04  apply (zenon_L207_); trivial.
% 0.83/1.04  apply (zenon_L210_); trivial.
% 0.83/1.04  (* end of lemma zenon_L211_ *)
% 0.83/1.04  assert (zenon_L212_ : ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(hskp0)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(c1_1 (a232))) -> (~(c2_1 (a232))) -> (c3_1 (a232)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> (~(c1_1 (a231))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(hskp19)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp15)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp8)) -> (~(hskp14)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hfb zenon_H69 zenon_Hd9 zenon_H253 zenon_H181 zenon_H251 zenon_H89 zenon_H8a zenon_H8b zenon_Heb zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H6c zenon_H6d zenon_H6b zenon_Hf6 zenon_H7a zenon_H7c zenon_H50 zenon_H54 zenon_H18 zenon_H60 zenon_He0.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.04  apply (zenon_L56_); trivial.
% 0.83/1.04  apply (zenon_L211_); trivial.
% 0.83/1.04  (* end of lemma zenon_L212_ *)
% 0.83/1.04  assert (zenon_L213_ : (forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40)))))) -> (ndr1_0) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H255 zenon_H7 zenon_H240 zenon_H241 zenon_H242.
% 0.83/1.04  generalize (zenon_H255 (a214)). zenon_intro zenon_H256.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H256); [ zenon_intro zenon_H6 | zenon_intro zenon_H257 ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H257); [ zenon_intro zenon_H246 | zenon_intro zenon_H258 ].
% 0.83/1.04  exact (zenon_H240 zenon_H246).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H258); [ zenon_intro zenon_H24d | zenon_intro zenon_H247 ].
% 0.83/1.04  exact (zenon_H241 zenon_H24d).
% 0.83/1.04  exact (zenon_H247 zenon_H242).
% 0.83/1.04  (* end of lemma zenon_L213_ *)
% 0.83/1.04  assert (zenon_L214_ : (forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))) -> (ndr1_0) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (c2_1 (a203)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H56 zenon_H7 zenon_H230 zenon_H231 zenon_H259.
% 0.83/1.04  generalize (zenon_H56 (a203)). zenon_intro zenon_H25a.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H25a); [ zenon_intro zenon_H6 | zenon_intro zenon_H25b ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H25b); [ zenon_intro zenon_H237 | zenon_intro zenon_H25c ].
% 0.83/1.04  exact (zenon_H230 zenon_H237).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H25c); [ zenon_intro zenon_H236 | zenon_intro zenon_H25d ].
% 0.83/1.04  exact (zenon_H236 zenon_H231).
% 0.83/1.04  exact (zenon_H25d zenon_H259).
% 0.83/1.04  (* end of lemma zenon_L214_ *)
% 0.83/1.04  assert (zenon_L215_ : (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (~(c0_1 (a203))) -> (forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H1f3 zenon_H7 zenon_H22f zenon_H56 zenon_H230 zenon_H231.
% 0.83/1.04  generalize (zenon_H1f3 (a203)). zenon_intro zenon_H25e.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H25e); [ zenon_intro zenon_H6 | zenon_intro zenon_H25f ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H25f); [ zenon_intro zenon_H235 | zenon_intro zenon_H260 ].
% 0.83/1.04  exact (zenon_H22f zenon_H235).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H260); [ zenon_intro zenon_H259 | zenon_intro zenon_H237 ].
% 0.83/1.04  apply (zenon_L214_); trivial.
% 0.83/1.04  exact (zenon_H230 zenon_H237).
% 0.83/1.04  (* end of lemma zenon_L215_ *)
% 0.83/1.04  assert (zenon_L216_ : ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (~(c2_1 (a238))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H261 zenon_H242 zenon_H241 zenon_H240 zenon_Hb9 zenon_Hb8 zenon_Hb7 zenon_H1f3 zenon_H7 zenon_H22f zenon_H230 zenon_H231.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H261); [ zenon_intro zenon_H255 | zenon_intro zenon_Hd7 ].
% 0.83/1.04  apply (zenon_L213_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hd7); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H56 ].
% 0.83/1.04  apply (zenon_L47_); trivial.
% 0.83/1.04  apply (zenon_L215_); trivial.
% 0.83/1.04  (* end of lemma zenon_L216_ *)
% 0.83/1.04  assert (zenon_L217_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c1_1 (a198)) -> (c2_1 (a198)) -> (c0_1 (a198)) -> (ndr1_0) -> (forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))) -> (~(hskp11)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H23e zenon_H231 zenon_H230 zenon_H22f zenon_H9d zenon_H9e zenon_H9c zenon_H7 zenon_H56 zenon_H121.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H23e); [ zenon_intro zenon_H22e | zenon_intro zenon_H23f ].
% 0.83/1.04  apply (zenon_L192_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H23f); [ zenon_intro zenon_H3a | zenon_intro zenon_H122 ].
% 0.83/1.04  apply (zenon_L50_); trivial.
% 0.83/1.04  exact (zenon_H121 zenon_H122).
% 0.83/1.04  (* end of lemma zenon_L217_ *)
% 0.83/1.04  assert (zenon_L218_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(hskp11)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp0)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hd1 zenon_H251 zenon_Hb7 zenon_Hb8 zenon_Hb9 zenon_H240 zenon_H241 zenon_H242 zenon_H261 zenon_H121 zenon_H22f zenon_H230 zenon_H231 zenon_H23e zenon_H181.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H251); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H252 ].
% 0.83/1.04  apply (zenon_L216_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H252); [ zenon_intro zenon_H56 | zenon_intro zenon_H182 ].
% 0.83/1.04  apply (zenon_L217_); trivial.
% 0.83/1.04  exact (zenon_H181 zenon_H182).
% 0.83/1.04  (* end of lemma zenon_L218_ *)
% 0.83/1.04  assert (zenon_L219_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hdc zenon_Hd9 zenon_H251 zenon_H181 zenon_H121 zenon_H23e zenon_H240 zenon_H241 zenon_H242 zenon_H22f zenon_H230 zenon_H231 zenon_H261 zenon_H21 zenon_H22 zenon_H23 zenon_Hab.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.04  apply (zenon_L45_); trivial.
% 0.83/1.04  apply (zenon_L218_); trivial.
% 0.83/1.04  (* end of lemma zenon_L219_ *)
% 0.83/1.04  assert (zenon_L220_ : ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38))))))\/((hskp1)\/(hskp14))) -> (~(hskp1)) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp11)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(hskp8)) -> (~(hskp13)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp14)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(hskp0)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hff zenon_H136 zenon_H12 zenon_H4f zenon_H4c zenon_H23e zenon_H121 zenon_H231 zenon_H230 zenon_H22f zenon_H2e zenon_H18 zenon_H1a zenon_H1e zenon_H69 zenon_H65 zenon_H60 zenon_H54 zenon_Hfb zenon_Hd9 zenon_H253 zenon_H181 zenon_H251 zenon_Heb zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_Hf6 zenon_H7c zenon_He0 zenon_Hab zenon_H261 zenon_H100 zenon_H101 zenon_H102.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.83/1.04  apply (zenon_L203_); trivial.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.83/1.04  apply (zenon_L30_); trivial.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.04  apply (zenon_L12_); trivial.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.04  apply (zenon_L212_); trivial.
% 0.83/1.04  apply (zenon_L219_); trivial.
% 0.83/1.04  apply (zenon_L79_); trivial.
% 0.83/1.04  (* end of lemma zenon_L220_ *)
% 0.83/1.04  assert (zenon_L221_ : ((~(hskp9))\/((ndr1_0)/\((~(c0_1 (a213)))/\((~(c1_1 (a213)))/\(~(c2_1 (a213))))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((hskp1)\/(hskp2))) -> (~(hskp2)) -> ((~(hskp11))\/((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((hskp4)\/(hskp5))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp8)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38))))))\/((hskp1)\/(hskp14))) -> (~(hskp1)) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z))))))\/((hskp8)\/(hskp11))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> (~(hskp4)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((hskp8)\/(hskp9))) -> ((~(hskp23))\/((ndr1_0)/\((~(c0_1 (a248)))/\((~(c2_1 (a248)))/\(~(c3_1 (a248))))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(hskp0)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((~(hskp10))\/((ndr1_0)/\((c1_1 (a214))/\((~(c2_1 (a214)))/\(~(c3_1 (a214))))))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H1c1 zenon_H16 zenon_H14 zenon_H19b zenon_H197 zenon_H4f zenon_Hd9 zenon_H23a zenon_H231 zenon_H230 zenon_H22f zenon_Hab zenon_H18 zenon_H1e zenon_Hff zenon_H136 zenon_H12 zenon_H69 zenon_H65 zenon_H54 zenon_Ha9 zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H101 zenon_H128 zenon_H124 zenon_H115 zenon_H4c zenon_H23e zenon_H1e8 zenon_H13a zenon_H23c zenon_H1fe zenon_H202 zenon_H129 zenon_H186 zenon_H2e zenon_Hfb zenon_H253 zenon_H181 zenon_H251 zenon_Heb zenon_Ha5 zenon_Hf6 zenon_H7c zenon_He0 zenon_H261 zenon_H100 zenon_H102 zenon_H262.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.83/1.04  apply (zenon_L196_); trivial.
% 0.83/1.04  apply (zenon_L201_); trivial.
% 0.83/1.04  apply (zenon_L114_); trivial.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.04  apply (zenon_L220_); trivial.
% 0.83/1.04  apply (zenon_L200_); trivial.
% 0.83/1.04  apply (zenon_L201_); trivial.
% 0.83/1.04  apply (zenon_L114_); trivial.
% 0.83/1.04  apply (zenon_L140_); trivial.
% 0.83/1.04  (* end of lemma zenon_L221_ *)
% 0.83/1.04  assert (zenon_L222_ : ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> (~(hskp30)) -> (~(hskp23)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H1e8 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H2a zenon_H1e6.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H1e8); [ zenon_intro zenon_H1ea | zenon_intro zenon_H1e9 ].
% 0.83/1.04  apply (zenon_L158_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H1e9); [ zenon_intro zenon_H2b | zenon_intro zenon_H1e7 ].
% 0.83/1.04  exact (zenon_H2a zenon_H2b).
% 0.83/1.04  exact (zenon_H1e6 zenon_H1e7).
% 0.83/1.04  (* end of lemma zenon_L222_ *)
% 0.83/1.04  assert (zenon_L223_ : ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp11)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp23)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H4c zenon_H23e zenon_H121 zenon_H231 zenon_H230 zenon_H22f zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H1e6 zenon_H1e8.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H4c); [ zenon_intro zenon_H2a | zenon_intro zenon_H46 ].
% 0.83/1.04  apply (zenon_L222_); trivial.
% 0.83/1.04  apply (zenon_L198_); trivial.
% 0.83/1.04  (* end of lemma zenon_L223_ *)
% 0.83/1.04  assert (zenon_L224_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(c3_1 (a248))) -> (~(c2_1 (a248))) -> (~(c0_1 (a248))) -> (~(hskp11)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp0)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hd1 zenon_H251 zenon_H1f6 zenon_H1f5 zenon_H1f4 zenon_H121 zenon_H22f zenon_H230 zenon_H231 zenon_H23e zenon_H181.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H251); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H252 ].
% 0.83/1.04  apply (zenon_L154_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H252); [ zenon_intro zenon_H56 | zenon_intro zenon_H182 ].
% 0.83/1.04  apply (zenon_L217_); trivial.
% 0.83/1.04  exact (zenon_H181 zenon_H182).
% 0.83/1.04  (* end of lemma zenon_L224_ *)
% 0.83/1.04  assert (zenon_L225_ : ((~(hskp23))\/((ndr1_0)/\((~(c0_1 (a248)))/\((~(c2_1 (a248)))/\(~(c3_1 (a248))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H202 zenon_Hd9 zenon_H251 zenon_H181 zenon_H150 zenon_H14e zenon_H1e8 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H22f zenon_H230 zenon_H231 zenon_H121 zenon_H23e zenon_H4c.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H202); [ zenon_intro zenon_H1e6 | zenon_intro zenon_H1fd ].
% 0.83/1.04  apply (zenon_L223_); trivial.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H1fd). zenon_intro zenon_H7. zenon_intro zenon_H1ff.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H1ff). zenon_intro zenon_H1f4. zenon_intro zenon_H200.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H200). zenon_intro zenon_H1f5. zenon_intro zenon_H1f6.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H23e); [ zenon_intro zenon_H22e | zenon_intro zenon_H23f ].
% 0.83/1.04  apply (zenon_L192_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H23f); [ zenon_intro zenon_H3a | zenon_intro zenon_H122 ].
% 0.83/1.04  apply (zenon_L123_); trivial.
% 0.83/1.04  exact (zenon_H121 zenon_H122).
% 0.83/1.04  apply (zenon_L224_); trivial.
% 0.83/1.04  (* end of lemma zenon_L225_ *)
% 0.83/1.04  assert (zenon_L226_ : ((ndr1_0)/\((~(c0_1 (a248)))/\((~(c2_1 (a248)))/\(~(c3_1 (a248)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H1fd zenon_Hd9 zenon_H251 zenon_H181 zenon_H22f zenon_H230 zenon_H231 zenon_H121 zenon_H23e zenon_H21 zenon_H22 zenon_H23 zenon_Hab.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H1fd). zenon_intro zenon_H7. zenon_intro zenon_H1ff.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H1ff). zenon_intro zenon_H1f4. zenon_intro zenon_H200.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H200). zenon_intro zenon_H1f5. zenon_intro zenon_H1f6.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.04  apply (zenon_L45_); trivial.
% 0.83/1.04  apply (zenon_L224_); trivial.
% 0.83/1.04  (* end of lemma zenon_L226_ *)
% 0.83/1.04  assert (zenon_L227_ : ((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp23))\/((ndr1_0)/\((~(c0_1 (a248)))/\((~(c2_1 (a248)))/\(~(c3_1 (a248))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H185 zenon_H4f zenon_H202 zenon_Hd9 zenon_H251 zenon_Hab zenon_H1e8 zenon_H19f zenon_H19e zenon_H1ab zenon_H22f zenon_H230 zenon_H231 zenon_H121 zenon_H23e zenon_H4c zenon_H181 zenon_H183.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.04  apply (zenon_L110_); trivial.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H202); [ zenon_intro zenon_H1e6 | zenon_intro zenon_H1fd ].
% 0.83/1.04  apply (zenon_L223_); trivial.
% 0.83/1.04  apply (zenon_L226_); trivial.
% 0.83/1.04  (* end of lemma zenon_L227_ *)
% 0.83/1.04  assert (zenon_L228_ : (forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40)))))) -> (ndr1_0) -> (forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H255 zenon_H7 zenon_H56 zenon_H230 zenon_H231.
% 0.83/1.04  generalize (zenon_H255 (a203)). zenon_intro zenon_H266.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H266); [ zenon_intro zenon_H6 | zenon_intro zenon_H267 ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H267); [ zenon_intro zenon_H259 | zenon_intro zenon_H234 ].
% 0.83/1.04  apply (zenon_L214_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H234); [ zenon_intro zenon_H237 | zenon_intro zenon_H236 ].
% 0.83/1.04  exact (zenon_H230 zenon_H237).
% 0.83/1.04  exact (zenon_H236 zenon_H231).
% 0.83/1.04  (* end of lemma zenon_L228_ *)
% 0.83/1.04  assert (zenon_L229_ : ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (ndr1_0) -> (forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40)))))) -> (~(hskp27)) -> (~(hskp19)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H7c zenon_H231 zenon_H230 zenon_H7 zenon_H255 zenon_H78 zenon_H7a.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H7c); [ zenon_intro zenon_H56 | zenon_intro zenon_H7d ].
% 0.83/1.04  apply (zenon_L228_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H7d); [ zenon_intro zenon_H79 | zenon_intro zenon_H7b ].
% 0.83/1.04  exact (zenon_H78 zenon_H79).
% 0.83/1.04  exact (zenon_H7a zenon_H7b).
% 0.83/1.04  (* end of lemma zenon_L229_ *)
% 0.83/1.04  assert (zenon_L230_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (~(hskp19)) -> (~(hskp27)) -> (ndr1_0) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp10)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H268 zenon_H81 zenon_H80 zenon_H7f zenon_H7a zenon_H78 zenon_H7 zenon_H230 zenon_H231 zenon_H7c zenon_H238.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H268); [ zenon_intro zenon_H7e | zenon_intro zenon_H269 ].
% 0.83/1.04  apply (zenon_L37_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H269); [ zenon_intro zenon_H255 | zenon_intro zenon_H239 ].
% 0.83/1.04  apply (zenon_L229_); trivial.
% 0.83/1.04  exact (zenon_H238 zenon_H239).
% 0.83/1.04  (* end of lemma zenon_L230_ *)
% 0.83/1.04  assert (zenon_L231_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(c0_1 (a203))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp19)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(hskp10)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hf8 zenon_Hd9 zenon_H23a zenon_H22f zenon_H7c zenon_H7a zenon_H231 zenon_H230 zenon_H238 zenon_H268.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.04  apply (zenon_L230_); trivial.
% 0.83/1.04  apply (zenon_L194_); trivial.
% 0.83/1.04  (* end of lemma zenon_L231_ *)
% 0.83/1.04  assert (zenon_L232_ : ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(c0_1 (a203))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp19)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(hskp10)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> (~(hskp8)) -> (~(hskp14)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hfb zenon_Hd9 zenon_H23a zenon_H22f zenon_H7c zenon_H7a zenon_H231 zenon_H230 zenon_H238 zenon_H268 zenon_H18 zenon_H60 zenon_He0.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.04  apply (zenon_L56_); trivial.
% 0.83/1.04  apply (zenon_L231_); trivial.
% 0.83/1.04  (* end of lemma zenon_L232_ *)
% 0.83/1.04  assert (zenon_L233_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> (~(c1_1 (a241))) -> (~(c3_1 (a241))) -> (c0_1 (a241)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(hskp10)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hf8 zenon_H268 zenon_H231 zenon_H230 zenon_Hb7 zenon_Hb8 zenon_Hb9 zenon_Had zenon_Hae zenon_Haf zenon_Hd3 zenon_H238.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H268); [ zenon_intro zenon_H7e | zenon_intro zenon_H269 ].
% 0.83/1.04  apply (zenon_L37_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H269); [ zenon_intro zenon_H255 | zenon_intro zenon_H239 ].
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hd3); [ zenon_intro zenon_Hac | zenon_intro zenon_Hd7 ].
% 0.83/1.04  apply (zenon_L46_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hd7); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H56 ].
% 0.83/1.04  apply (zenon_L47_); trivial.
% 0.83/1.04  apply (zenon_L228_); trivial.
% 0.83/1.04  exact (zenon_H238 zenon_H239).
% 0.83/1.04  (* end of lemma zenon_L233_ *)
% 0.83/1.04  assert (zenon_L234_ : ((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> (~(hskp10)) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(hskp8)) -> (~(hskp14)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hd8 zenon_Hfb zenon_H268 zenon_H238 zenon_Hb7 zenon_Hb8 zenon_Hb9 zenon_H230 zenon_H231 zenon_Hd3 zenon_H18 zenon_H60 zenon_He0.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hd8). zenon_intro zenon_H7. zenon_intro zenon_Hda.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hda). zenon_intro zenon_Haf. zenon_intro zenon_Hdb.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hdb). zenon_intro zenon_Had. zenon_intro zenon_Hae.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.04  apply (zenon_L56_); trivial.
% 0.83/1.04  apply (zenon_L233_); trivial.
% 0.83/1.04  (* end of lemma zenon_L234_ *)
% 0.83/1.04  assert (zenon_L235_ : ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38))))))\/((hskp1)\/(hskp14))) -> (~(hskp1)) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp14)) -> (~(hskp8)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(c0_1 (a203))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(hskp10)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hff zenon_H136 zenon_H12 zenon_H69 zenon_H65 zenon_H60 zenon_H18 zenon_H54 zenon_Hfb zenon_Hd9 zenon_H23a zenon_H22f zenon_H7c zenon_H231 zenon_H230 zenon_H238 zenon_H268 zenon_He0 zenon_Ha9 zenon_Hd3 zenon_Hdd zenon_H100 zenon_H101.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.83/1.04  apply (zenon_L30_); trivial.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.04  apply (zenon_L232_); trivial.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.83/1.04  apply (zenon_L44_); trivial.
% 0.83/1.04  apply (zenon_L234_); trivial.
% 0.83/1.04  apply (zenon_L79_); trivial.
% 0.83/1.04  (* end of lemma zenon_L235_ *)
% 0.83/1.04  assert (zenon_L236_ : ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> (c3_1 (a205)) -> (forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16)))))) -> (~(c1_1 (a205))) -> (ndr1_0) -> (~(hskp30)) -> (~(hskp23)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H1e8 zenon_H1cc zenon_H1b0 zenon_H1c4 zenon_H7 zenon_H2a zenon_H1e6.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H1e8); [ zenon_intro zenon_H1ea | zenon_intro zenon_H1e9 ].
% 0.83/1.04  generalize (zenon_H1ea (a205)). zenon_intro zenon_H26a.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H26a); [ zenon_intro zenon_H6 | zenon_intro zenon_H26b ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H26b); [ zenon_intro zenon_H1cb | zenon_intro zenon_H26c ].
% 0.83/1.04  exact (zenon_H1c4 zenon_H1cb).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H26c); [ zenon_intro zenon_H1c3 | zenon_intro zenon_H1d0 ].
% 0.83/1.04  generalize (zenon_H1b0 (a205)). zenon_intro zenon_H26d.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H26d); [ zenon_intro zenon_H6 | zenon_intro zenon_H26e ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H26e); [ zenon_intro zenon_H1c9 | zenon_intro zenon_H26f ].
% 0.83/1.04  exact (zenon_H1c3 zenon_H1c9).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H26f); [ zenon_intro zenon_H1cb | zenon_intro zenon_H1d0 ].
% 0.83/1.04  exact (zenon_H1c4 zenon_H1cb).
% 0.83/1.04  exact (zenon_H1d0 zenon_H1cc).
% 0.83/1.04  exact (zenon_H1d0 zenon_H1cc).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H1e9); [ zenon_intro zenon_H2b | zenon_intro zenon_H1e7 ].
% 0.83/1.04  exact (zenon_H2a zenon_H2b).
% 0.83/1.04  exact (zenon_H1e6 zenon_H1e7).
% 0.83/1.04  (* end of lemma zenon_L236_ *)
% 0.83/1.04  assert (zenon_L237_ : ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp23)) -> (~(hskp30)) -> (~(c1_1 (a205))) -> (c3_1 (a205)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (ndr1_0) -> (~(hskp4)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H23c zenon_H1e6 zenon_H2a zenon_H1c4 zenon_H1cc zenon_H1e8 zenon_H231 zenon_H230 zenon_H22f zenon_H7 zenon_H13a.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H23c); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H23d ].
% 0.83/1.04  apply (zenon_L236_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H23d); [ zenon_intro zenon_H22e | zenon_intro zenon_H13b ].
% 0.83/1.04  apply (zenon_L192_); trivial.
% 0.83/1.04  exact (zenon_H13a zenon_H13b).
% 0.83/1.04  (* end of lemma zenon_L237_ *)
% 0.83/1.04  assert (zenon_L238_ : ((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> (c2_1 (a219)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(hskp4)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H46 zenon_H23c zenon_H10a zenon_H10c zenon_H10b zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H13a.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H46). zenon_intro zenon_H7. zenon_intro zenon_H48.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H48). zenon_intro zenon_H3b. zenon_intro zenon_H49.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H49). zenon_intro zenon_H3c. zenon_intro zenon_H3d.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H23c); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H23d ].
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H270); [ zenon_intro zenon_H22e | zenon_intro zenon_H271 ].
% 0.83/1.04  apply (zenon_L192_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H271); [ zenon_intro zenon_H167 | zenon_intro zenon_H3a ].
% 0.83/1.04  apply (zenon_L146_); trivial.
% 0.83/1.04  apply (zenon_L18_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H23d); [ zenon_intro zenon_H22e | zenon_intro zenon_H13b ].
% 0.83/1.04  apply (zenon_L192_); trivial.
% 0.83/1.04  exact (zenon_H13a zenon_H13b).
% 0.83/1.04  (* end of lemma zenon_L238_ *)
% 0.83/1.04  assert (zenon_L239_ : ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> (c2_1 (a219)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> (~(hskp23)) -> (c3_1 (a205)) -> (~(c1_1 (a205))) -> (ndr1_0) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp4)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H4c zenon_H10a zenon_H10c zenon_H10b zenon_H270 zenon_H1e8 zenon_H1e6 zenon_H1cc zenon_H1c4 zenon_H7 zenon_H22f zenon_H230 zenon_H231 zenon_H13a zenon_H23c.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H4c); [ zenon_intro zenon_H2a | zenon_intro zenon_H46 ].
% 0.83/1.04  apply (zenon_L237_); trivial.
% 0.83/1.04  apply (zenon_L238_); trivial.
% 0.83/1.04  (* end of lemma zenon_L239_ *)
% 0.83/1.04  assert (zenon_L240_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((~(hskp23))\/((ndr1_0)/\((~(c0_1 (a248)))/\((~(c2_1 (a248)))/\(~(c3_1 (a248))))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((hskp8)\/(hskp9))) -> (~(hskp9)) -> (~(hskp8)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp4)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c1_1 (a205))) -> (c3_1 (a205)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H12a zenon_H202 zenon_H1fe zenon_H3 zenon_H18 zenon_H23c zenon_H13a zenon_H231 zenon_H230 zenon_H22f zenon_H1c4 zenon_H1cc zenon_H1e8 zenon_H270 zenon_H4c.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H202); [ zenon_intro zenon_H1e6 | zenon_intro zenon_H1fd ].
% 0.83/1.04  apply (zenon_L239_); trivial.
% 0.83/1.04  apply (zenon_L155_); trivial.
% 0.83/1.04  (* end of lemma zenon_L240_ *)
% 0.83/1.04  assert (zenon_L241_ : (forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54)))))) -> (ndr1_0) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H272 zenon_H7 zenon_H1c4 zenon_H1c5 zenon_H1cc.
% 0.83/1.04  generalize (zenon_H272 (a205)). zenon_intro zenon_H273.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H273); [ zenon_intro zenon_H6 | zenon_intro zenon_H274 ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H274); [ zenon_intro zenon_H1cb | zenon_intro zenon_H1cf ].
% 0.83/1.04  exact (zenon_H1c4 zenon_H1cb).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H1cf); [ zenon_intro zenon_H1ca | zenon_intro zenon_H1d0 ].
% 0.83/1.04  exact (zenon_H1ca zenon_H1c5).
% 0.83/1.04  exact (zenon_H1d0 zenon_H1cc).
% 0.83/1.04  (* end of lemma zenon_L241_ *)
% 0.83/1.04  assert (zenon_L242_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a232)) -> (~(c2_1 (a232))) -> (~(c1_1 (a232))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H275 zenon_H8b zenon_H8a zenon_H89 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H1f3 zenon_H7 zenon_H241 zenon_H242 zenon_H240.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.83/1.04  apply (zenon_L38_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.83/1.04  apply (zenon_L241_); trivial.
% 0.83/1.04  apply (zenon_L209_); trivial.
% 0.83/1.04  (* end of lemma zenon_L242_ *)
% 0.83/1.04  assert (zenon_L243_ : ((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281)))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c1_1 (a232))) -> (~(c2_1 (a232))) -> (c3_1 (a232)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(hskp0)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H64 zenon_H251 zenon_H240 zenon_H242 zenon_H241 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H89 zenon_H8a zenon_H8b zenon_H275 zenon_H181.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H64). zenon_intro zenon_H7. zenon_intro zenon_H66.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H66). zenon_intro zenon_H58. zenon_intro zenon_H67.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H67). zenon_intro zenon_H59. zenon_intro zenon_H57.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H251); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H252 ].
% 0.83/1.04  apply (zenon_L242_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H252); [ zenon_intro zenon_H56 | zenon_intro zenon_H182 ].
% 0.83/1.04  apply (zenon_L26_); trivial.
% 0.83/1.04  exact (zenon_H181 zenon_H182).
% 0.83/1.04  (* end of lemma zenon_L243_ *)
% 0.83/1.04  assert (zenon_L244_ : ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp8)) -> (~(hskp15)) -> (~(hskp14)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H101 zenon_H251 zenon_H181 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H241 zenon_H242 zenon_H240 zenon_H275 zenon_H54 zenon_H18 zenon_H50 zenon_H60 zenon_H65 zenon_H69.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.83/1.04  apply (zenon_L30_); trivial.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H69); [ zenon_intro zenon_H52 | zenon_intro zenon_H64 ].
% 0.83/1.04  apply (zenon_L25_); trivial.
% 0.83/1.04  apply (zenon_L243_); trivial.
% 0.83/1.04  (* end of lemma zenon_L244_ *)
% 0.83/1.04  assert (zenon_L245_ : ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38))))))\/((hskp1)\/(hskp14))) -> (~(hskp1)) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp14)) -> (~(hskp8)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(hskp0)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hff zenon_H136 zenon_H12 zenon_H69 zenon_H65 zenon_H60 zenon_H18 zenon_H54 zenon_H275 zenon_H240 zenon_H242 zenon_H241 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H181 zenon_H251 zenon_H101.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.04  apply (zenon_L244_); trivial.
% 0.83/1.04  apply (zenon_L79_); trivial.
% 0.83/1.04  (* end of lemma zenon_L245_ *)
% 0.83/1.04  assert (zenon_L246_ : ((ndr1_0)/\((c1_1 (a214))/\((~(c2_1 (a214)))/\(~(c3_1 (a214)))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((~(hskp23))\/((ndr1_0)/\((~(c0_1 (a248)))/\((~(c2_1 (a248)))/\(~(c3_1 (a248))))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((hskp8)\/(hskp9))) -> (~(hskp9)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp4)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp8)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> (~(hskp1)) -> ((forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38))))))\/((hskp1)\/(hskp14))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H263 zenon_H129 zenon_H202 zenon_H1fe zenon_H3 zenon_H23c zenon_H13a zenon_H231 zenon_H230 zenon_H22f zenon_H1e8 zenon_H270 zenon_H4c zenon_H101 zenon_H251 zenon_H181 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H275 zenon_H54 zenon_H18 zenon_H65 zenon_H69 zenon_H12 zenon_H136 zenon_Hff.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.04  apply (zenon_L245_); trivial.
% 0.83/1.04  apply (zenon_L240_); trivial.
% 0.83/1.04  (* end of lemma zenon_L246_ *)
% 0.83/1.04  assert (zenon_L247_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (ndr1_0) -> (~(hskp11)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H23e zenon_H231 zenon_H230 zenon_H22f zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H1c2 zenon_H7 zenon_H121.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H23e); [ zenon_intro zenon_H22e | zenon_intro zenon_H23f ].
% 0.83/1.04  apply (zenon_L192_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H23f); [ zenon_intro zenon_H3a | zenon_intro zenon_H122 ].
% 0.83/1.04  apply (zenon_L143_); trivial.
% 0.83/1.04  exact (zenon_H121 zenon_H122).
% 0.83/1.04  (* end of lemma zenon_L247_ *)
% 0.83/1.04  assert (zenon_L248_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c3_1 (a212)) -> (forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))) -> (c0_1 (a212)) -> (ndr1_0) -> (~(hskp11)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H23e zenon_H231 zenon_H230 zenon_H22f zenon_H19f zenon_H152 zenon_H19e zenon_H7 zenon_H121.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H23e); [ zenon_intro zenon_H22e | zenon_intro zenon_H23f ].
% 0.83/1.04  apply (zenon_L192_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H23f); [ zenon_intro zenon_H3a | zenon_intro zenon_H122 ].
% 0.83/1.04  apply (zenon_L117_); trivial.
% 0.83/1.04  exact (zenon_H121 zenon_H122).
% 0.83/1.04  (* end of lemma zenon_L248_ *)
% 0.83/1.04  assert (zenon_L249_ : ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (ndr1_0) -> (~(hskp11)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H277 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H23e zenon_H231 zenon_H230 zenon_H22f zenon_H19f zenon_H19e zenon_H7 zenon_H121.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.83/1.04  apply (zenon_L247_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.83/1.04  apply (zenon_L192_); trivial.
% 0.83/1.04  apply (zenon_L248_); trivial.
% 0.83/1.04  (* end of lemma zenon_L249_ *)
% 0.83/1.04  assert (zenon_L250_ : ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (c2_1 (a256)) -> (c1_1 (a256)) -> (~(c0_1 (a256))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (ndr1_0) -> (forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))) -> (~(hskp14)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H1a9 zenon_H16a zenon_H169 zenon_H168 zenon_H19f zenon_H19e zenon_H7 zenon_H3a zenon_H60.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H1a9); [ zenon_intro zenon_H167 | zenon_intro zenon_H1aa ].
% 0.83/1.04  apply (zenon_L98_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H1aa); [ zenon_intro zenon_H152 | zenon_intro zenon_H61 ].
% 0.83/1.04  apply (zenon_L117_); trivial.
% 0.83/1.04  exact (zenon_H60 zenon_H61).
% 0.83/1.04  (* end of lemma zenon_L250_ *)
% 0.83/1.04  assert (zenon_L251_ : ((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(hskp14)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H171 zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H1a9 zenon_H19f zenon_H19e zenon_H60.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H171). zenon_intro zenon_H7. zenon_intro zenon_H173.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H173). zenon_intro zenon_H169. zenon_intro zenon_H174.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H174). zenon_intro zenon_H16a. zenon_intro zenon_H168.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H270); [ zenon_intro zenon_H22e | zenon_intro zenon_H271 ].
% 0.83/1.04  apply (zenon_L192_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H271); [ zenon_intro zenon_H167 | zenon_intro zenon_H3a ].
% 0.83/1.04  apply (zenon_L98_); trivial.
% 0.83/1.04  apply (zenon_L250_); trivial.
% 0.83/1.04  (* end of lemma zenon_L251_ *)
% 0.83/1.04  assert (zenon_L252_ : ((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(hskp19)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H15f zenon_H176 zenon_H270 zenon_H19e zenon_H19f zenon_H60 zenon_H1a9 zenon_H231 zenon_H230 zenon_H22f zenon_H7a zenon_H165.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.83/1.04  apply (zenon_L97_); trivial.
% 0.83/1.04  apply (zenon_L251_); trivial.
% 0.83/1.04  (* end of lemma zenon_L252_ *)
% 0.83/1.04  assert (zenon_L253_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(hskp19)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp22)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H162 zenon_H176 zenon_H270 zenon_H60 zenon_H1a9 zenon_H231 zenon_H230 zenon_H22f zenon_H7a zenon_H165 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H74 zenon_H205.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.83/1.04  apply (zenon_L159_); trivial.
% 0.83/1.04  apply (zenon_L252_); trivial.
% 0.83/1.04  (* end of lemma zenon_L253_ *)
% 0.83/1.04  assert (zenon_L254_ : ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp10)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp19)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp14)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.83/1.04  do 0 intro. intros zenon_Hfb zenon_Hd9 zenon_H23a zenon_H7c zenon_H238 zenon_H268 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H165 zenon_H7a zenon_H22f zenon_H230 zenon_H231 zenon_H1a9 zenon_H60 zenon_H270 zenon_H176 zenon_H162.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.04  apply (zenon_L253_); trivial.
% 0.83/1.04  apply (zenon_L231_); trivial.
% 0.83/1.04  (* end of lemma zenon_L254_ *)
% 0.83/1.04  assert (zenon_L255_ : ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (ndr1_0) -> (forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40)))))) -> (~(hskp14)) -> (~(hskp17)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H65 zenon_H231 zenon_H230 zenon_H7 zenon_H255 zenon_H60 zenon_H62.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H65); [ zenon_intro zenon_H56 | zenon_intro zenon_H68 ].
% 0.83/1.04  apply (zenon_L228_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H68); [ zenon_intro zenon_H61 | zenon_intro zenon_H63 ].
% 0.83/1.04  exact (zenon_H60 zenon_H61).
% 0.83/1.04  exact (zenon_H62 zenon_H63).
% 0.83/1.04  (* end of lemma zenon_L255_ *)
% 0.83/1.04  assert (zenon_L256_ : (forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37)))))) -> (ndr1_0) -> (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (~(c2_1 (a249))) -> (c3_1 (a249)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H88 zenon_H7 zenon_Hb6 zenon_H13e zenon_H140.
% 0.83/1.04  generalize (zenon_H88 (a249)). zenon_intro zenon_H279.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H279); [ zenon_intro zenon_H6 | zenon_intro zenon_H27a ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H27a); [ zenon_intro zenon_H13f | zenon_intro zenon_H27b ].
% 0.83/1.04  apply (zenon_L84_); trivial.
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H27b); [ zenon_intro zenon_H144 | zenon_intro zenon_H145 ].
% 0.83/1.04  exact (zenon_H13e zenon_H144).
% 0.83/1.04  exact (zenon_H145 zenon_H140).
% 0.83/1.04  (* end of lemma zenon_L256_ *)
% 0.83/1.04  assert (zenon_L257_ : (~(hskp28)) -> (hskp28) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H27c zenon_H27d.
% 0.83/1.04  exact (zenon_H27c zenon_H27d).
% 0.83/1.04  (* end of lemma zenon_L257_ *)
% 0.83/1.04  assert (zenon_L258_ : (forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49)))))) -> (ndr1_0) -> (c1_1 (a202)) -> (c2_1 (a202)) -> (c3_1 (a202)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H27e zenon_H7 zenon_H27f zenon_H280 zenon_H281.
% 0.83/1.04  generalize (zenon_H27e (a202)). zenon_intro zenon_H282.
% 0.83/1.04  apply (zenon_imply_s _ _ zenon_H282); [ zenon_intro zenon_H6 | zenon_intro zenon_H283 ].
% 0.83/1.04  exact (zenon_H6 zenon_H7).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H283); [ zenon_intro zenon_H285 | zenon_intro zenon_H284 ].
% 0.83/1.04  exact (zenon_H285 zenon_H27f).
% 0.83/1.04  apply (zenon_or_s _ _ zenon_H284); [ zenon_intro zenon_H287 | zenon_intro zenon_H286 ].
% 0.83/1.04  exact (zenon_H287 zenon_H280).
% 0.83/1.04  exact (zenon_H286 zenon_H281).
% 0.83/1.04  (* end of lemma zenon_L258_ *)
% 0.83/1.04  assert (zenon_L259_ : ((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(hskp12)) -> False).
% 0.83/1.04  do 0 intro. intros zenon_H288 zenon_H289 zenon_H231 zenon_H230 zenon_H22f zenon_H14e.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H288). zenon_intro zenon_H7. zenon_intro zenon_H28a.
% 0.83/1.04  apply (zenon_and_s _ _ zenon_H28a). zenon_intro zenon_H27f. zenon_intro zenon_H28b.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H28b). zenon_intro zenon_H280. zenon_intro zenon_H281.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H289); [ zenon_intro zenon_H22e | zenon_intro zenon_H28c ].
% 0.83/1.05  apply (zenon_L192_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28c); [ zenon_intro zenon_H27e | zenon_intro zenon_H14f ].
% 0.83/1.05  apply (zenon_L258_); trivial.
% 0.83/1.05  exact (zenon_H14e zenon_H14f).
% 0.83/1.05  (* end of lemma zenon_L259_ *)
% 0.83/1.05  assert (zenon_L260_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(hskp21)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp17)) -> (~(hskp14)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp22)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H162 zenon_H28d zenon_H289 zenon_H14e zenon_H18d zenon_H18e zenon_H18f zenon_Ha9 zenon_Ha7 zenon_H65 zenon_H62 zenon_H60 zenon_H231 zenon_H230 zenon_H22f zenon_H261 zenon_H28e zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H74 zenon_H205.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.83/1.05  apply (zenon_L159_); trivial.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.83/1.05  apply (zenon_L113_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Ha9); [ zenon_intro zenon_H88 | zenon_intro zenon_Haa ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H261); [ zenon_intro zenon_H255 | zenon_intro zenon_Hd7 ].
% 0.83/1.05  apply (zenon_L255_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Hd7); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H56 ].
% 0.83/1.05  apply (zenon_L256_); trivial.
% 0.83/1.05  apply (zenon_L215_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Haa); [ zenon_intro zenon_H56 | zenon_intro zenon_Ha8 ].
% 0.83/1.05  apply (zenon_L215_); trivial.
% 0.83/1.05  exact (zenon_Ha7 zenon_Ha8).
% 0.83/1.05  exact (zenon_H27c zenon_H27d).
% 0.83/1.05  apply (zenon_L259_); trivial.
% 0.83/1.05  (* end of lemma zenon_L260_ *)
% 0.83/1.05  assert (zenon_L261_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> (~(hskp17)) -> (~(hskp14)) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp10)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_Hf8 zenon_H268 zenon_H62 zenon_H60 zenon_H230 zenon_H231 zenon_H65 zenon_H238.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H268); [ zenon_intro zenon_H7e | zenon_intro zenon_H269 ].
% 0.83/1.05  apply (zenon_L37_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H269); [ zenon_intro zenon_H255 | zenon_intro zenon_H239 ].
% 0.83/1.05  apply (zenon_L255_); trivial.
% 0.83/1.05  exact (zenon_H238 zenon_H239).
% 0.83/1.05  (* end of lemma zenon_L261_ *)
% 0.83/1.05  assert (zenon_L262_ : ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (c0_1 (a241)) -> (~(c3_1 (a241))) -> (~(c1_1 (a241))) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (~(c2_1 (a238))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_Hd3 zenon_Haf zenon_Hae zenon_Had zenon_Hb9 zenon_Hb8 zenon_Hb7 zenon_H1f3 zenon_H7 zenon_H22f zenon_H230 zenon_H231.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Hd3); [ zenon_intro zenon_Hac | zenon_intro zenon_Hd7 ].
% 0.83/1.05  apply (zenon_L46_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Hd7); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H56 ].
% 0.83/1.05  apply (zenon_L47_); trivial.
% 0.83/1.05  apply (zenon_L215_); trivial.
% 0.83/1.05  (* end of lemma zenon_L262_ *)
% 0.83/1.05  assert (zenon_L263_ : ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (ndr1_0) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> (~(c1_1 (a241))) -> (~(c3_1 (a241))) -> (c0_1 (a241)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(hskp28)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H28e zenon_H18f zenon_H18e zenon_H18d zenon_H231 zenon_H230 zenon_H22f zenon_H7 zenon_Hb7 zenon_Hb8 zenon_Hb9 zenon_Had zenon_Hae zenon_Haf zenon_Hd3 zenon_H27c.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.83/1.05  apply (zenon_L113_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.83/1.05  apply (zenon_L262_); trivial.
% 0.83/1.05  exact (zenon_H27c zenon_H27d).
% 0.83/1.05  (* end of lemma zenon_L263_ *)
% 0.83/1.05  assert (zenon_L264_ : ((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241)))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (~(c2_1 (a238))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_Hd8 zenon_H28d zenon_H289 zenon_H14e zenon_H18d zenon_H18e zenon_H18f zenon_Hd3 zenon_H231 zenon_H230 zenon_H22f zenon_Hb9 zenon_Hb8 zenon_Hb7 zenon_H28e.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hd8). zenon_intro zenon_H7. zenon_intro zenon_Hda.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hda). zenon_intro zenon_Haf. zenon_intro zenon_Hdb.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hdb). zenon_intro zenon_Had. zenon_intro zenon_Hae.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.83/1.05  apply (zenon_L263_); trivial.
% 0.83/1.05  apply (zenon_L259_); trivial.
% 0.83/1.05  (* end of lemma zenon_L264_ *)
% 0.83/1.05  assert (zenon_L265_ : ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> (ndr1_0) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(hskp21)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c3_1 (a232)) -> (~(c2_1 (a232))) -> (~(c1_1 (a232))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H28d zenon_H289 zenon_H14e zenon_H7 zenon_H18d zenon_H18e zenon_H18f zenon_Ha9 zenon_Ha7 zenon_H231 zenon_H230 zenon_H22f zenon_H8b zenon_H8a zenon_H89 zenon_H28e.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.83/1.05  apply (zenon_L113_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Ha9); [ zenon_intro zenon_H88 | zenon_intro zenon_Haa ].
% 0.83/1.05  apply (zenon_L38_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Haa); [ zenon_intro zenon_H56 | zenon_intro zenon_Ha8 ].
% 0.83/1.05  apply (zenon_L215_); trivial.
% 0.83/1.05  exact (zenon_Ha7 zenon_Ha8).
% 0.83/1.05  exact (zenon_H27c zenon_H27d).
% 0.83/1.05  apply (zenon_L259_); trivial.
% 0.83/1.05  (* end of lemma zenon_L265_ *)
% 0.83/1.05  assert (zenon_L266_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c1_1 (a232))) -> (~(c2_1 (a232))) -> (c3_1 (a232)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(hskp12)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_Hdc zenon_Hdd zenon_Hd3 zenon_H28e zenon_H89 zenon_H8a zenon_H8b zenon_H22f zenon_H230 zenon_H231 zenon_Ha9 zenon_H18f zenon_H18e zenon_H18d zenon_H14e zenon_H289 zenon_H28d.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.83/1.05  apply (zenon_L265_); trivial.
% 0.83/1.05  apply (zenon_L264_); trivial.
% 0.83/1.05  (* end of lemma zenon_L266_ *)
% 0.83/1.05  assert (zenon_L267_ : ((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(hskp12)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H106 zenon_H100 zenon_Hdd zenon_Hd3 zenon_H28e zenon_Ha9 zenon_H18f zenon_H18e zenon_H18d zenon_H14e zenon_H289 zenon_H28d zenon_H162 zenon_H176 zenon_H270 zenon_H60 zenon_H1a9 zenon_H231 zenon_H230 zenon_H22f zenon_H165 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H268 zenon_H238 zenon_H7c zenon_H23a zenon_Hd9 zenon_Hfb.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.05  apply (zenon_L254_); trivial.
% 0.83/1.05  apply (zenon_L266_); trivial.
% 0.83/1.05  (* end of lemma zenon_L267_ *)
% 0.83/1.05  assert (zenon_L268_ : ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp10)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp14)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(hskp12)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H101 zenon_Hfb zenon_Hd9 zenon_H23a zenon_H7c zenon_H238 zenon_H268 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H165 zenon_H22f zenon_H230 zenon_H231 zenon_H1a9 zenon_H60 zenon_H270 zenon_H176 zenon_H162 zenon_H28e zenon_H261 zenon_H65 zenon_Ha9 zenon_H18f zenon_H18e zenon_H18d zenon_H14e zenon_H289 zenon_H28d zenon_Hd3 zenon_Hdd zenon_H100.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.05  apply (zenon_L254_); trivial.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.05  apply (zenon_L260_); trivial.
% 0.83/1.05  apply (zenon_L261_); trivial.
% 0.83/1.05  apply (zenon_L264_); trivial.
% 0.83/1.05  apply (zenon_L267_); trivial.
% 0.83/1.05  (* end of lemma zenon_L268_ *)
% 0.83/1.05  assert (zenon_L269_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a219)) -> (~(c0_1 (a219))) -> (ndr1_0) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H10b zenon_H10a zenon_H7 zenon_H1c2 zenon_H1c4 zenon_H1c5 zenon_H1cc.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H270); [ zenon_intro zenon_H22e | zenon_intro zenon_H271 ].
% 0.83/1.05  apply (zenon_L192_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H271); [ zenon_intro zenon_H167 | zenon_intro zenon_H3a ].
% 0.83/1.05  apply (zenon_L175_); trivial.
% 0.83/1.05  apply (zenon_L143_); trivial.
% 0.83/1.05  (* end of lemma zenon_L269_ *)
% 0.83/1.05  assert (zenon_L270_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16)))))) -> (~(c0_1 (a219))) -> (ndr1_0) -> (c0_1 (a212)) -> (forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))) -> (c3_1 (a212)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H10b zenon_H10c zenon_H1b0 zenon_H10a zenon_H7 zenon_H19e zenon_H152 zenon_H19f.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H270); [ zenon_intro zenon_H22e | zenon_intro zenon_H271 ].
% 0.83/1.05  apply (zenon_L192_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H271); [ zenon_intro zenon_H167 | zenon_intro zenon_H3a ].
% 0.83/1.05  apply (zenon_L146_); trivial.
% 0.83/1.05  apply (zenon_L117_); trivial.
% 0.83/1.05  (* end of lemma zenon_L270_ *)
% 0.83/1.05  assert (zenon_L271_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(hskp4)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H12a zenon_H277 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H23c zenon_H19f zenon_H19e zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H13a.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.83/1.05  apply (zenon_L269_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.83/1.05  apply (zenon_L192_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H23c); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H23d ].
% 0.83/1.05  apply (zenon_L270_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H23d); [ zenon_intro zenon_H22e | zenon_intro zenon_H13b ].
% 0.83/1.05  apply (zenon_L192_); trivial.
% 0.83/1.05  exact (zenon_H13a zenon_H13b).
% 0.83/1.05  (* end of lemma zenon_L271_ *)
% 0.83/1.05  assert (zenon_L272_ : ((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H185 zenon_H4f zenon_Hd9 zenon_H23a zenon_H238 zenon_H231 zenon_H230 zenon_H22f zenon_Hab zenon_H181 zenon_H183.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.05  apply (zenon_L110_); trivial.
% 0.83/1.05  apply (zenon_L195_); trivial.
% 0.83/1.05  (* end of lemma zenon_L272_ *)
% 0.83/1.05  assert (zenon_L273_ : (forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54)))))) -> (ndr1_0) -> (forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49)))))) -> (c2_1 (a230)) -> (c3_1 (a230)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H272 zenon_H7 zenon_H27e zenon_H3c zenon_H3d.
% 0.83/1.05  generalize (zenon_H272 (a230)). zenon_intro zenon_H290.
% 0.83/1.05  apply (zenon_imply_s _ _ zenon_H290); [ zenon_intro zenon_H6 | zenon_intro zenon_H291 ].
% 0.83/1.05  exact (zenon_H6 zenon_H7).
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H291); [ zenon_intro zenon_H292 | zenon_intro zenon_H40 ].
% 0.83/1.05  generalize (zenon_H27e (a230)). zenon_intro zenon_H293.
% 0.83/1.05  apply (zenon_imply_s _ _ zenon_H293); [ zenon_intro zenon_H6 | zenon_intro zenon_H294 ].
% 0.83/1.05  exact (zenon_H6 zenon_H7).
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H294); [ zenon_intro zenon_H295 | zenon_intro zenon_H40 ].
% 0.83/1.05  exact (zenon_H295 zenon_H292).
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H40); [ zenon_intro zenon_H43 | zenon_intro zenon_H42 ].
% 0.83/1.05  exact (zenon_H43 zenon_H3c).
% 0.83/1.05  exact (zenon_H42 zenon_H3d).
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H40); [ zenon_intro zenon_H43 | zenon_intro zenon_H42 ].
% 0.83/1.05  exact (zenon_H43 zenon_H3c).
% 0.83/1.05  exact (zenon_H42 zenon_H3d).
% 0.83/1.05  (* end of lemma zenon_L273_ *)
% 0.83/1.05  assert (zenon_L274_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (c3_1 (a230)) -> (c2_1 (a230)) -> (forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49)))))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H275 zenon_H81 zenon_H80 zenon_Hb6 zenon_H3d zenon_H3c zenon_H27e zenon_H1f3 zenon_H7 zenon_H241 zenon_H242 zenon_H240.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.83/1.05  apply (zenon_L58_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.83/1.05  apply (zenon_L273_); trivial.
% 0.83/1.05  apply (zenon_L209_); trivial.
% 0.83/1.05  (* end of lemma zenon_L274_ *)
% 0.83/1.05  assert (zenon_L275_ : ((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(hskp12)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(hskp17)) -> (~(hskp14)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp28)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H46 zenon_H28e zenon_H18f zenon_H18e zenon_H18d zenon_H14e zenon_H261 zenon_H62 zenon_H60 zenon_H65 zenon_H240 zenon_H242 zenon_H241 zenon_H80 zenon_H81 zenon_H275 zenon_H22f zenon_H230 zenon_H231 zenon_H289 zenon_H27c.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H46). zenon_intro zenon_H7. zenon_intro zenon_H48.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H48). zenon_intro zenon_H3b. zenon_intro zenon_H49.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H49). zenon_intro zenon_H3c. zenon_intro zenon_H3d.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.83/1.05  apply (zenon_L113_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H289); [ zenon_intro zenon_H22e | zenon_intro zenon_H28c ].
% 0.83/1.05  apply (zenon_L192_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28c); [ zenon_intro zenon_H27e | zenon_intro zenon_H14f ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H261); [ zenon_intro zenon_H255 | zenon_intro zenon_Hd7 ].
% 0.83/1.05  apply (zenon_L255_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Hd7); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H56 ].
% 0.83/1.05  apply (zenon_L274_); trivial.
% 0.83/1.05  apply (zenon_L215_); trivial.
% 0.83/1.05  exact (zenon_H14e zenon_H14f).
% 0.83/1.05  exact (zenon_H27c zenon_H27d).
% 0.83/1.05  (* end of lemma zenon_L275_ *)
% 0.83/1.05  assert (zenon_L276_ : ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(c3_1 (a248))) -> (~(c2_1 (a248))) -> (~(c0_1 (a248))) -> (ndr1_0) -> (~(hskp28)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H28e zenon_H18f zenon_H18e zenon_H18d zenon_H1f6 zenon_H1f5 zenon_H1f4 zenon_H7 zenon_H27c.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.83/1.05  apply (zenon_L113_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.83/1.05  apply (zenon_L154_); trivial.
% 0.83/1.05  exact (zenon_H27c zenon_H27d).
% 0.83/1.05  (* end of lemma zenon_L276_ *)
% 0.83/1.05  assert (zenon_L277_ : ((ndr1_0)/\((~(c0_1 (a248)))/\((~(c2_1 (a248)))/\(~(c3_1 (a248)))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H1fd zenon_H28d zenon_H289 zenon_H14e zenon_H231 zenon_H230 zenon_H22f zenon_H18d zenon_H18e zenon_H18f zenon_H28e.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H1fd). zenon_intro zenon_H7. zenon_intro zenon_H1ff.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H1ff). zenon_intro zenon_H1f4. zenon_intro zenon_H200.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H200). zenon_intro zenon_H1f5. zenon_intro zenon_H1f6.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.83/1.05  apply (zenon_L276_); trivial.
% 0.83/1.05  apply (zenon_L259_); trivial.
% 0.83/1.05  (* end of lemma zenon_L277_ *)
% 0.83/1.05  assert (zenon_L278_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp23))\/((ndr1_0)/\((~(c0_1 (a248)))/\((~(c2_1 (a248)))/\(~(c3_1 (a248))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(hskp14)) -> (~(hskp17)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp12)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_Hf8 zenon_H202 zenon_H4c zenon_H28e zenon_H22f zenon_H230 zenon_H231 zenon_H261 zenon_H241 zenon_H242 zenon_H240 zenon_H275 zenon_H60 zenon_H62 zenon_H65 zenon_H14e zenon_H289 zenon_H18f zenon_H18e zenon_H18d zenon_H1ab zenon_H19e zenon_H19f zenon_H1e8 zenon_H28d.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H202); [ zenon_intro zenon_H1e6 | zenon_intro zenon_H1fd ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H4c); [ zenon_intro zenon_H2a | zenon_intro zenon_H46 ].
% 0.83/1.05  apply (zenon_L222_); trivial.
% 0.83/1.05  apply (zenon_L275_); trivial.
% 0.83/1.05  apply (zenon_L259_); trivial.
% 0.83/1.05  apply (zenon_L277_); trivial.
% 0.83/1.05  (* end of lemma zenon_L278_ *)
% 0.83/1.05  assert (zenon_L279_ : ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (ndr1_0) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(hskp28)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H28e zenon_H18f zenon_H18e zenon_H18d zenon_H231 zenon_H230 zenon_H22f zenon_H7 zenon_Hb7 zenon_Hb8 zenon_Hb9 zenon_H240 zenon_H241 zenon_H242 zenon_H261 zenon_H27c.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.83/1.05  apply (zenon_L113_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.83/1.05  apply (zenon_L216_); trivial.
% 0.83/1.05  exact (zenon_H27c zenon_H27d).
% 0.83/1.05  (* end of lemma zenon_L279_ *)
% 0.83/1.05  assert (zenon_L280_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_Hdc zenon_H28d zenon_H289 zenon_H14e zenon_H18d zenon_H18e zenon_H18f zenon_H261 zenon_H231 zenon_H230 zenon_H22f zenon_H242 zenon_H241 zenon_H240 zenon_H28e.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.83/1.05  apply (zenon_L279_); trivial.
% 0.83/1.05  apply (zenon_L259_); trivial.
% 0.83/1.05  (* end of lemma zenon_L280_ *)
% 0.83/1.05  assert (zenon_L281_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp17)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp23))\/((ndr1_0)/\((~(c0_1 (a248)))/\((~(c2_1 (a248)))/\(~(c3_1 (a248))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H100 zenon_H162 zenon_H176 zenon_H270 zenon_H60 zenon_H1a9 zenon_H231 zenon_H230 zenon_H22f zenon_H165 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H28d zenon_H1e8 zenon_H18d zenon_H18e zenon_H18f zenon_H289 zenon_H14e zenon_H65 zenon_H62 zenon_H275 zenon_H240 zenon_H242 zenon_H241 zenon_H261 zenon_H28e zenon_H4c zenon_H202 zenon_Hfb.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.05  apply (zenon_L253_); trivial.
% 0.83/1.05  apply (zenon_L278_); trivial.
% 0.83/1.05  apply (zenon_L280_); trivial.
% 0.83/1.05  (* end of lemma zenon_L281_ *)
% 0.83/1.05  assert (zenon_L282_ : ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (ndr1_0) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c1_1 (a232))) -> (~(c2_1 (a232))) -> (c3_1 (a232)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(hskp28)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H28e zenon_H18f zenon_H18e zenon_H18d zenon_H240 zenon_H242 zenon_H241 zenon_H7 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H89 zenon_H8a zenon_H8b zenon_H275 zenon_H27c.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.83/1.05  apply (zenon_L113_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.83/1.05  apply (zenon_L242_); trivial.
% 0.83/1.05  exact (zenon_H27c zenon_H27d).
% 0.83/1.05  (* end of lemma zenon_L282_ *)
% 0.83/1.05  assert (zenon_L283_ : ((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232)))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H106 zenon_H28d zenon_H289 zenon_H14e zenon_H231 zenon_H230 zenon_H22f zenon_H18d zenon_H18e zenon_H18f zenon_H275 zenon_H240 zenon_H242 zenon_H241 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H28e.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.83/1.05  apply (zenon_L282_); trivial.
% 0.83/1.05  apply (zenon_L259_); trivial.
% 0.83/1.05  (* end of lemma zenon_L283_ *)
% 0.83/1.05  assert (zenon_L284_ : ((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256)))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(hskp13)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H171 zenon_H296 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H1a.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H171). zenon_intro zenon_H7. zenon_intro zenon_H173.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H173). zenon_intro zenon_H169. zenon_intro zenon_H174.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H174). zenon_intro zenon_H16a. zenon_intro zenon_H168.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H296); [ zenon_intro zenon_H167 | zenon_intro zenon_H297 ].
% 0.83/1.05  apply (zenon_L98_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H297); [ zenon_intro zenon_H272 | zenon_intro zenon_H1b ].
% 0.83/1.05  apply (zenon_L241_); trivial.
% 0.83/1.05  exact (zenon_H1a zenon_H1b).
% 0.83/1.05  (* end of lemma zenon_L284_ *)
% 0.83/1.05  assert (zenon_L285_ : ((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(hskp19)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H15f zenon_H176 zenon_H296 zenon_H1a zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H7a zenon_H165.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.83/1.05  apply (zenon_L97_); trivial.
% 0.83/1.05  apply (zenon_L284_); trivial.
% 0.83/1.05  (* end of lemma zenon_L285_ *)
% 0.83/1.05  assert (zenon_L286_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(hskp19)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp22)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H162 zenon_H176 zenon_H296 zenon_H1a zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H7a zenon_H165 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H74 zenon_H205.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.83/1.05  apply (zenon_L159_); trivial.
% 0.83/1.05  apply (zenon_L285_); trivial.
% 0.83/1.05  (* end of lemma zenon_L286_ *)
% 0.83/1.05  assert (zenon_L287_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59)))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H275 zenon_H81 zenon_H80 zenon_H7f zenon_Hc0 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H1f3 zenon_H7 zenon_H241 zenon_H242 zenon_H240.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.83/1.05  apply (zenon_L57_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.83/1.05  apply (zenon_L241_); trivial.
% 0.83/1.05  apply (zenon_L209_); trivial.
% 0.83/1.05  (* end of lemma zenon_L287_ *)
% 0.83/1.05  assert (zenon_L288_ : (forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6)))))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54)))))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H147 zenon_H7 zenon_H1ab zenon_H272 zenon_H19f zenon_H19e.
% 0.83/1.05  generalize (zenon_H147 (a212)). zenon_intro zenon_H1ac.
% 0.83/1.05  apply (zenon_imply_s _ _ zenon_H1ac); [ zenon_intro zenon_H6 | zenon_intro zenon_H1ad ].
% 0.83/1.05  exact (zenon_H6 zenon_H7).
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H1ad); [ zenon_intro zenon_H1af | zenon_intro zenon_H1ae ].
% 0.83/1.05  exact (zenon_H1ab zenon_H1af).
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H1ae); [ zenon_intro zenon_H1a3 | zenon_intro zenon_H1a5 ].
% 0.83/1.05  generalize (zenon_H272 (a212)). zenon_intro zenon_H298.
% 0.83/1.05  apply (zenon_imply_s _ _ zenon_H298); [ zenon_intro zenon_H6 | zenon_intro zenon_H299 ].
% 0.83/1.05  exact (zenon_H6 zenon_H7).
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H299); [ zenon_intro zenon_H1af | zenon_intro zenon_H1a8 ].
% 0.83/1.05  exact (zenon_H1ab zenon_H1af).
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H1a8); [ zenon_intro zenon_H19d | zenon_intro zenon_H1a4 ].
% 0.83/1.05  exact (zenon_H19d zenon_H1a3).
% 0.83/1.05  exact (zenon_H1a4 zenon_H19f).
% 0.83/1.05  exact (zenon_H1a5 zenon_H19e).
% 0.83/1.05  (* end of lemma zenon_L288_ *)
% 0.83/1.05  assert (zenon_L289_ : ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp15)\/(hskp1))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (ndr1_0) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (~(c1_1 (a212))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(hskp15)) -> (~(hskp1)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H29a zenon_H240 zenon_H242 zenon_H241 zenon_H7 zenon_H1f3 zenon_H1ab zenon_H19f zenon_H19e zenon_Hb6 zenon_H80 zenon_H81 zenon_H275 zenon_H50 zenon_H12.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H29a); [ zenon_intro zenon_H147 | zenon_intro zenon_H29b ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.83/1.05  apply (zenon_L58_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.83/1.05  apply (zenon_L288_); trivial.
% 0.83/1.05  apply (zenon_L209_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H29b); [ zenon_intro zenon_H51 | zenon_intro zenon_H13 ].
% 0.83/1.05  exact (zenon_H50 zenon_H51).
% 0.83/1.05  exact (zenon_H12 zenon_H13).
% 0.83/1.05  (* end of lemma zenon_L289_ *)
% 0.83/1.05  assert (zenon_L290_ : ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c0_1 (a244))) -> (~(hskp1)) -> (~(hskp15)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(c1_1 (a212))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp15)\/(hskp1))) -> (ndr1_0) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_Heb zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H7f zenon_H12 zenon_H50 zenon_H275 zenon_H81 zenon_H80 zenon_H19e zenon_H19f zenon_H1ab zenon_H1f3 zenon_H241 zenon_H242 zenon_H240 zenon_H29a zenon_H7 zenon_H9c zenon_H9d zenon_H9e.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Heb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hec ].
% 0.83/1.05  apply (zenon_L287_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Hec); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H9b ].
% 0.83/1.05  apply (zenon_L289_); trivial.
% 0.83/1.05  apply (zenon_L40_); trivial.
% 0.83/1.05  (* end of lemma zenon_L290_ *)
% 0.83/1.05  assert (zenon_L291_ : (forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y)))))) -> (ndr1_0) -> (~(c0_1 (a203))) -> (forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H1da zenon_H7 zenon_H22f zenon_H56 zenon_H230 zenon_H231.
% 0.83/1.05  generalize (zenon_H1da (a203)). zenon_intro zenon_H29c.
% 0.83/1.05  apply (zenon_imply_s _ _ zenon_H29c); [ zenon_intro zenon_H6 | zenon_intro zenon_H29d ].
% 0.83/1.05  exact (zenon_H6 zenon_H7).
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H29d); [ zenon_intro zenon_H235 | zenon_intro zenon_H29e ].
% 0.83/1.05  exact (zenon_H22f zenon_H235).
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H29e); [ zenon_intro zenon_H259 | zenon_intro zenon_H236 ].
% 0.83/1.05  apply (zenon_L214_); trivial.
% 0.83/1.05  exact (zenon_H236 zenon_H231).
% 0.83/1.05  (* end of lemma zenon_L291_ *)
% 0.83/1.05  assert (zenon_L292_ : (forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34)))))) -> (ndr1_0) -> (forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))) -> (c1_1 (a202)) -> (c2_1 (a202)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H167 zenon_H7 zenon_H9b zenon_H27f zenon_H280.
% 0.83/1.05  generalize (zenon_H167 (a202)). zenon_intro zenon_H29f.
% 0.83/1.05  apply (zenon_imply_s _ _ zenon_H29f); [ zenon_intro zenon_H6 | zenon_intro zenon_H2a0 ].
% 0.83/1.05  exact (zenon_H6 zenon_H7).
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H2a0); [ zenon_intro zenon_H2a2 | zenon_intro zenon_H2a1 ].
% 0.83/1.05  generalize (zenon_H9b (a202)). zenon_intro zenon_H2a3.
% 0.83/1.05  apply (zenon_imply_s _ _ zenon_H2a3); [ zenon_intro zenon_H6 | zenon_intro zenon_H2a4 ].
% 0.83/1.05  exact (zenon_H6 zenon_H7).
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H2a4); [ zenon_intro zenon_H2a5 | zenon_intro zenon_H2a1 ].
% 0.83/1.05  exact (zenon_H2a5 zenon_H2a2).
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H2a1); [ zenon_intro zenon_H285 | zenon_intro zenon_H287 ].
% 0.83/1.05  exact (zenon_H285 zenon_H27f).
% 0.83/1.05  exact (zenon_H287 zenon_H280).
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H2a1); [ zenon_intro zenon_H285 | zenon_intro zenon_H287 ].
% 0.83/1.05  exact (zenon_H285 zenon_H27f).
% 0.83/1.05  exact (zenon_H287 zenon_H280).
% 0.83/1.05  (* end of lemma zenon_L292_ *)
% 0.83/1.05  assert (zenon_L293_ : (forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54)))))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H272 zenon_H7 zenon_H1ab zenon_H152 zenon_H19e zenon_H19f.
% 0.83/1.05  generalize (zenon_H272 (a212)). zenon_intro zenon_H298.
% 0.83/1.05  apply (zenon_imply_s _ _ zenon_H298); [ zenon_intro zenon_H6 | zenon_intro zenon_H299 ].
% 0.83/1.05  exact (zenon_H6 zenon_H7).
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H299); [ zenon_intro zenon_H1af | zenon_intro zenon_H1a8 ].
% 0.83/1.05  exact (zenon_H1ab zenon_H1af).
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H1a8); [ zenon_intro zenon_H19d | zenon_intro zenon_H1a4 ].
% 0.83/1.05  apply (zenon_L116_); trivial.
% 0.83/1.05  exact (zenon_H1a4 zenon_H19f).
% 0.83/1.05  (* end of lemma zenon_L293_ *)
% 0.83/1.05  assert (zenon_L294_ : ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (c2_1 (a202)) -> (c1_1 (a202)) -> (forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> (forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54)))))) -> (~(hskp14)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H1a9 zenon_H280 zenon_H27f zenon_H9b zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H272 zenon_H60.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H1a9); [ zenon_intro zenon_H167 | zenon_intro zenon_H1aa ].
% 0.83/1.05  apply (zenon_L292_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H1aa); [ zenon_intro zenon_H152 | zenon_intro zenon_H61 ].
% 0.83/1.05  apply (zenon_L293_); trivial.
% 0.83/1.05  exact (zenon_H60 zenon_H61).
% 0.83/1.05  (* end of lemma zenon_L294_ *)
% 0.83/1.05  assert (zenon_L295_ : ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp14)) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))) -> (c1_1 (a202)) -> (c2_1 (a202)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp13)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H296 zenon_H60 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H9b zenon_H27f zenon_H280 zenon_H1a9 zenon_H1a.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H296); [ zenon_intro zenon_H167 | zenon_intro zenon_H297 ].
% 0.83/1.05  apply (zenon_L292_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H297); [ zenon_intro zenon_H272 | zenon_intro zenon_H1b ].
% 0.83/1.05  apply (zenon_L294_); trivial.
% 0.83/1.05  exact (zenon_H1a zenon_H1b).
% 0.83/1.05  (* end of lemma zenon_L295_ *)
% 0.83/1.05  assert (zenon_L296_ : ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))) -> (~(c0_1 (a203))) -> (c0_1 (a217)) -> (~(c3_1 (a217))) -> (~(c2_1 (a217))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp14)) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (c1_1 (a202)) -> (c2_1 (a202)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp13)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H229 zenon_H231 zenon_H230 zenon_H56 zenon_H22f zenon_H17a zenon_H179 zenon_H178 zenon_H296 zenon_H60 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H27f zenon_H280 zenon_H1a9 zenon_H1a.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H229); [ zenon_intro zenon_H1da | zenon_intro zenon_H22a ].
% 0.83/1.05  apply (zenon_L291_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H22a); [ zenon_intro zenon_H177 | zenon_intro zenon_H9b ].
% 0.83/1.05  apply (zenon_L108_); trivial.
% 0.83/1.05  apply (zenon_L295_); trivial.
% 0.83/1.05  (* end of lemma zenon_L296_ *)
% 0.83/1.05  assert (zenon_L297_ : ((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(hskp13)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(c2_1 (a217))) -> (~(c3_1 (a217))) -> (c0_1 (a217)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp0)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H288 zenon_H251 zenon_Hb7 zenon_Hb8 zenon_Hb9 zenon_H240 zenon_H241 zenon_H242 zenon_H261 zenon_H1a zenon_H1a9 zenon_H19f zenon_H19e zenon_H1ab zenon_H60 zenon_H296 zenon_H178 zenon_H179 zenon_H17a zenon_H22f zenon_H230 zenon_H231 zenon_H229 zenon_H181.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H288). zenon_intro zenon_H7. zenon_intro zenon_H28a.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H28a). zenon_intro zenon_H27f. zenon_intro zenon_H28b.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H28b). zenon_intro zenon_H280. zenon_intro zenon_H281.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H251); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H252 ].
% 0.83/1.05  apply (zenon_L216_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H252); [ zenon_intro zenon_H56 | zenon_intro zenon_H182 ].
% 0.83/1.05  apply (zenon_L296_); trivial.
% 0.83/1.05  exact (zenon_H181 zenon_H182).
% 0.83/1.05  (* end of lemma zenon_L297_ *)
% 0.83/1.05  assert (zenon_L298_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(c2_1 (a217))) -> (~(c3_1 (a217))) -> (c0_1 (a217)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_Hdc zenon_H28d zenon_H251 zenon_H181 zenon_H178 zenon_H179 zenon_H17a zenon_H296 zenon_H1a zenon_H1ab zenon_H19e zenon_H19f zenon_H60 zenon_H1a9 zenon_H229 zenon_H18d zenon_H18e zenon_H18f zenon_H261 zenon_H231 zenon_H230 zenon_H22f zenon_H242 zenon_H241 zenon_H240 zenon_H28e.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.83/1.05  apply (zenon_L279_); trivial.
% 0.83/1.05  apply (zenon_L297_); trivial.
% 0.83/1.05  (* end of lemma zenon_L298_ *)
% 0.83/1.05  assert (zenon_L299_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a256)) -> (c1_1 (a256)) -> (~(c0_1 (a256))) -> (ndr1_0) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H16a zenon_H169 zenon_H168 zenon_H7 zenon_H1c2 zenon_H1c4 zenon_H1c5 zenon_H1cc.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H270); [ zenon_intro zenon_H22e | zenon_intro zenon_H271 ].
% 0.83/1.05  apply (zenon_L192_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H271); [ zenon_intro zenon_H167 | zenon_intro zenon_H3a ].
% 0.83/1.05  apply (zenon_L98_); trivial.
% 0.83/1.05  apply (zenon_L143_); trivial.
% 0.83/1.05  (* end of lemma zenon_L299_ *)
% 0.83/1.05  assert (zenon_L300_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a256)) -> (c1_1 (a256)) -> (~(c0_1 (a256))) -> (ndr1_0) -> (c0_1 (a212)) -> (forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))) -> (c3_1 (a212)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H16a zenon_H169 zenon_H168 zenon_H7 zenon_H19e zenon_H152 zenon_H19f.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H270); [ zenon_intro zenon_H22e | zenon_intro zenon_H271 ].
% 0.83/1.05  apply (zenon_L192_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H271); [ zenon_intro zenon_H167 | zenon_intro zenon_H3a ].
% 0.83/1.05  apply (zenon_L98_); trivial.
% 0.83/1.05  apply (zenon_L117_); trivial.
% 0.83/1.05  (* end of lemma zenon_L300_ *)
% 0.83/1.05  assert (zenon_L301_ : ((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H171 zenon_H277 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H19e zenon_H19f.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H171). zenon_intro zenon_H7. zenon_intro zenon_H173.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H173). zenon_intro zenon_H169. zenon_intro zenon_H174.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H174). zenon_intro zenon_H16a. zenon_intro zenon_H168.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.83/1.05  apply (zenon_L299_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.83/1.05  apply (zenon_L192_); trivial.
% 0.83/1.05  apply (zenon_L300_); trivial.
% 0.83/1.05  (* end of lemma zenon_L301_ *)
% 0.83/1.05  assert (zenon_L302_ : ((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(hskp19)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H15f zenon_H176 zenon_H277 zenon_H19e zenon_H19f zenon_H22f zenon_H230 zenon_H231 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H270 zenon_H7a zenon_H165.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.83/1.05  apply (zenon_L97_); trivial.
% 0.83/1.05  apply (zenon_L301_); trivial.
% 0.83/1.05  (* end of lemma zenon_L302_ *)
% 0.83/1.05  assert (zenon_L303_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(hskp19)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp22)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H162 zenon_H176 zenon_H277 zenon_H22f zenon_H230 zenon_H231 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H270 zenon_H7a zenon_H165 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H74 zenon_H205.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.83/1.05  apply (zenon_L159_); trivial.
% 0.83/1.05  apply (zenon_L302_); trivial.
% 0.83/1.05  (* end of lemma zenon_L303_ *)
% 0.83/1.05  assert (zenon_L304_ : ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> (~(hskp1)) -> (~(hskp15)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(c1_1 (a212))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp15)\/(hskp1))) -> (ndr1_0) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_Heb zenon_H12f zenon_H12e zenon_H12d zenon_H12 zenon_H50 zenon_H275 zenon_H81 zenon_H80 zenon_H19e zenon_H19f zenon_H1ab zenon_H1f3 zenon_H241 zenon_H242 zenon_H240 zenon_H29a zenon_H7 zenon_H9c zenon_H9d zenon_H9e.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Heb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hec ].
% 0.83/1.05  apply (zenon_L75_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Hec); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H9b ].
% 0.83/1.05  apply (zenon_L289_); trivial.
% 0.83/1.05  apply (zenon_L40_); trivial.
% 0.83/1.05  (* end of lemma zenon_L304_ *)
% 0.83/1.05  assert (zenon_L305_ : ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> (forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54)))))) -> (~(hskp25)) -> (~(hskp19)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H165 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H272 zenon_H163 zenon_H7a.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H165); [ zenon_intro zenon_H152 | zenon_intro zenon_H166 ].
% 0.83/1.05  apply (zenon_L293_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H166); [ zenon_intro zenon_H164 | zenon_intro zenon_H7b ].
% 0.83/1.05  exact (zenon_H163 zenon_H164).
% 0.83/1.05  exact (zenon_H7a zenon_H7b).
% 0.83/1.05  (* end of lemma zenon_L305_ *)
% 0.83/1.05  assert (zenon_L306_ : ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (c2_1 (a202)) -> (c1_1 (a202)) -> (forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (ndr1_0) -> (forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))) -> (~(hskp14)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H1a9 zenon_H280 zenon_H27f zenon_H9b zenon_H19f zenon_H19e zenon_H7 zenon_H3a zenon_H60.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H1a9); [ zenon_intro zenon_H167 | zenon_intro zenon_H1aa ].
% 0.83/1.05  apply (zenon_L292_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H1aa); [ zenon_intro zenon_H152 | zenon_intro zenon_H61 ].
% 0.83/1.05  apply (zenon_L117_); trivial.
% 0.83/1.05  exact (zenon_H60 zenon_H61).
% 0.83/1.05  (* end of lemma zenon_L306_ *)
% 0.83/1.05  assert (zenon_L307_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (c2_1 (a202)) -> (c1_1 (a202)) -> (forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (ndr1_0) -> (~(hskp14)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H1a9 zenon_H280 zenon_H27f zenon_H9b zenon_H19f zenon_H19e zenon_H7 zenon_H60.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H270); [ zenon_intro zenon_H22e | zenon_intro zenon_H271 ].
% 0.83/1.05  apply (zenon_L192_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H271); [ zenon_intro zenon_H167 | zenon_intro zenon_H3a ].
% 0.83/1.05  apply (zenon_L292_); trivial.
% 0.83/1.05  apply (zenon_L306_); trivial.
% 0.83/1.05  (* end of lemma zenon_L307_ *)
% 0.83/1.05  assert (zenon_L308_ : ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))) -> (c0_1 (a217)) -> (~(c3_1 (a217))) -> (~(c2_1 (a217))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (c2_1 (a202)) -> (c1_1 (a202)) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (ndr1_0) -> (~(hskp14)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H229 zenon_H56 zenon_H17a zenon_H179 zenon_H178 zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H1a9 zenon_H280 zenon_H27f zenon_H19f zenon_H19e zenon_H7 zenon_H60.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H229); [ zenon_intro zenon_H1da | zenon_intro zenon_H22a ].
% 0.83/1.05  apply (zenon_L291_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H22a); [ zenon_intro zenon_H177 | zenon_intro zenon_H9b ].
% 0.83/1.05  apply (zenon_L108_); trivial.
% 0.83/1.05  apply (zenon_L307_); trivial.
% 0.83/1.05  (* end of lemma zenon_L308_ *)
% 0.83/1.05  assert (zenon_L309_ : ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))) -> (~(hskp14)) -> (ndr1_0) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (c1_1 (a202)) -> (c2_1 (a202)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(c2_1 (a217))) -> (~(c3_1 (a217))) -> (c0_1 (a217)) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp0)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H251 zenon_H240 zenon_H242 zenon_H241 zenon_H24e zenon_H60 zenon_H7 zenon_H19e zenon_H19f zenon_H27f zenon_H280 zenon_H1a9 zenon_H22f zenon_H230 zenon_H231 zenon_H270 zenon_H178 zenon_H179 zenon_H17a zenon_H229 zenon_H181.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H251); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H252 ].
% 0.83/1.05  apply (zenon_L209_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H252); [ zenon_intro zenon_H56 | zenon_intro zenon_H182 ].
% 0.83/1.05  apply (zenon_L308_); trivial.
% 0.83/1.05  exact (zenon_H181 zenon_H182).
% 0.83/1.05  (* end of lemma zenon_L309_ *)
% 0.83/1.05  assert (zenon_L310_ : ((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a256)) -> (c1_1 (a256)) -> (~(c0_1 (a256))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H46 zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H16a zenon_H169 zenon_H168.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H46). zenon_intro zenon_H7. zenon_intro zenon_H48.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H48). zenon_intro zenon_H3b. zenon_intro zenon_H49.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H49). zenon_intro zenon_H3c. zenon_intro zenon_H3d.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H270); [ zenon_intro zenon_H22e | zenon_intro zenon_H271 ].
% 0.83/1.05  apply (zenon_L192_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H271); [ zenon_intro zenon_H167 | zenon_intro zenon_H3a ].
% 0.83/1.05  apply (zenon_L98_); trivial.
% 0.83/1.05  apply (zenon_L18_); trivial.
% 0.83/1.05  (* end of lemma zenon_L310_ *)
% 0.83/1.05  assert (zenon_L311_ : ((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256)))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> (~(hskp23)) -> (c3_1 (a205)) -> (~(c1_1 (a205))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp4)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H171 zenon_H4c zenon_H270 zenon_H1e8 zenon_H1e6 zenon_H1cc zenon_H1c4 zenon_H22f zenon_H230 zenon_H231 zenon_H13a zenon_H23c.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H171). zenon_intro zenon_H7. zenon_intro zenon_H173.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H173). zenon_intro zenon_H169. zenon_intro zenon_H174.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H174). zenon_intro zenon_H16a. zenon_intro zenon_H168.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H4c); [ zenon_intro zenon_H2a | zenon_intro zenon_H46 ].
% 0.83/1.05  apply (zenon_L237_); trivial.
% 0.83/1.05  apply (zenon_L310_); trivial.
% 0.83/1.05  (* end of lemma zenon_L311_ *)
% 0.83/1.05  assert (zenon_L312_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (~(c2_1 (a238))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_Hd1 zenon_Heb zenon_H12f zenon_H12e zenon_H12d zenon_Hb9 zenon_Hb8 zenon_Hb7.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Heb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hec ].
% 0.83/1.05  apply (zenon_L75_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Hec); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H9b ].
% 0.83/1.05  apply (zenon_L47_); trivial.
% 0.83/1.05  apply (zenon_L40_); trivial.
% 0.83/1.05  (* end of lemma zenon_L312_ *)
% 0.83/1.05  assert (zenon_L313_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_Hdc zenon_Hd9 zenon_Heb zenon_H12f zenon_H12e zenon_H12d zenon_H21 zenon_H22 zenon_H23 zenon_Hab.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.05  apply (zenon_L45_); trivial.
% 0.83/1.05  apply (zenon_L312_); trivial.
% 0.83/1.05  (* end of lemma zenon_L313_ *)
% 0.83/1.05  assert (zenon_L314_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(hskp12)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H12a zenon_H1e4 zenon_H14e zenon_H22f zenon_H230 zenon_H231 zenon_H289 zenon_H1dd zenon_H1dc zenon_H1db.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H289); [ zenon_intro zenon_H22e | zenon_intro zenon_H28c ].
% 0.83/1.05  apply (zenon_L192_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28c); [ zenon_intro zenon_H27e | zenon_intro zenon_H14f ].
% 0.83/1.05  generalize (zenon_H27e (a219)). zenon_intro zenon_H2a6.
% 0.83/1.05  apply (zenon_imply_s _ _ zenon_H2a6); [ zenon_intro zenon_H6 | zenon_intro zenon_H2a7 ].
% 0.83/1.05  exact (zenon_H6 zenon_H7).
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H2a7); [ zenon_intro zenon_H1b1 | zenon_intro zenon_H10f ].
% 0.83/1.05  apply (zenon_L128_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H10f); [ zenon_intro zenon_H112 | zenon_intro zenon_H111 ].
% 0.83/1.05  exact (zenon_H112 zenon_H10b).
% 0.83/1.05  exact (zenon_H111 zenon_H10c).
% 0.83/1.05  exact (zenon_H14e zenon_H14f).
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.83/1.05  apply (zenon_L148_); trivial.
% 0.83/1.05  apply (zenon_L66_); trivial.
% 0.83/1.05  (* end of lemma zenon_L314_ *)
% 0.83/1.05  assert (zenon_L315_ : ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38))))))\/((hskp1)\/(hskp14))) -> (~(hskp1)) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp8)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(c0_1 (a203))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(hskp10)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H19c zenon_H4f zenon_Hab zenon_H181 zenon_H183 zenon_Hff zenon_H136 zenon_H12 zenon_H69 zenon_H65 zenon_H18 zenon_H54 zenon_Hfb zenon_Hd9 zenon_H23a zenon_H22f zenon_H7c zenon_H231 zenon_H230 zenon_H238 zenon_H268 zenon_He0 zenon_Ha9 zenon_Hd3 zenon_Hdd zenon_H100 zenon_H101 zenon_H289 zenon_H1db zenon_H1dc zenon_H1dd zenon_H1e4 zenon_H129.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.05  apply (zenon_L235_); trivial.
% 0.83/1.05  apply (zenon_L314_); trivial.
% 0.83/1.05  apply (zenon_L272_); trivial.
% 0.83/1.05  (* end of lemma zenon_L315_ *)
% 0.83/1.05  assert (zenon_L316_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp12)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp8)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> (~(hskp1)) -> ((forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38))))))\/((hskp1)\/(hskp14))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H189 zenon_H129 zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H22f zenon_H230 zenon_H231 zenon_H14e zenon_H289 zenon_H101 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_Ha9 zenon_H54 zenon_H18 zenon_H65 zenon_H69 zenon_H12 zenon_H136 zenon_Hff.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.05  apply (zenon_L80_); trivial.
% 0.83/1.05  apply (zenon_L314_); trivial.
% 0.83/1.05  (* end of lemma zenon_L316_ *)
% 0.83/1.05  assert (zenon_L317_ : ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((hskp8)\/((hskp13)\/(hskp18))) -> (~(hskp8)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> (~(hskp1)) -> ((forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38))))))\/((hskp1)\/(hskp14))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H19c zenon_H229 zenon_H183 zenon_H129 zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H289 zenon_H102 zenon_H101 zenon_H100 zenon_H261 zenon_Hab zenon_He0 zenon_H7c zenon_Hf6 zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_Heb zenon_H251 zenon_H181 zenon_H253 zenon_Hd9 zenon_Hfb zenon_H54 zenon_H65 zenon_H69 zenon_H1e zenon_H18 zenon_H2e zenon_H22f zenon_H230 zenon_H231 zenon_H121 zenon_H23e zenon_H4c zenon_H4f zenon_H12 zenon_H136 zenon_Hff zenon_Ha9 zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H186.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.05  apply (zenon_L220_); trivial.
% 0.83/1.05  apply (zenon_L314_); trivial.
% 0.83/1.05  apply (zenon_L316_); trivial.
% 0.83/1.05  apply (zenon_L190_); trivial.
% 0.83/1.05  (* end of lemma zenon_L317_ *)
% 0.83/1.05  assert (zenon_L318_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59)))))) -> (c3_1 (a230)) -> (c2_1 (a230)) -> (forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49)))))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H275 zenon_H81 zenon_H80 zenon_H7f zenon_Hc0 zenon_H3d zenon_H3c zenon_H27e zenon_H1f3 zenon_H7 zenon_H241 zenon_H242 zenon_H240.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.83/1.05  apply (zenon_L57_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.83/1.05  apply (zenon_L273_); trivial.
% 0.83/1.05  apply (zenon_L209_); trivial.
% 0.83/1.05  (* end of lemma zenon_L318_ *)
% 0.83/1.05  assert (zenon_L319_ : ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (c2_1 (a198)) -> (c1_1 (a198)) -> (c0_1 (a198)) -> (ndr1_0) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c1_1 (a231))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c0_1 (a244))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(hskp28)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H28e zenon_H18f zenon_H18e zenon_H18d zenon_H9e zenon_H9d zenon_H9c zenon_H7 zenon_H240 zenon_H241 zenon_H242 zenon_H6b zenon_H6d zenon_H6c zenon_Ha5 zenon_Heb zenon_H7f zenon_H81 zenon_H80 zenon_Hf6 zenon_H27c.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.83/1.05  apply (zenon_L113_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.83/1.05  apply (zenon_L206_); trivial.
% 0.83/1.05  exact (zenon_H27c zenon_H27d).
% 0.83/1.05  (* end of lemma zenon_L319_ *)
% 0.83/1.05  assert (zenon_L320_ : ((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp12)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp8)) -> (~(hskp15)) -> (~(hskp14)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H103 zenon_H101 zenon_H100 zenon_Hdd zenon_Hd3 zenon_Ha9 zenon_He0 zenon_H7c zenon_H28e zenon_Heb zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_Hf6 zenon_H18f zenon_H18e zenon_H18d zenon_H22f zenon_H230 zenon_H231 zenon_H14e zenon_H289 zenon_H28d zenon_Hd9 zenon_Hfb zenon_H54 zenon_H18 zenon_H50 zenon_H60 zenon_H65 zenon_H69.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.83/1.05  apply (zenon_L30_); trivial.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.05  apply (zenon_L56_); trivial.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H69); [ zenon_intro zenon_H52 | zenon_intro zenon_H64 ].
% 0.83/1.05  apply (zenon_L25_); trivial.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H64). zenon_intro zenon_H7. zenon_intro zenon_H66.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H66). zenon_intro zenon_H58. zenon_intro zenon_H67.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H67). zenon_intro zenon_H59. zenon_intro zenon_H57.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.05  apply (zenon_L36_); trivial.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.83/1.05  apply (zenon_L319_); trivial.
% 0.83/1.05  apply (zenon_L259_); trivial.
% 0.83/1.05  apply (zenon_L266_); trivial.
% 0.83/1.05  (* end of lemma zenon_L320_ *)
% 0.83/1.05  assert (zenon_L321_ : ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp11)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp0)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp23))\/((ndr1_0)/\((~(c0_1 (a248)))/\((~(c2_1 (a248)))/\(~(c3_1 (a248))))))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H19c zenon_H4f zenon_H229 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hab zenon_H183 zenon_H4c zenon_H23e zenon_H121 zenon_H231 zenon_H230 zenon_H22f zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H1e8 zenon_H150 zenon_H181 zenon_H251 zenon_Hd9 zenon_H202.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.83/1.05  apply (zenon_L225_); trivial.
% 0.83/1.05  apply (zenon_L190_); trivial.
% 0.83/1.05  (* end of lemma zenon_L321_ *)
% 0.83/1.05  assert (zenon_L322_ : ((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216)))))) -> ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp10)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H196 zenon_H19c zenon_H4f zenon_Hab zenon_H181 zenon_H183 zenon_H101 zenon_Hfb zenon_Hd9 zenon_H23a zenon_H7c zenon_H238 zenon_H268 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H165 zenon_H22f zenon_H230 zenon_H231 zenon_H1a9 zenon_H270 zenon_H176 zenon_H162 zenon_H28e zenon_H261 zenon_H65 zenon_Ha9 zenon_H289 zenon_H28d zenon_Hd3 zenon_Hdd zenon_H100 zenon_H1db zenon_H1dc zenon_H1dd zenon_H1e4 zenon_H129.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.05  apply (zenon_L268_); trivial.
% 0.83/1.05  apply (zenon_L314_); trivial.
% 0.83/1.05  apply (zenon_L272_); trivial.
% 0.83/1.05  (* end of lemma zenon_L322_ *)
% 0.83/1.05  assert (zenon_L323_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a232)) -> (~(c2_1 (a232))) -> (~(c1_1 (a232))) -> (~(hskp19)) -> (~(hskp25)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H275 zenon_H8b zenon_H8a zenon_H89 zenon_H7a zenon_H163 zenon_H1ab zenon_H19e zenon_H19f zenon_H165 zenon_H1f3 zenon_H7 zenon_H241 zenon_H242 zenon_H240.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.83/1.05  apply (zenon_L38_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.83/1.05  apply (zenon_L305_); trivial.
% 0.83/1.05  apply (zenon_L209_); trivial.
% 0.83/1.05  (* end of lemma zenon_L323_ *)
% 0.83/1.05  assert (zenon_L324_ : ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (ndr1_0) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(hskp25)) -> (~(hskp19)) -> (~(c1_1 (a232))) -> (~(c2_1 (a232))) -> (c3_1 (a232)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(hskp28)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H28e zenon_H18f zenon_H18e zenon_H18d zenon_H240 zenon_H242 zenon_H241 zenon_H7 zenon_H165 zenon_H19f zenon_H19e zenon_H1ab zenon_H163 zenon_H7a zenon_H89 zenon_H8a zenon_H8b zenon_H275 zenon_H27c.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.83/1.05  apply (zenon_L113_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.83/1.05  apply (zenon_L323_); trivial.
% 0.83/1.05  exact (zenon_H27c zenon_H27d).
% 0.83/1.05  (* end of lemma zenon_L324_ *)
% 0.83/1.05  assert (zenon_L325_ : (forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9)))))) -> (ndr1_0) -> (forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H22e zenon_H7 zenon_H24e zenon_H241 zenon_H242.
% 0.83/1.05  generalize (zenon_H22e (a214)). zenon_intro zenon_H2a8.
% 0.83/1.05  apply (zenon_imply_s _ _ zenon_H2a8); [ zenon_intro zenon_H6 | zenon_intro zenon_H2a9 ].
% 0.83/1.05  exact (zenon_H6 zenon_H7).
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H2a9); [ zenon_intro zenon_H24c | zenon_intro zenon_H258 ].
% 0.83/1.05  apply (zenon_L208_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H258); [ zenon_intro zenon_H24d | zenon_intro zenon_H247 ].
% 0.83/1.05  exact (zenon_H241 zenon_H24d).
% 0.83/1.05  exact (zenon_H247 zenon_H242).
% 0.83/1.05  (* end of lemma zenon_L325_ *)
% 0.83/1.05  assert (zenon_L326_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))) -> (c3_1 (a202)) -> (c2_1 (a202)) -> (c1_1 (a202)) -> (ndr1_0) -> (~(hskp12)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H289 zenon_H242 zenon_H241 zenon_H24e zenon_H281 zenon_H280 zenon_H27f zenon_H7 zenon_H14e.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H289); [ zenon_intro zenon_H22e | zenon_intro zenon_H28c ].
% 0.83/1.05  apply (zenon_L325_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28c); [ zenon_intro zenon_H27e | zenon_intro zenon_H14f ].
% 0.83/1.05  apply (zenon_L258_); trivial.
% 0.83/1.05  exact (zenon_H14e zenon_H14f).
% 0.83/1.05  (* end of lemma zenon_L326_ *)
% 0.83/1.05  assert (zenon_L327_ : ((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a232)) -> (~(c2_1 (a232))) -> (~(c1_1 (a232))) -> (~(hskp19)) -> (~(hskp25)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(hskp12)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H288 zenon_H275 zenon_H8b zenon_H8a zenon_H89 zenon_H7a zenon_H163 zenon_H1ab zenon_H19e zenon_H19f zenon_H165 zenon_H289 zenon_H242 zenon_H241 zenon_H14e.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H288). zenon_intro zenon_H7. zenon_intro zenon_H28a.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H28a). zenon_intro zenon_H27f. zenon_intro zenon_H28b.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H28b). zenon_intro zenon_H280. zenon_intro zenon_H281.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.83/1.05  apply (zenon_L38_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.83/1.05  apply (zenon_L305_); trivial.
% 0.83/1.05  apply (zenon_L326_); trivial.
% 0.83/1.05  (* end of lemma zenon_L327_ *)
% 0.83/1.05  assert (zenon_L328_ : ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (c2_1 (a256)) -> (c1_1 (a256)) -> (~(c0_1 (a256))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> (forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54)))))) -> (~(hskp14)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H1a9 zenon_H16a zenon_H169 zenon_H168 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H272 zenon_H60.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H1a9); [ zenon_intro zenon_H167 | zenon_intro zenon_H1aa ].
% 0.83/1.05  apply (zenon_L98_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H1aa); [ zenon_intro zenon_H152 | zenon_intro zenon_H61 ].
% 0.83/1.05  apply (zenon_L293_); trivial.
% 0.83/1.05  exact (zenon_H60 zenon_H61).
% 0.83/1.05  (* end of lemma zenon_L328_ *)
% 0.83/1.05  assert (zenon_L329_ : ((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256)))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp14)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp13)) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H171 zenon_H296 zenon_H60 zenon_H1ab zenon_H19e zenon_H19f zenon_H1a9 zenon_H1a.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H171). zenon_intro zenon_H7. zenon_intro zenon_H173.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H173). zenon_intro zenon_H169. zenon_intro zenon_H174.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H174). zenon_intro zenon_H16a. zenon_intro zenon_H168.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H296); [ zenon_intro zenon_H167 | zenon_intro zenon_H297 ].
% 0.83/1.05  apply (zenon_L98_); trivial.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H297); [ zenon_intro zenon_H272 | zenon_intro zenon_H1b ].
% 0.83/1.05  apply (zenon_L328_); trivial.
% 0.83/1.05  exact (zenon_H1a zenon_H1b).
% 0.83/1.05  (* end of lemma zenon_L329_ *)
% 0.83/1.05  assert (zenon_L330_ : ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c1_1 (a232))) -> (~(c2_1 (a232))) -> (c3_1 (a232)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp19)) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (ndr1_0) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H176 zenon_H296 zenon_H1a zenon_H60 zenon_H1a9 zenon_H28e zenon_H89 zenon_H8a zenon_H8b zenon_H165 zenon_H7a zenon_H19f zenon_H19e zenon_H1ab zenon_H241 zenon_H242 zenon_H240 zenon_H275 zenon_H18f zenon_H18e zenon_H18d zenon_H7 zenon_H289 zenon_H14e zenon_H28d.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.83/1.05  apply (zenon_L324_); trivial.
% 0.83/1.05  apply (zenon_L327_); trivial.
% 0.83/1.05  apply (zenon_L329_); trivial.
% 0.83/1.05  (* end of lemma zenon_L330_ *)
% 0.83/1.05  assert (zenon_L331_ : ((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> (~(hskp12)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp14)) -> (~(hskp13)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H106 zenon_H100 zenon_Hdd zenon_Hd3 zenon_H22f zenon_H230 zenon_H231 zenon_Ha9 zenon_H28d zenon_H14e zenon_H289 zenon_H18d zenon_H18e zenon_H18f zenon_H275 zenon_H240 zenon_H242 zenon_H241 zenon_H1ab zenon_H19e zenon_H19f zenon_H165 zenon_H28e zenon_H1a9 zenon_H60 zenon_H1a zenon_H296 zenon_H176.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.05  apply (zenon_L330_); trivial.
% 0.83/1.05  apply (zenon_L266_); trivial.
% 0.83/1.05  (* end of lemma zenon_L331_ *)
% 0.83/1.05  assert (zenon_L332_ : ((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216)))))) -> ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp23))\/((ndr1_0)/\((~(c0_1 (a248)))/\((~(c2_1 (a248)))/\(~(c3_1 (a248))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> False).
% 0.83/1.05  do 0 intro. intros zenon_H196 zenon_H19c zenon_H4f zenon_Hd9 zenon_H229 zenon_Hab zenon_H181 zenon_H183 zenon_H129 zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H100 zenon_H162 zenon_H176 zenon_H270 zenon_H1a9 zenon_H231 zenon_H230 zenon_H22f zenon_H165 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H28d zenon_H1e8 zenon_H289 zenon_H65 zenon_H275 zenon_H240 zenon_H242 zenon_H241 zenon_H261 zenon_H28e zenon_H4c zenon_H202 zenon_Hfb zenon_H296 zenon_Ha9 zenon_Hd3 zenon_Hdd zenon_H101 zenon_Hcf zenon_Hd2 zenon_H186.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.83/1.05  apply (zenon_L281_); trivial.
% 0.83/1.05  apply (zenon_L331_); trivial.
% 0.83/1.05  apply (zenon_L314_); trivial.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.05  apply (zenon_L260_); trivial.
% 0.83/1.05  apply (zenon_L278_); trivial.
% 0.83/1.05  apply (zenon_L76_); trivial.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.83/1.05  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.83/1.05  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.83/1.05  apply (zenon_L265_); trivial.
% 0.83/1.05  apply (zenon_L76_); trivial.
% 0.83/1.05  apply (zenon_L314_); trivial.
% 0.83/1.05  apply (zenon_L190_); trivial.
% 0.83/1.05  (* end of lemma zenon_L332_ *)
% 0.83/1.05  assert (zenon_L333_ : ((ndr1_0)/\((c1_1 (a214))/\((~(c2_1 (a214)))/\(~(c3_1 (a214)))))) -> ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38))))))\/((hskp1)\/(hskp14))) -> (~(hskp1)) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp8)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(hskp0)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H263 zenon_H19c zenon_H4f zenon_Hd9 zenon_H229 zenon_Hab zenon_H183 zenon_Hff zenon_H136 zenon_H12 zenon_H69 zenon_H65 zenon_H18 zenon_H54 zenon_H275 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H181 zenon_H251 zenon_H101 zenon_H289 zenon_H231 zenon_H230 zenon_H22f zenon_H1db zenon_H1dc zenon_H1dd zenon_H1e4 zenon_H129.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.06  apply (zenon_L245_); trivial.
% 0.83/1.06  apply (zenon_L314_); trivial.
% 0.83/1.06  apply (zenon_L190_); trivial.
% 0.83/1.06  (* end of lemma zenon_L333_ *)
% 0.83/1.06  assert (zenon_L334_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H12a zenon_H277 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H1e4 zenon_H19f zenon_H19e zenon_H22f zenon_H230 zenon_H231 zenon_H270 zenon_H1dd zenon_H1dc zenon_H1db.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.83/1.06  apply (zenon_L269_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.83/1.06  apply (zenon_L192_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.83/1.06  apply (zenon_L270_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.83/1.06  apply (zenon_L148_); trivial.
% 0.83/1.06  apply (zenon_L66_); trivial.
% 0.83/1.06  (* end of lemma zenon_L334_ *)
% 0.83/1.06  assert (zenon_L335_ : (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (ndr1_0) -> (~(c0_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H109 zenon_H7 zenon_H1c3 zenon_H1c5 zenon_H1cc.
% 0.83/1.06  generalize (zenon_H109 (a205)). zenon_intro zenon_H2aa.
% 0.83/1.06  apply (zenon_imply_s _ _ zenon_H2aa); [ zenon_intro zenon_H6 | zenon_intro zenon_H2ab ].
% 0.83/1.06  exact (zenon_H6 zenon_H7).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2ab); [ zenon_intro zenon_H1c9 | zenon_intro zenon_H1cf ].
% 0.83/1.06  exact (zenon_H1c3 zenon_H1c9).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H1cf); [ zenon_intro zenon_H1ca | zenon_intro zenon_H1d0 ].
% 0.83/1.06  exact (zenon_H1ca zenon_H1c5).
% 0.83/1.06  exact (zenon_H1d0 zenon_H1cc).
% 0.83/1.06  (* end of lemma zenon_L335_ *)
% 0.83/1.06  assert (zenon_L336_ : (forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))) -> (ndr1_0) -> (~(c1_1 (a205))) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H93 zenon_H7 zenon_H1c4 zenon_H109 zenon_H1c5 zenon_H1cc.
% 0.83/1.06  generalize (zenon_H93 (a205)). zenon_intro zenon_H2ac.
% 0.83/1.06  apply (zenon_imply_s _ _ zenon_H2ac); [ zenon_intro zenon_H6 | zenon_intro zenon_H2ad ].
% 0.83/1.06  exact (zenon_H6 zenon_H7).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2ad); [ zenon_intro zenon_H1cb | zenon_intro zenon_H2ae ].
% 0.83/1.06  exact (zenon_H1c4 zenon_H1cb).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2ae); [ zenon_intro zenon_H1c3 | zenon_intro zenon_H1ca ].
% 0.83/1.06  apply (zenon_L335_); trivial.
% 0.83/1.06  exact (zenon_H1ca zenon_H1c5).
% 0.83/1.06  (* end of lemma zenon_L336_ *)
% 0.83/1.06  assert (zenon_L337_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c0_1 (a244))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (ndr1_0) -> (~(c1_1 (a205))) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hf6 zenon_H7f zenon_H81 zenon_H80 zenon_Hb6 zenon_H7 zenon_H1c4 zenon_H109 zenon_H1c5 zenon_H1cc.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.83/1.06  apply (zenon_L37_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.83/1.06  apply (zenon_L58_); trivial.
% 0.83/1.06  apply (zenon_L336_); trivial.
% 0.83/1.06  (* end of lemma zenon_L337_ *)
% 0.83/1.06  assert (zenon_L338_ : ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (ndr1_0) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> (~(c0_1 (a244))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> (~(hskp30)) -> (~(hskp23)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(hskp28)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H28e zenon_H18f zenon_H18e zenon_H18d zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H7 zenon_H80 zenon_H81 zenon_H7f zenon_Hf6 zenon_H240 zenon_H241 zenon_H242 zenon_H1e8 zenon_H2a zenon_H1e6 zenon_H1b9 zenon_H1db zenon_H1dc zenon_H1dd zenon_H1e4 zenon_H27c.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.83/1.06  apply (zenon_L113_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.83/1.06  apply (zenon_L236_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.83/1.06  apply (zenon_L148_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H1b9); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1ba ].
% 0.83/1.06  apply (zenon_L236_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H1ba); [ zenon_intro zenon_H30 | zenon_intro zenon_Hb6 ].
% 0.83/1.06  apply (zenon_L204_); trivial.
% 0.83/1.06  apply (zenon_L337_); trivial.
% 0.83/1.06  exact (zenon_H27c zenon_H27d).
% 0.83/1.06  (* end of lemma zenon_L338_ *)
% 0.83/1.06  assert (zenon_L339_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp30)\/(hskp23))) -> (c3_1 (a205)) -> (~(c1_1 (a205))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c2_1 (a205)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp17)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp23))\/((ndr1_0)/\((~(c0_1 (a248)))/\((~(c2_1 (a248)))/\(~(c3_1 (a248))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H100 zenon_H162 zenon_H176 zenon_H270 zenon_H60 zenon_H1a9 zenon_H231 zenon_H230 zenon_H22f zenon_H165 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H28d zenon_H28e zenon_H1e8 zenon_H1cc zenon_H1c4 zenon_H1db zenon_H1dc zenon_H1dd zenon_H1b9 zenon_H1c5 zenon_Hf6 zenon_H242 zenon_H241 zenon_H240 zenon_H1e4 zenon_H18f zenon_H18e zenon_H18d zenon_H289 zenon_H14e zenon_H65 zenon_H62 zenon_H275 zenon_H261 zenon_H4c zenon_H202 zenon_Hfb.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.06  apply (zenon_L253_); trivial.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H202); [ zenon_intro zenon_H1e6 | zenon_intro zenon_H1fd ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H4c); [ zenon_intro zenon_H2a | zenon_intro zenon_H46 ].
% 0.83/1.06  apply (zenon_L338_); trivial.
% 0.83/1.06  apply (zenon_L275_); trivial.
% 0.83/1.06  apply (zenon_L259_); trivial.
% 0.83/1.06  apply (zenon_L277_); trivial.
% 0.83/1.06  apply (zenon_L280_); trivial.
% 0.83/1.06  (* end of lemma zenon_L339_ *)
% 0.83/1.06  assert (zenon_L340_ : (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (ndr1_0) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H1c2 zenon_H7 zenon_H2af zenon_H2b0 zenon_H2b1.
% 0.83/1.06  generalize (zenon_H1c2 (a201)). zenon_intro zenon_H2b2.
% 0.83/1.06  apply (zenon_imply_s _ _ zenon_H2b2); [ zenon_intro zenon_H6 | zenon_intro zenon_H2b3 ].
% 0.83/1.06  exact (zenon_H6 zenon_H7).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2b3); [ zenon_intro zenon_H2b5 | zenon_intro zenon_H2b4 ].
% 0.83/1.06  exact (zenon_H2af zenon_H2b5).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2b4); [ zenon_intro zenon_H2b7 | zenon_intro zenon_H2b6 ].
% 0.83/1.06  exact (zenon_H2b0 zenon_H2b7).
% 0.83/1.06  exact (zenon_H2b6 zenon_H2b1).
% 0.83/1.06  (* end of lemma zenon_L340_ *)
% 0.83/1.06  assert (zenon_L341_ : (~(hskp7)) -> (hskp7) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H2b8 zenon_H2b9.
% 0.83/1.06  exact (zenon_H2b8 zenon_H2b9).
% 0.83/1.06  (* end of lemma zenon_L341_ *)
% 0.83/1.06  assert (zenon_L342_ : (forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))) -> (ndr1_0) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H24e zenon_H7 zenon_H2ba zenon_H2bb zenon_H2bc.
% 0.83/1.06  generalize (zenon_H24e (a209)). zenon_intro zenon_H2bd.
% 0.83/1.06  apply (zenon_imply_s _ _ zenon_H2bd); [ zenon_intro zenon_H6 | zenon_intro zenon_H2be ].
% 0.83/1.06  exact (zenon_H6 zenon_H7).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2be); [ zenon_intro zenon_H2c0 | zenon_intro zenon_H2bf ].
% 0.83/1.06  exact (zenon_H2ba zenon_H2c0).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2bf); [ zenon_intro zenon_H2c2 | zenon_intro zenon_H2c1 ].
% 0.83/1.06  exact (zenon_H2c2 zenon_H2bb).
% 0.83/1.06  exact (zenon_H2c1 zenon_H2bc).
% 0.83/1.06  (* end of lemma zenon_L342_ *)
% 0.83/1.06  assert (zenon_L343_ : ((ndr1_0)/\((~(c0_1 (a213)))/\((~(c1_1 (a213)))/\(~(c2_1 (a213)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H1be zenon_H2c3 zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H2ba zenon_H2bb zenon_H2bc.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2c3); [ zenon_intro zenon_H8 | zenon_intro zenon_H2c4 ].
% 0.83/1.06  apply (zenon_L5_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2c4); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H24e ].
% 0.83/1.06  apply (zenon_L340_); trivial.
% 0.83/1.06  apply (zenon_L342_); trivial.
% 0.83/1.06  (* end of lemma zenon_L343_ *)
% 0.83/1.06  assert (zenon_L344_ : ((~(hskp7))\/((ndr1_0)/\((c0_1 (a209))/\((c1_1 (a209))/\(~(c3_1 (a209))))))) -> ((~(hskp9))\/((ndr1_0)/\((~(c0_1 (a213)))/\((~(c1_1 (a213)))/\(~(c2_1 (a213))))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((hskp6)\/(hskp9)) -> (ndr1_0) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> (~(hskp6)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H2c5 zenon_H1c1 zenon_H2c3 zenon_H5 zenon_H7 zenon_H2af zenon_H2b0 zenon_H2b1 zenon_H1 zenon_H2c6.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2c5); [ zenon_intro zenon_H2b8 | zenon_intro zenon_H2c7 ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2c6); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H2c8 ].
% 0.83/1.06  apply (zenon_L340_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2c8); [ zenon_intro zenon_H2 | zenon_intro zenon_H2b9 ].
% 0.83/1.06  exact (zenon_H1 zenon_H2).
% 0.83/1.06  exact (zenon_H2b8 zenon_H2b9).
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H2c7). zenon_intro zenon_H7. zenon_intro zenon_H2c9.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H2c9). zenon_intro zenon_H2bb. zenon_intro zenon_H2ca.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H2ca). zenon_intro zenon_H2bc. zenon_intro zenon_H2ba.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.83/1.06  apply (zenon_L3_); trivial.
% 0.83/1.06  apply (zenon_L343_); trivial.
% 0.83/1.06  (* end of lemma zenon_L344_ *)
% 0.83/1.06  assert (zenon_L345_ : ((ndr1_0)/\((c0_1 (a208))/\((c1_1 (a208))/\(~(c2_1 (a208)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(hskp3))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> (~(hskp3)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H1d1 zenon_H1d2 zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H44.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H1d2); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H1d5 ].
% 0.83/1.06  apply (zenon_L340_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H1d5); [ zenon_intro zenon_H30 | zenon_intro zenon_H45 ].
% 0.83/1.06  apply (zenon_L17_); trivial.
% 0.83/1.06  exact (zenon_H44 zenon_H45).
% 0.83/1.06  (* end of lemma zenon_L345_ *)
% 0.83/1.06  assert (zenon_L346_ : ((~(hskp6))\/((ndr1_0)/\((c0_1 (a208))/\((c1_1 (a208))/\(~(c2_1 (a208))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(hskp3))) -> (~(hskp3)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> (ndr1_0) -> ((hskp6)\/(hskp9)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp9))\/((ndr1_0)/\((~(c0_1 (a213)))/\((~(c1_1 (a213)))/\(~(c2_1 (a213))))))) -> ((~(hskp7))\/((ndr1_0)/\((c0_1 (a209))/\((c1_1 (a209))/\(~(c3_1 (a209))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H1d6 zenon_H1d2 zenon_H44 zenon_H2c6 zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H7 zenon_H5 zenon_H2c3 zenon_H1c1 zenon_H2c5.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.83/1.06  apply (zenon_L344_); trivial.
% 0.83/1.06  apply (zenon_L345_); trivial.
% 0.83/1.06  (* end of lemma zenon_L346_ *)
% 0.83/1.06  assert (zenon_L347_ : ((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H15f zenon_H277 zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H231 zenon_H230 zenon_H22f.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.83/1.06  apply (zenon_L340_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.83/1.06  apply (zenon_L192_); trivial.
% 0.83/1.06  apply (zenon_L89_); trivial.
% 0.83/1.06  (* end of lemma zenon_L347_ *)
% 0.83/1.06  assert (zenon_L348_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> (~(hskp4)) -> (~(hskp18)) -> ((hskp24)\/((hskp4)\/(hskp18))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H162 zenon_H277 zenon_H231 zenon_H230 zenon_H22f zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H13a zenon_H1c zenon_H13c.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.83/1.06  apply (zenon_L83_); trivial.
% 0.83/1.06  apply (zenon_L347_); trivial.
% 0.83/1.06  (* end of lemma zenon_L348_ *)
% 0.83/1.06  assert (zenon_L349_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(hskp4)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hd1 zenon_H23c zenon_H31 zenon_H32 zenon_H33 zenon_H2af zenon_H2b0 zenon_H2b1 zenon_Ha5 zenon_H231 zenon_H230 zenon_H22f zenon_H13a.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H23c); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H23d ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Ha5); [ zenon_intro zenon_H92 | zenon_intro zenon_Ha6 ].
% 0.83/1.06  generalize (zenon_H92 (a201)). zenon_intro zenon_H2cb.
% 0.83/1.06  apply (zenon_imply_s _ _ zenon_H2cb); [ zenon_intro zenon_H6 | zenon_intro zenon_H2cc ].
% 0.83/1.06  exact (zenon_H6 zenon_H7).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2cc); [ zenon_intro zenon_H2b5 | zenon_intro zenon_H2cd ].
% 0.83/1.06  exact (zenon_H2af zenon_H2b5).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2cd); [ zenon_intro zenon_H2ce | zenon_intro zenon_H2b6 ].
% 0.83/1.06  generalize (zenon_H1b0 (a201)). zenon_intro zenon_H2cf.
% 0.83/1.06  apply (zenon_imply_s _ _ zenon_H2cf); [ zenon_intro zenon_H6 | zenon_intro zenon_H2d0 ].
% 0.83/1.06  exact (zenon_H6 zenon_H7).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2d0); [ zenon_intro zenon_H2b5 | zenon_intro zenon_H2d1 ].
% 0.83/1.06  exact (zenon_H2af zenon_H2b5).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2d1); [ zenon_intro zenon_H2b7 | zenon_intro zenon_H2d2 ].
% 0.83/1.06  exact (zenon_H2b0 zenon_H2b7).
% 0.83/1.06  exact (zenon_H2d2 zenon_H2ce).
% 0.83/1.06  exact (zenon_H2b6 zenon_H2b1).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Ha6); [ zenon_intro zenon_H30 | zenon_intro zenon_H9b ].
% 0.83/1.06  apply (zenon_L17_); trivial.
% 0.83/1.06  apply (zenon_L40_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H23d); [ zenon_intro zenon_H22e | zenon_intro zenon_H13b ].
% 0.83/1.06  apply (zenon_L192_); trivial.
% 0.83/1.06  exact (zenon_H13a zenon_H13b).
% 0.83/1.06  (* end of lemma zenon_L349_ *)
% 0.83/1.06  assert (zenon_L350_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp4)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H4b zenon_Hd9 zenon_H23c zenon_H13a zenon_H231 zenon_H230 zenon_H22f zenon_H2af zenon_H2b0 zenon_H2b1 zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hab.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.06  apply (zenon_L45_); trivial.
% 0.83/1.06  apply (zenon_L349_); trivial.
% 0.83/1.06  (* end of lemma zenon_L350_ *)
% 0.83/1.06  assert (zenon_L351_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> (~(hskp0)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hdc zenon_H2d3 zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H181.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2d3); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H2d4 ].
% 0.83/1.06  apply (zenon_L340_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2d4); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H182 ].
% 0.83/1.06  apply (zenon_L47_); trivial.
% 0.83/1.06  exact (zenon_H181 zenon_H182).
% 0.83/1.06  (* end of lemma zenon_L351_ *)
% 0.83/1.06  assert (zenon_L352_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> (~(hskp0)) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> (~(hskp14)) -> (~(hskp8)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> (~(hskp10)) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c0_1 (a203))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H100 zenon_H2d3 zenon_H181 zenon_H2b1 zenon_H2b0 zenon_H2af zenon_He0 zenon_H60 zenon_H18 zenon_H268 zenon_H238 zenon_H230 zenon_H231 zenon_H7c zenon_H22f zenon_H23a zenon_Hd9 zenon_Hfb.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.06  apply (zenon_L232_); trivial.
% 0.83/1.06  apply (zenon_L351_); trivial.
% 0.83/1.06  (* end of lemma zenon_L352_ *)
% 0.83/1.06  assert (zenon_L353_ : ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> (~(hskp0)) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> (~(hskp8)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> (~(hskp10)) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c0_1 (a203))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H19c zenon_H4f zenon_Hab zenon_H183 zenon_H100 zenon_H2d3 zenon_H181 zenon_H2b1 zenon_H2b0 zenon_H2af zenon_He0 zenon_H18 zenon_H268 zenon_H238 zenon_H230 zenon_H231 zenon_H7c zenon_H22f zenon_H23a zenon_Hd9 zenon_Hfb zenon_H289 zenon_H1db zenon_H1dc zenon_H1dd zenon_H1e4 zenon_H129.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.06  apply (zenon_L352_); trivial.
% 0.83/1.06  apply (zenon_L314_); trivial.
% 0.83/1.06  apply (zenon_L272_); trivial.
% 0.83/1.06  (* end of lemma zenon_L353_ *)
% 0.83/1.06  assert (zenon_L354_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c0_1 (a244))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> (~(c1_1 (a231))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (ndr1_0) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hf6 zenon_H7f zenon_H81 zenon_H80 zenon_Hb6 zenon_Ha5 zenon_H6c zenon_H6d zenon_H6b zenon_H33 zenon_H32 zenon_H31 zenon_H7 zenon_H9c zenon_H9d zenon_H9e.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.83/1.06  apply (zenon_L37_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.83/1.06  apply (zenon_L58_); trivial.
% 0.83/1.06  apply (zenon_L41_); trivial.
% 0.83/1.06  (* end of lemma zenon_L354_ *)
% 0.83/1.06  assert (zenon_L355_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> (~(c1_1 (a231))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> (~(c0_1 (a244))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(hskp0)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hd1 zenon_H2d3 zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H31 zenon_H32 zenon_H33 zenon_H6b zenon_H6d zenon_H6c zenon_Ha5 zenon_H80 zenon_H81 zenon_H7f zenon_Hf6 zenon_H181.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2d3); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H2d4 ].
% 0.83/1.06  apply (zenon_L340_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2d4); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H182 ].
% 0.83/1.06  apply (zenon_L354_); trivial.
% 0.83/1.06  exact (zenon_H181 zenon_H182).
% 0.83/1.06  (* end of lemma zenon_L355_ *)
% 0.83/1.06  assert (zenon_L356_ : ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> (~(hskp0)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> (~(c1_1 (a231))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> (~(hskp19)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp15)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp8)) -> (~(hskp14)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hfb zenon_H69 zenon_Hd9 zenon_H2d3 zenon_H181 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_H6c zenon_H6d zenon_H6b zenon_Hf6 zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H7a zenon_H7c zenon_H50 zenon_H54 zenon_H18 zenon_H60 zenon_He0.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.06  apply (zenon_L56_); trivial.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H69); [ zenon_intro zenon_H52 | zenon_intro zenon_H64 ].
% 0.83/1.06  apply (zenon_L25_); trivial.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H64). zenon_intro zenon_H7. zenon_intro zenon_H66.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H66). zenon_intro zenon_H58. zenon_intro zenon_H67.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H67). zenon_intro zenon_H59. zenon_intro zenon_H57.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.06  apply (zenon_L36_); trivial.
% 0.83/1.06  apply (zenon_L355_); trivial.
% 0.83/1.06  (* end of lemma zenon_L356_ *)
% 0.83/1.06  assert (zenon_L357_ : ((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> (~(hskp14)) -> (~(hskp8)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp15)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp0)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H103 zenon_H100 zenon_He0 zenon_H60 zenon_H18 zenon_H54 zenon_H50 zenon_H7c zenon_H2af zenon_H2b0 zenon_H2b1 zenon_Hf6 zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_H181 zenon_H2d3 zenon_Hd9 zenon_H69 zenon_Hfb.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.06  apply (zenon_L356_); trivial.
% 0.83/1.06  apply (zenon_L351_); trivial.
% 0.83/1.06  (* end of lemma zenon_L357_ *)
% 0.83/1.06  assert (zenon_L358_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c0_1 (a244))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (ndr1_0) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hf6 zenon_H7f zenon_H81 zenon_H80 zenon_Hb6 zenon_H7 zenon_Hed zenon_Hee zenon_Hef.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.83/1.06  apply (zenon_L37_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.83/1.06  apply (zenon_L58_); trivial.
% 0.83/1.06  apply (zenon_L60_); trivial.
% 0.83/1.06  (* end of lemma zenon_L358_ *)
% 0.83/1.06  assert (zenon_L359_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(hskp0)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hf8 zenon_H2d3 zenon_H2b1 zenon_H2b0 zenon_H2af zenon_Hef zenon_Hee zenon_Hed zenon_Hf6 zenon_H181.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2d3); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H2d4 ].
% 0.83/1.06  apply (zenon_L340_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2d4); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H182 ].
% 0.83/1.06  apply (zenon_L358_); trivial.
% 0.83/1.06  exact (zenon_H181 zenon_H182).
% 0.83/1.06  (* end of lemma zenon_L359_ *)
% 0.83/1.06  assert (zenon_L360_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> (~(hskp0)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> (~(hskp8)) -> (~(hskp14)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hfc zenon_Hfb zenon_H2d3 zenon_H181 zenon_Hf6 zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H18 zenon_H60 zenon_He0.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.06  apply (zenon_L56_); trivial.
% 0.83/1.06  apply (zenon_L359_); trivial.
% 0.83/1.06  (* end of lemma zenon_L360_ *)
% 0.83/1.06  assert (zenon_L361_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp12)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp8)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(hskp0)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H189 zenon_H129 zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H22f zenon_H230 zenon_H231 zenon_H14e zenon_H289 zenon_H101 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_Ha9 zenon_H54 zenon_H18 zenon_H65 zenon_H69 zenon_He0 zenon_H2af zenon_H2b0 zenon_H2b1 zenon_Hf6 zenon_H181 zenon_H2d3 zenon_Hfb zenon_Hff.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.06  apply (zenon_L78_); trivial.
% 0.83/1.06  apply (zenon_L360_); trivial.
% 0.83/1.06  apply (zenon_L314_); trivial.
% 0.83/1.06  (* end of lemma zenon_L361_ *)
% 0.83/1.06  assert (zenon_L362_ : ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp0)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((hskp8)\/((hskp13)\/(hskp18))) -> (~(hskp8)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H19c zenon_H229 zenon_Hab zenon_H183 zenon_H129 zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H289 zenon_H102 zenon_H100 zenon_He0 zenon_H54 zenon_H7c zenon_H2af zenon_H2b0 zenon_H2b1 zenon_Hf6 zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_H181 zenon_H2d3 zenon_Hd9 zenon_H69 zenon_Hfb zenon_H1e zenon_H18 zenon_H2e zenon_H22f zenon_H230 zenon_H231 zenon_H121 zenon_H23e zenon_H4c zenon_H4f zenon_Hff zenon_H65 zenon_Ha9 zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H101 zenon_H186.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.83/1.06  apply (zenon_L203_); trivial.
% 0.83/1.06  apply (zenon_L357_); trivial.
% 0.83/1.06  apply (zenon_L360_); trivial.
% 0.83/1.06  apply (zenon_L314_); trivial.
% 0.83/1.06  apply (zenon_L361_); trivial.
% 0.83/1.06  apply (zenon_L190_); trivial.
% 0.83/1.06  (* end of lemma zenon_L362_ *)
% 0.83/1.06  assert (zenon_L363_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (ndr1_0) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (c2_1 (a230)) -> (c3_1 (a230)) -> (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(hskp12)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H289 zenon_H231 zenon_H230 zenon_H22f zenon_H240 zenon_H242 zenon_H241 zenon_H7 zenon_H1f3 zenon_H3c zenon_H3d zenon_Hb6 zenon_H80 zenon_H81 zenon_H275 zenon_H14e.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H289); [ zenon_intro zenon_H22e | zenon_intro zenon_H28c ].
% 0.83/1.06  apply (zenon_L192_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H28c); [ zenon_intro zenon_H27e | zenon_intro zenon_H14f ].
% 0.83/1.06  apply (zenon_L274_); trivial.
% 0.83/1.06  exact (zenon_H14e zenon_H14f).
% 0.83/1.06  (* end of lemma zenon_L363_ *)
% 0.83/1.06  assert (zenon_L364_ : ((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(hskp0)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(hskp12)) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> (~(hskp28)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H46 zenon_H28e zenon_H18f zenon_H18e zenon_H18d zenon_H181 zenon_H289 zenon_H231 zenon_H230 zenon_H22f zenon_H240 zenon_H242 zenon_H241 zenon_H80 zenon_H81 zenon_H275 zenon_H14e zenon_H2af zenon_H2b0 zenon_H2b1 zenon_H2d3 zenon_H27c.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H46). zenon_intro zenon_H7. zenon_intro zenon_H48.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H48). zenon_intro zenon_H3b. zenon_intro zenon_H49.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H49). zenon_intro zenon_H3c. zenon_intro zenon_H3d.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.83/1.06  apply (zenon_L113_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2d3); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H2d4 ].
% 0.83/1.06  apply (zenon_L340_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2d4); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H182 ].
% 0.83/1.06  apply (zenon_L363_); trivial.
% 0.83/1.06  exact (zenon_H181 zenon_H182).
% 0.83/1.06  exact (zenon_H27c zenon_H27d).
% 0.83/1.06  (* end of lemma zenon_L364_ *)
% 0.83/1.06  assert (zenon_L365_ : ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(hskp28)) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(hskp0)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (ndr1_0) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H4c zenon_H28e zenon_H27c zenon_H2af zenon_H2b0 zenon_H2b1 zenon_H289 zenon_H14e zenon_H80 zenon_H81 zenon_H241 zenon_H242 zenon_H240 zenon_H275 zenon_H231 zenon_H230 zenon_H22f zenon_H181 zenon_H2d3 zenon_H18f zenon_H18e zenon_H18d zenon_H7 zenon_H21 zenon_H22 zenon_H23 zenon_H2c zenon_H2e.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H4c); [ zenon_intro zenon_H2a | zenon_intro zenon_H46 ].
% 0.83/1.06  apply (zenon_L16_); trivial.
% 0.83/1.06  apply (zenon_L364_); trivial.
% 0.83/1.06  (* end of lemma zenon_L365_ *)
% 0.83/1.06  assert (zenon_L366_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp22)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H162 zenon_H277 zenon_H231 zenon_H230 zenon_H22f zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H74 zenon_H205.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.83/1.06  apply (zenon_L159_); trivial.
% 0.83/1.06  apply (zenon_L347_); trivial.
% 0.83/1.06  (* end of lemma zenon_L366_ *)
% 0.83/1.06  assert (zenon_L367_ : ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp19)) -> (~(hskp10)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hfb zenon_Hd9 zenon_H23a zenon_H7c zenon_H7a zenon_H238 zenon_H268 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H2af zenon_H2b0 zenon_H2b1 zenon_H22f zenon_H230 zenon_H231 zenon_H277 zenon_H162.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.06  apply (zenon_L366_); trivial.
% 0.83/1.06  apply (zenon_L231_); trivial.
% 0.83/1.06  (* end of lemma zenon_L367_ *)
% 0.83/1.06  assert (zenon_L368_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> (~(hskp0)) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H100 zenon_H2d3 zenon_H181 zenon_H162 zenon_H277 zenon_H231 zenon_H230 zenon_H22f zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H268 zenon_H238 zenon_H7c zenon_H23a zenon_Hd9 zenon_Hfb.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.06  apply (zenon_L367_); trivial.
% 0.83/1.06  apply (zenon_L351_); trivial.
% 0.83/1.06  (* end of lemma zenon_L368_ *)
% 0.83/1.06  assert (zenon_L369_ : ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (ndr1_0) -> (~(hskp11)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H277 zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H23e zenon_H231 zenon_H230 zenon_H22f zenon_H19f zenon_H19e zenon_H7 zenon_H121.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.83/1.06  apply (zenon_L340_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.83/1.06  apply (zenon_L192_); trivial.
% 0.83/1.06  apply (zenon_L248_); trivial.
% 0.83/1.06  (* end of lemma zenon_L369_ *)
% 0.83/1.06  assert (zenon_L370_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))) -> (~(c1_1 (a212))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H275 zenon_H81 zenon_H80 zenon_Hb6 zenon_H19f zenon_H19e zenon_H152 zenon_H1ab zenon_H1f3 zenon_H7 zenon_H241 zenon_H242 zenon_H240.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.83/1.06  apply (zenon_L58_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.83/1.06  apply (zenon_L293_); trivial.
% 0.83/1.06  apply (zenon_L209_); trivial.
% 0.83/1.06  (* end of lemma zenon_L370_ *)
% 0.83/1.06  assert (zenon_L371_ : ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(hskp0)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(hskp28)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H28e zenon_H18f zenon_H18e zenon_H18d zenon_H181 zenon_H275 zenon_H81 zenon_H80 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H241 zenon_H242 zenon_H240 zenon_H2af zenon_H2b0 zenon_H2b1 zenon_H2d3 zenon_H22f zenon_H230 zenon_H231 zenon_H277 zenon_H27c.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.83/1.06  apply (zenon_L113_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.83/1.06  apply (zenon_L340_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.83/1.06  apply (zenon_L192_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2d3); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H2d4 ].
% 0.83/1.06  apply (zenon_L340_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2d4); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H182 ].
% 0.83/1.06  apply (zenon_L370_); trivial.
% 0.83/1.06  exact (zenon_H181 zenon_H182).
% 0.83/1.06  exact (zenon_H27c zenon_H27d).
% 0.83/1.06  (* end of lemma zenon_L371_ *)
% 0.83/1.06  assert (zenon_L372_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(hskp0)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hf8 zenon_H28d zenon_H289 zenon_H14e zenon_H18d zenon_H18e zenon_H18f zenon_H277 zenon_H275 zenon_H240 zenon_H242 zenon_H241 zenon_H19f zenon_H19e zenon_H1ab zenon_H181 zenon_H2d3 zenon_H231 zenon_H230 zenon_H22f zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H28e.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.83/1.06  apply (zenon_L371_); trivial.
% 0.83/1.06  apply (zenon_L259_); trivial.
% 0.83/1.06  (* end of lemma zenon_L372_ *)
% 0.83/1.06  assert (zenon_L373_ : ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(hskp0)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hfb zenon_H28d zenon_H289 zenon_H14e zenon_H18d zenon_H18e zenon_H18f zenon_H275 zenon_H240 zenon_H242 zenon_H241 zenon_H181 zenon_H2d3 zenon_H28e zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H2af zenon_H2b0 zenon_H2b1 zenon_H22f zenon_H230 zenon_H231 zenon_H277 zenon_H162.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.06  apply (zenon_L366_); trivial.
% 0.83/1.06  apply (zenon_L372_); trivial.
% 0.83/1.06  (* end of lemma zenon_L373_ *)
% 0.83/1.06  assert (zenon_L374_ : ((ndr1_0)/\((c0_1 (a212))/\((c3_1 (a212))/\(~(c1_1 (a212)))))) -> ((~(hskp10))\/((ndr1_0)/\((c1_1 (a214))/\((~(c2_1 (a214)))/\(~(c3_1 (a214))))))) -> ((~(hskp11))\/((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216))))))) -> ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> (~(hskp0)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H2d5 zenon_H262 zenon_H19b zenon_H19c zenon_H4f zenon_H229 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hab zenon_H183 zenon_H28e zenon_H275 zenon_H289 zenon_H28d zenon_H23e zenon_Hfb zenon_Hd9 zenon_H23a zenon_H7c zenon_H268 zenon_H205 zenon_H2af zenon_H2b0 zenon_H2b1 zenon_H22f zenon_H230 zenon_H231 zenon_H277 zenon_H162 zenon_H181 zenon_H2d3 zenon_H100.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.83/1.06  apply (zenon_L368_); trivial.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.83/1.06  apply (zenon_L369_); trivial.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.83/1.06  apply (zenon_L373_); trivial.
% 0.83/1.06  apply (zenon_L190_); trivial.
% 0.83/1.06  (* end of lemma zenon_L374_ *)
% 0.83/1.06  assert (zenon_L375_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a198)) -> (c1_1 (a198)) -> (c0_1 (a198)) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> (~(c0_1 (a244))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (ndr1_0) -> (~(hskp29)) -> (~(hskp15)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hf6 zenon_H9e zenon_H9d zenon_H9c zenon_H80 zenon_H81 zenon_H7f zenon_Heb zenon_H115 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H7 zenon_H113 zenon_H50.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.83/1.06  apply (zenon_L37_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.83/1.06  apply (zenon_L59_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H115); [ zenon_intro zenon_H109 | zenon_intro zenon_H116 ].
% 0.83/1.06  apply (zenon_L336_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H116); [ zenon_intro zenon_H114 | zenon_intro zenon_H51 ].
% 0.83/1.06  exact (zenon_H113 zenon_H114).
% 0.83/1.06  exact (zenon_H50 zenon_H51).
% 0.83/1.06  (* end of lemma zenon_L375_ *)
% 0.83/1.06  assert (zenon_L376_ : ((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281)))))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (~(c2_1 (a238))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H64 zenon_H261 zenon_H242 zenon_H241 zenon_H240 zenon_Hb9 zenon_Hb8 zenon_Hb7.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H64). zenon_intro zenon_H7. zenon_intro zenon_H66.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H66). zenon_intro zenon_H58. zenon_intro zenon_H67.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H67). zenon_intro zenon_H59. zenon_intro zenon_H57.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H261); [ zenon_intro zenon_H255 | zenon_intro zenon_Hd7 ].
% 0.83/1.06  apply (zenon_L213_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hd7); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H56 ].
% 0.83/1.06  apply (zenon_L47_); trivial.
% 0.83/1.06  apply (zenon_L26_); trivial.
% 0.83/1.06  (* end of lemma zenon_L376_ *)
% 0.83/1.06  assert (zenon_L377_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (~(hskp15)) -> (~(hskp8)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hdc zenon_H69 zenon_H261 zenon_H242 zenon_H241 zenon_H240 zenon_H50 zenon_H18 zenon_H54.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H69); [ zenon_intro zenon_H52 | zenon_intro zenon_H64 ].
% 0.83/1.06  apply (zenon_L25_); trivial.
% 0.83/1.06  apply (zenon_L376_); trivial.
% 0.83/1.06  (* end of lemma zenon_L377_ *)
% 0.83/1.06  assert (zenon_L378_ : ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> (~(hskp0)) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z))))))\/((hskp8)\/(hskp11))) -> (~(hskp11)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp8)) -> (~(hskp14)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hff zenon_H2d3 zenon_H181 zenon_H2b1 zenon_H2b0 zenon_H2af zenon_Hfb zenon_H69 zenon_Hd9 zenon_H128 zenon_H124 zenon_H121 zenon_Heb zenon_H115 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_Hf6 zenon_H7c zenon_H54 zenon_H18 zenon_H60 zenon_He0 zenon_H240 zenon_H241 zenon_H242 zenon_H261 zenon_H100.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.06  apply (zenon_L56_); trivial.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H69); [ zenon_intro zenon_H52 | zenon_intro zenon_H64 ].
% 0.83/1.06  apply (zenon_L25_); trivial.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H64). zenon_intro zenon_H7. zenon_intro zenon_H66.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H66). zenon_intro zenon_H58. zenon_intro zenon_H67.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H67). zenon_intro zenon_H59. zenon_intro zenon_H57.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.06  apply (zenon_L36_); trivial.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H128); [ zenon_intro zenon_H113 | zenon_intro zenon_H123 ].
% 0.83/1.06  apply (zenon_L375_); trivial.
% 0.83/1.06  apply (zenon_L71_); trivial.
% 0.83/1.06  apply (zenon_L377_); trivial.
% 0.83/1.06  apply (zenon_L360_); trivial.
% 0.83/1.06  (* end of lemma zenon_L378_ *)
% 0.83/1.06  assert (zenon_L379_ : ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> (~(hskp0)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp14)) -> (~(hskp8)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp12)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hff zenon_Hfb zenon_H2d3 zenon_H181 zenon_Hf6 zenon_H2b1 zenon_H2b0 zenon_H2af zenon_He0 zenon_H69 zenon_H65 zenon_H60 zenon_H18 zenon_H54 zenon_H28e zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H241 zenon_H242 zenon_H240 zenon_H275 zenon_H18f zenon_H18e zenon_H18d zenon_H22f zenon_H230 zenon_H231 zenon_H14e zenon_H289 zenon_H28d zenon_H101.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.83/1.06  apply (zenon_L30_); trivial.
% 0.83/1.06  apply (zenon_L283_); trivial.
% 0.83/1.06  apply (zenon_L360_); trivial.
% 0.83/1.06  (* end of lemma zenon_L379_ *)
% 0.83/1.06  assert (zenon_L380_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> (~(hskp0)) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(hskp12)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H100 zenon_H261 zenon_H162 zenon_H176 zenon_H277 zenon_H22f zenon_H230 zenon_H231 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H270 zenon_H165 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H28e zenon_H2af zenon_H2b0 zenon_H2b1 zenon_H2d3 zenon_H181 zenon_H241 zenon_H242 zenon_H240 zenon_H275 zenon_H18f zenon_H18e zenon_H18d zenon_H14e zenon_H289 zenon_H28d zenon_Hfb.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.06  apply (zenon_L303_); trivial.
% 0.83/1.06  apply (zenon_L372_); trivial.
% 0.83/1.06  apply (zenon_L280_); trivial.
% 0.83/1.06  (* end of lemma zenon_L380_ *)
% 0.83/1.06  assert (zenon_L381_ : (forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6)))))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H147 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da.
% 0.83/1.06  generalize (zenon_H147 (a200)). zenon_intro zenon_H2db.
% 0.83/1.06  apply (zenon_imply_s _ _ zenon_H2db); [ zenon_intro zenon_H6 | zenon_intro zenon_H2dc ].
% 0.83/1.06  exact (zenon_H6 zenon_H7).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2dc); [ zenon_intro zenon_H2de | zenon_intro zenon_H2dd ].
% 0.83/1.06  exact (zenon_H2d8 zenon_H2de).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2dd); [ zenon_intro zenon_H2e0 | zenon_intro zenon_H2df ].
% 0.83/1.06  exact (zenon_H2d9 zenon_H2e0).
% 0.83/1.06  exact (zenon_H2df zenon_H2da).
% 0.83/1.06  (* end of lemma zenon_L381_ *)
% 0.83/1.06  assert (zenon_L382_ : ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> (~(hskp19)) -> (~(hskp20)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H7a zenon_H207.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H209); [ zenon_intro zenon_H147 | zenon_intro zenon_H20a ].
% 0.83/1.06  apply (zenon_L381_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H20a); [ zenon_intro zenon_H7b | zenon_intro zenon_H208 ].
% 0.83/1.06  exact (zenon_H7a zenon_H7b).
% 0.83/1.06  exact (zenon_H207 zenon_H208).
% 0.83/1.06  (* end of lemma zenon_L382_ *)
% 0.83/1.06  assert (zenon_L383_ : ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp8)\/(hskp14))) -> (c2_1 (a239)) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (~(c0_1 (a239))) -> (ndr1_0) -> (~(hskp8)) -> (~(hskp14)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H2e1 zenon_H20c zenon_H1c2 zenon_H219 zenon_H7 zenon_H18 zenon_H60.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2e1); [ zenon_intro zenon_H167 | zenon_intro zenon_H2e2 ].
% 0.83/1.06  apply (zenon_L183_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2e2); [ zenon_intro zenon_H19 | zenon_intro zenon_H61 ].
% 0.83/1.06  exact (zenon_H18 zenon_H19).
% 0.83/1.06  exact (zenon_H60 zenon_H61).
% 0.83/1.06  (* end of lemma zenon_L383_ *)
% 0.83/1.06  assert (zenon_L384_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> (~(hskp6)) -> (~(hskp8)) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp8)\/(hskp14))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H228 zenon_H2c6 zenon_H2b8 zenon_H1 zenon_H18 zenon_H60 zenon_H2e1 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.06  apply (zenon_L382_); trivial.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2c6); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H2c8 ].
% 0.83/1.06  apply (zenon_L383_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2c8); [ zenon_intro zenon_H2 | zenon_intro zenon_H2b9 ].
% 0.83/1.06  exact (zenon_H1 zenon_H2).
% 0.83/1.06  exact (zenon_H2b8 zenon_H2b9).
% 0.83/1.06  (* end of lemma zenon_L384_ *)
% 0.83/1.06  assert (zenon_L385_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp6)) -> (~(hskp15)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hdc zenon_H2e3 zenon_H1 zenon_H50.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2e3); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H2e4 ].
% 0.83/1.06  apply (zenon_L47_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2e4); [ zenon_intro zenon_H2 | zenon_intro zenon_H51 ].
% 0.83/1.06  exact (zenon_H1 zenon_H2).
% 0.83/1.06  exact (zenon_H50 zenon_H51).
% 0.83/1.06  (* end of lemma zenon_L385_ *)
% 0.83/1.06  assert (zenon_L386_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp8)\/(hskp14))) -> (~(hskp14)) -> (~(hskp8)) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H100 zenon_H2e3 zenon_H50 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H2e1 zenon_H60 zenon_H18 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_H228.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.06  apply (zenon_L384_); trivial.
% 0.83/1.06  apply (zenon_L385_); trivial.
% 0.83/1.06  (* end of lemma zenon_L386_ *)
% 0.83/1.06  assert (zenon_L387_ : ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> (~(hskp13)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> (~(hskp6)) -> (~(hskp8)) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp8)\/(hskp14))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hff zenon_H4f zenon_Hfb zenon_Hd9 zenon_Hf6 zenon_Heb zenon_Hab zenon_He0 zenon_H1a zenon_H1e zenon_H228 zenon_H2c6 zenon_H2b8 zenon_H1 zenon_H18 zenon_H60 zenon_H2e1 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H2e3 zenon_H100.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.06  apply (zenon_L386_); trivial.
% 0.83/1.06  apply (zenon_L64_); trivial.
% 0.83/1.06  (* end of lemma zenon_L387_ *)
% 0.83/1.06  assert (zenon_L388_ : (forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))) -> (ndr1_0) -> (forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9)))))) -> (~(c0_1 (a239))) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H6a zenon_H7 zenon_H22e zenon_H219 zenon_H20b zenon_H20c.
% 0.83/1.06  generalize (zenon_H6a (a239)). zenon_intro zenon_H213.
% 0.83/1.06  apply (zenon_imply_s _ _ zenon_H213); [ zenon_intro zenon_H6 | zenon_intro zenon_H214 ].
% 0.83/1.06  exact (zenon_H6 zenon_H7).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H214); [ zenon_intro zenon_H216 | zenon_intro zenon_H215 ].
% 0.83/1.06  generalize (zenon_H22e (a239)). zenon_intro zenon_H2e5.
% 0.83/1.06  apply (zenon_imply_s _ _ zenon_H2e5); [ zenon_intro zenon_H6 | zenon_intro zenon_H2e6 ].
% 0.83/1.06  exact (zenon_H6 zenon_H7).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2e6); [ zenon_intro zenon_H21c | zenon_intro zenon_H2e7 ].
% 0.83/1.06  exact (zenon_H219 zenon_H21c).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2e7); [ zenon_intro zenon_H210 | zenon_intro zenon_H212 ].
% 0.83/1.06  exact (zenon_H20b zenon_H210).
% 0.83/1.06  exact (zenon_H212 zenon_H216).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H215); [ zenon_intro zenon_H210 | zenon_intro zenon_H211 ].
% 0.83/1.06  exact (zenon_H20b zenon_H210).
% 0.83/1.06  exact (zenon_H211 zenon_H20c).
% 0.83/1.06  (* end of lemma zenon_L388_ *)
% 0.83/1.06  assert (zenon_L389_ : ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9)))))) -> (ndr1_0) -> (~(hskp3)) -> (~(hskp22)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H76 zenon_H20c zenon_H20b zenon_H219 zenon_H22e zenon_H7 zenon_H44 zenon_H74.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H76); [ zenon_intro zenon_H6a | zenon_intro zenon_H77 ].
% 0.83/1.06  apply (zenon_L388_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H77); [ zenon_intro zenon_H45 | zenon_intro zenon_H75 ].
% 0.83/1.06  exact (zenon_H44 zenon_H45).
% 0.83/1.06  exact (zenon_H74 zenon_H75).
% 0.83/1.06  (* end of lemma zenon_L389_ *)
% 0.83/1.06  assert (zenon_L390_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp22)) -> (~(hskp3)) -> (~(c0_1 (a239))) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp10)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hd1 zenon_H23a zenon_H74 zenon_H44 zenon_H219 zenon_H20b zenon_H20c zenon_H76 zenon_H238.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H23a); [ zenon_intro zenon_H22e | zenon_intro zenon_H23b ].
% 0.83/1.06  apply (zenon_L389_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H23b); [ zenon_intro zenon_H9b | zenon_intro zenon_H239 ].
% 0.83/1.06  apply (zenon_L40_); trivial.
% 0.83/1.06  exact (zenon_H238 zenon_H239).
% 0.83/1.06  (* end of lemma zenon_L390_ *)
% 0.83/1.06  assert (zenon_L391_ : ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> (~(c0_1 (a239))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp19)) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (ndr1_0) -> (~(hskp3)) -> (~(hskp22)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hd9 zenon_H23a zenon_H238 zenon_H219 zenon_H7c zenon_H7a zenon_H20c zenon_H20b zenon_H7 zenon_H44 zenon_H74 zenon_H76.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.06  apply (zenon_L180_); trivial.
% 0.83/1.06  apply (zenon_L390_); trivial.
% 0.83/1.06  (* end of lemma zenon_L391_ *)
% 0.83/1.06  assert (zenon_L392_ : ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> (~(hskp27)) -> (~(hskp12)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H150 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H78 zenon_H14e.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H150); [ zenon_intro zenon_H147 | zenon_intro zenon_H151 ].
% 0.83/1.06  apply (zenon_L381_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H151); [ zenon_intro zenon_H79 | zenon_intro zenon_H14f ].
% 0.83/1.06  exact (zenon_H78 zenon_H79).
% 0.83/1.06  exact (zenon_H14e zenon_H14f).
% 0.83/1.06  (* end of lemma zenon_L392_ *)
% 0.83/1.06  assert (zenon_L393_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))) -> (c2_1 (a198)) -> (c1_1 (a198)) -> (c0_1 (a198)) -> (ndr1_0) -> (~(hskp10)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H23a zenon_H20c zenon_H20b zenon_H219 zenon_H6a zenon_H9e zenon_H9d zenon_H9c zenon_H7 zenon_H238.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H23a); [ zenon_intro zenon_H22e | zenon_intro zenon_H23b ].
% 0.83/1.06  apply (zenon_L388_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H23b); [ zenon_intro zenon_H9b | zenon_intro zenon_H239 ].
% 0.83/1.06  apply (zenon_L40_); trivial.
% 0.83/1.06  exact (zenon_H238 zenon_H239).
% 0.83/1.06  (* end of lemma zenon_L393_ *)
% 0.83/1.06  assert (zenon_L394_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16)))))) -> (~(c0_1 (a219))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (c2_1 (a198)) -> (c1_1 (a198)) -> (c0_1 (a198)) -> (ndr1_0) -> (~(hskp10)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H172 zenon_H81 zenon_H80 zenon_H7f zenon_H10b zenon_H10c zenon_H1b0 zenon_H10a zenon_H23a zenon_H20c zenon_H20b zenon_H219 zenon_H9e zenon_H9d zenon_H9c zenon_H7 zenon_H238.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H172); [ zenon_intro zenon_H7e | zenon_intro zenon_H175 ].
% 0.83/1.06  apply (zenon_L37_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H175); [ zenon_intro zenon_H167 | zenon_intro zenon_H6a ].
% 0.83/1.06  apply (zenon_L146_); trivial.
% 0.83/1.06  apply (zenon_L393_); trivial.
% 0.83/1.06  (* end of lemma zenon_L394_ *)
% 0.83/1.06  assert (zenon_L395_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (c2_1 (a256)) -> (c1_1 (a256)) -> (~(c0_1 (a256))) -> (ndr1_0) -> (forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9)))))) -> (~(c0_1 (a239))) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H172 zenon_H81 zenon_H80 zenon_H7f zenon_H16a zenon_H169 zenon_H168 zenon_H7 zenon_H22e zenon_H219 zenon_H20b zenon_H20c.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H172); [ zenon_intro zenon_H7e | zenon_intro zenon_H175 ].
% 0.83/1.06  apply (zenon_L37_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H175); [ zenon_intro zenon_H167 | zenon_intro zenon_H6a ].
% 0.83/1.06  apply (zenon_L98_); trivial.
% 0.83/1.06  apply (zenon_L388_); trivial.
% 0.83/1.06  (* end of lemma zenon_L395_ *)
% 0.83/1.06  assert (zenon_L396_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp10)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> (c2_1 (a219)) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (~(c0_1 (a256))) -> (c1_1 (a256)) -> (c2_1 (a256)) -> (~(c0_1 (a244))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(hskp4)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hd1 zenon_H23c zenon_H238 zenon_H23a zenon_H10a zenon_H10c zenon_H10b zenon_H20c zenon_H20b zenon_H219 zenon_H168 zenon_H169 zenon_H16a zenon_H7f zenon_H80 zenon_H81 zenon_H172 zenon_H13a.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H23c); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H23d ].
% 0.83/1.06  apply (zenon_L394_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H23d); [ zenon_intro zenon_H22e | zenon_intro zenon_H13b ].
% 0.83/1.06  apply (zenon_L395_); trivial.
% 0.83/1.06  exact (zenon_H13a zenon_H13b).
% 0.83/1.06  (* end of lemma zenon_L396_ *)
% 0.83/1.06  assert (zenon_L397_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> (c2_1 (a219)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp4)) -> (~(hskp18)) -> ((hskp24)\/((hskp4)\/(hskp18))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp10)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H228 zenon_Hfb zenon_H162 zenon_H176 zenon_H23c zenon_H10a zenon_H10c zenon_H10b zenon_H172 zenon_H14e zenon_H150 zenon_H165 zenon_H13a zenon_H1c zenon_H13c zenon_H76 zenon_H44 zenon_H7c zenon_H238 zenon_H23a zenon_Hd9 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.06  apply (zenon_L382_); trivial.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.06  apply (zenon_L391_); trivial.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.83/1.06  apply (zenon_L83_); trivial.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.83/1.06  apply (zenon_L97_); trivial.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H171). zenon_intro zenon_H7. zenon_intro zenon_H173.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H173). zenon_intro zenon_H169. zenon_intro zenon_H174.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H174). zenon_intro zenon_H16a. zenon_intro zenon_H168.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.06  apply (zenon_L392_); trivial.
% 0.83/1.06  apply (zenon_L396_); trivial.
% 0.83/1.06  (* end of lemma zenon_L397_ *)
% 0.83/1.06  assert (zenon_L398_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> (~(hskp6)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((hskp24)\/((hskp4)\/(hskp18))) -> (~(hskp18)) -> (~(hskp4)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (~(c0_1 (a219))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H100 zenon_H2e3 zenon_H50 zenon_H1 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_Hd9 zenon_H23a zenon_H238 zenon_H7c zenon_H44 zenon_H76 zenon_H13c zenon_H1c zenon_H13a zenon_H165 zenon_H150 zenon_H14e zenon_H172 zenon_H10b zenon_H10c zenon_H10a zenon_H23c zenon_H176 zenon_H162 zenon_Hfb zenon_H228.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.06  apply (zenon_L397_); trivial.
% 0.83/1.06  apply (zenon_L385_); trivial.
% 0.83/1.06  (* end of lemma zenon_L398_ *)
% 0.83/1.06  assert (zenon_L399_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16)))))) -> (~(c0_1 (a219))) -> (ndr1_0) -> (c0_1 (a230)) -> (c2_1 (a230)) -> (c3_1 (a230)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H172 zenon_H81 zenon_H80 zenon_H7f zenon_H270 zenon_H20c zenon_H20b zenon_H219 zenon_H10b zenon_H10c zenon_H1b0 zenon_H10a zenon_H7 zenon_H3b zenon_H3c zenon_H3d.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H172); [ zenon_intro zenon_H7e | zenon_intro zenon_H175 ].
% 0.83/1.06  apply (zenon_L37_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H175); [ zenon_intro zenon_H167 | zenon_intro zenon_H6a ].
% 0.83/1.06  apply (zenon_L146_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H270); [ zenon_intro zenon_H22e | zenon_intro zenon_H271 ].
% 0.83/1.06  apply (zenon_L388_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H271); [ zenon_intro zenon_H167 | zenon_intro zenon_H3a ].
% 0.83/1.06  apply (zenon_L146_); trivial.
% 0.83/1.06  apply (zenon_L18_); trivial.
% 0.83/1.06  (* end of lemma zenon_L399_ *)
% 0.83/1.06  assert (zenon_L400_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (c2_1 (a219)) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (~(c0_1 (a219))) -> (ndr1_0) -> (forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9)))))) -> (~(c0_1 (a239))) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H172 zenon_H81 zenon_H80 zenon_H7f zenon_H10b zenon_H1c2 zenon_H10a zenon_H7 zenon_H22e zenon_H219 zenon_H20b zenon_H20c.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H172); [ zenon_intro zenon_H7e | zenon_intro zenon_H175 ].
% 0.83/1.06  apply (zenon_L37_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H175); [ zenon_intro zenon_H167 | zenon_intro zenon_H6a ].
% 0.83/1.06  apply (zenon_L175_); trivial.
% 0.83/1.06  apply (zenon_L388_); trivial.
% 0.83/1.06  (* end of lemma zenon_L400_ *)
% 0.83/1.06  assert (zenon_L401_ : ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (c3_1 (a230)) -> (c2_1 (a230)) -> (c0_1 (a230)) -> (c3_1 (a219)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (ndr1_0) -> (~(c0_1 (a219))) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (c2_1 (a219)) -> (~(c0_1 (a244))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(hskp4)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H23c zenon_H3d zenon_H3c zenon_H3b zenon_H10c zenon_H270 zenon_H20c zenon_H20b zenon_H219 zenon_H7 zenon_H10a zenon_H1c2 zenon_H10b zenon_H7f zenon_H80 zenon_H81 zenon_H172 zenon_H13a.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H23c); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H23d ].
% 0.83/1.06  apply (zenon_L399_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H23d); [ zenon_intro zenon_H22e | zenon_intro zenon_H13b ].
% 0.83/1.06  apply (zenon_L400_); trivial.
% 0.83/1.06  exact (zenon_H13a zenon_H13b).
% 0.83/1.06  (* end of lemma zenon_L401_ *)
% 0.83/1.06  assert (zenon_L402_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> (~(hskp6)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (~(c0_1 (a219))) -> (~(hskp4)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp10)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H228 zenon_Hfb zenon_H4c zenon_H2c6 zenon_H2b8 zenon_H1 zenon_H172 zenon_H270 zenon_H10b zenon_H10c zenon_H10a zenon_H13a zenon_H23c zenon_H21 zenon_H22 zenon_H23 zenon_H2c zenon_H2e zenon_H76 zenon_H44 zenon_H7c zenon_H238 zenon_H23a zenon_Hd9 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.06  apply (zenon_L382_); trivial.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.06  apply (zenon_L391_); trivial.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H4c); [ zenon_intro zenon_H2a | zenon_intro zenon_H46 ].
% 0.83/1.06  apply (zenon_L16_); trivial.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H46). zenon_intro zenon_H7. zenon_intro zenon_H48.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H48). zenon_intro zenon_H3b. zenon_intro zenon_H49.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H49). zenon_intro zenon_H3c. zenon_intro zenon_H3d.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2c6); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H2c8 ].
% 0.83/1.06  apply (zenon_L401_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2c8); [ zenon_intro zenon_H2 | zenon_intro zenon_H2b9 ].
% 0.83/1.06  exact (zenon_H1 zenon_H2).
% 0.83/1.06  exact (zenon_H2b8 zenon_H2b9).
% 0.83/1.06  (* end of lemma zenon_L402_ *)
% 0.83/1.06  assert (zenon_L403_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(hskp16)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp4)) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> (c2_1 (a219)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H4b zenon_H100 zenon_H2e3 zenon_H50 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hd9 zenon_H23a zenon_H238 zenon_H7c zenon_H44 zenon_H76 zenon_H2e zenon_H2c zenon_H23c zenon_H13a zenon_H10a zenon_H10c zenon_H10b zenon_H270 zenon_H172 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_H4c zenon_Hfb zenon_H228.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.06  apply (zenon_L402_); trivial.
% 0.83/1.06  apply (zenon_L385_); trivial.
% 0.83/1.06  (* end of lemma zenon_L403_ *)
% 0.83/1.06  assert (zenon_L404_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (c2_1 (a219)) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (~(c0_1 (a219))) -> (ndr1_0) -> (~(c1_1 (a231))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H172 zenon_H81 zenon_H80 zenon_H7f zenon_H10b zenon_H1c2 zenon_H10a zenon_H7 zenon_H6b zenon_H6c zenon_H6d.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H172); [ zenon_intro zenon_H7e | zenon_intro zenon_H175 ].
% 0.83/1.06  apply (zenon_L37_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H175); [ zenon_intro zenon_H167 | zenon_intro zenon_H6a ].
% 0.83/1.06  apply (zenon_L175_); trivial.
% 0.83/1.06  apply (zenon_L31_); trivial.
% 0.83/1.06  (* end of lemma zenon_L404_ *)
% 0.83/1.06  assert (zenon_L405_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> (~(c1_1 (a231))) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(hskp6)) -> (~(hskp7)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Hf8 zenon_H2c6 zenon_H6d zenon_H6c zenon_H6b zenon_H10a zenon_H10b zenon_H172 zenon_H1 zenon_H2b8.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2c6); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H2c8 ].
% 0.83/1.06  apply (zenon_L404_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2c8); [ zenon_intro zenon_H2 | zenon_intro zenon_H2b9 ].
% 0.83/1.06  exact (zenon_H1 zenon_H2).
% 0.83/1.06  exact (zenon_H2b8 zenon_H2b9).
% 0.83/1.06  (* end of lemma zenon_L405_ *)
% 0.83/1.06  assert (zenon_L406_ : ((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> (~(hskp6)) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H103 zenon_Hfb zenon_H2c6 zenon_H2b8 zenon_H1 zenon_H10a zenon_H10b zenon_H172 zenon_H44 zenon_H76.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.06  apply (zenon_L33_); trivial.
% 0.83/1.06  apply (zenon_L405_); trivial.
% 0.83/1.06  (* end of lemma zenon_L406_ *)
% 0.83/1.06  assert (zenon_L407_ : ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> (~(hskp6)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((hskp24)\/((hskp4)\/(hskp18))) -> (~(hskp4)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (~(c0_1 (a219))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H102 zenon_H100 zenon_H2e3 zenon_H50 zenon_H1 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_Hd9 zenon_H23a zenon_H238 zenon_H7c zenon_H44 zenon_H76 zenon_H13c zenon_H13a zenon_H165 zenon_H150 zenon_H14e zenon_H172 zenon_H10b zenon_H10c zenon_H10a zenon_H23c zenon_H176 zenon_H162 zenon_Hfb zenon_H228 zenon_H4c zenon_H2c6 zenon_H2b8 zenon_H270 zenon_H2e zenon_H4f.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.06  apply (zenon_L398_); trivial.
% 0.83/1.06  apply (zenon_L403_); trivial.
% 0.83/1.06  apply (zenon_L406_); trivial.
% 0.83/1.06  (* end of lemma zenon_L407_ *)
% 0.83/1.06  assert (zenon_L408_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp10)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H228 zenon_Hfb zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Heb zenon_H21 zenon_H22 zenon_H23 zenon_Hab zenon_H76 zenon_H44 zenon_H7c zenon_H238 zenon_H23a zenon_Hd9 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.06  apply (zenon_L382_); trivial.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.06  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.06  apply (zenon_L391_); trivial.
% 0.83/1.06  apply (zenon_L62_); trivial.
% 0.83/1.06  (* end of lemma zenon_L408_ *)
% 0.83/1.06  assert (zenon_L409_ : ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a219)) -> (forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16)))))) -> (~(c0_1 (a219))) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (~(c2_1 (a238))) -> (ndr1_0) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_Heb zenon_H10c zenon_H1b0 zenon_H10a zenon_Hb9 zenon_Hb8 zenon_Hb7 zenon_H7 zenon_H9c zenon_H9d zenon_H9e.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Heb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hec ].
% 0.83/1.06  apply (zenon_L129_); trivial.
% 0.83/1.06  apply (zenon_or_s _ _ zenon_Hec); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H9b ].
% 0.83/1.06  apply (zenon_L47_); trivial.
% 0.83/1.06  apply (zenon_L40_); trivial.
% 0.83/1.06  (* end of lemma zenon_L409_ *)
% 0.83/1.06  assert (zenon_L410_ : (forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y)))))) -> (ndr1_0) -> (~(c0_1 (a238))) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H1da zenon_H7 zenon_Hc1 zenon_Hb7 zenon_Hb8.
% 0.83/1.06  generalize (zenon_H1da (a238)). zenon_intro zenon_H2e8.
% 0.83/1.06  apply (zenon_imply_s _ _ zenon_H2e8); [ zenon_intro zenon_H6 | zenon_intro zenon_H2e9 ].
% 0.83/1.06  exact (zenon_H6 zenon_H7).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2e9); [ zenon_intro zenon_Hc4 | zenon_intro zenon_H2ea ].
% 0.83/1.06  exact (zenon_Hc1 zenon_Hc4).
% 0.83/1.06  apply (zenon_or_s _ _ zenon_H2ea); [ zenon_intro zenon_Hbd | zenon_intro zenon_Hbf ].
% 0.83/1.06  exact (zenon_Hb7 zenon_Hbd).
% 0.83/1.06  exact (zenon_Hbf zenon_Hb8).
% 0.83/1.06  (* end of lemma zenon_L410_ *)
% 0.83/1.06  assert (zenon_L411_ : (forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12)))))) -> (ndr1_0) -> (~(c2_1 (a238))) -> (forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y)))))) -> (c1_1 (a238)) -> False).
% 0.83/1.06  do 0 intro. intros zenon_H30 zenon_H7 zenon_Hb7 zenon_H1da zenon_Hb8.
% 0.83/1.06  generalize (zenon_H30 (a238)). zenon_intro zenon_Hc5.
% 0.83/1.06  apply (zenon_imply_s _ _ zenon_Hc5); [ zenon_intro zenon_H6 | zenon_intro zenon_Hc6 ].
% 0.83/1.06  exact (zenon_H6 zenon_H7).
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hc6); [ zenon_intro zenon_Hbd | zenon_intro zenon_Hc7 ].
% 0.83/1.07  exact (zenon_Hb7 zenon_Hbd).
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hc7); [ zenon_intro zenon_Hc1 | zenon_intro zenon_Hbf ].
% 0.83/1.07  apply (zenon_L410_); trivial.
% 0.83/1.07  exact (zenon_Hbf zenon_Hb8).
% 0.83/1.07  (* end of lemma zenon_L411_ *)
% 0.83/1.07  assert (zenon_L412_ : ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c2_1 (a198)) -> (c1_1 (a198)) -> (c0_1 (a198)) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y)))))) -> (ndr1_0) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H1b9 zenon_H9e zenon_H9d zenon_H9c zenon_H10a zenon_H10c zenon_Heb zenon_H1da zenon_H7 zenon_Hb7 zenon_Hb8 zenon_Hb9.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H1b9); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1ba ].
% 0.83/1.07  apply (zenon_L409_); trivial.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H1ba); [ zenon_intro zenon_H30 | zenon_intro zenon_Hb6 ].
% 0.83/1.07  apply (zenon_L411_); trivial.
% 0.83/1.07  apply (zenon_L47_); trivial.
% 0.83/1.07  (* end of lemma zenon_L412_ *)
% 0.83/1.07  assert (zenon_L413_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c2_1 (a219)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hdc zenon_Hd9 zenon_H1e4 zenon_H10b zenon_H1b9 zenon_H10a zenon_H10c zenon_Heb zenon_H21 zenon_H22 zenon_H23 zenon_Hab.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.07  apply (zenon_L45_); trivial.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.83/1.07  apply (zenon_L409_); trivial.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.83/1.07  apply (zenon_L412_); trivial.
% 0.83/1.07  apply (zenon_L66_); trivial.
% 0.83/1.07  (* end of lemma zenon_L413_ *)
% 0.83/1.07  assert (zenon_L414_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c2_1 (a219)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H4b zenon_H100 zenon_H1e4 zenon_H10b zenon_H1b9 zenon_H10a zenon_H10c zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hd9 zenon_H23a zenon_H238 zenon_H7c zenon_H44 zenon_H76 zenon_Hab zenon_Heb zenon_Hed zenon_Hee zenon_Hef zenon_Hf6 zenon_Hfb zenon_H228.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.07  apply (zenon_L408_); trivial.
% 0.83/1.07  apply (zenon_L413_); trivial.
% 0.83/1.07  (* end of lemma zenon_L414_ *)
% 0.83/1.07  assert (zenon_L415_ : ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> (ndr1_0) -> (~(hskp6)) -> (~(hskp14)) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H2eb zenon_H12f zenon_H12e zenon_H12d zenon_H7 zenon_H1 zenon_H60.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H2eb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_H2ec ].
% 0.83/1.07  apply (zenon_L75_); trivial.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H2ec); [ zenon_intro zenon_H2 | zenon_intro zenon_H61 ].
% 0.83/1.07  exact (zenon_H1 zenon_H2).
% 0.83/1.07  exact (zenon_H60 zenon_H61).
% 0.83/1.07  (* end of lemma zenon_L415_ *)
% 0.83/1.07  assert (zenon_L416_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hdc zenon_Hd9 zenon_Heb zenon_H12f zenon_H12e zenon_H12d zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.07  apply (zenon_L392_); trivial.
% 0.83/1.07  apply (zenon_L312_); trivial.
% 0.83/1.07  (* end of lemma zenon_L416_ *)
% 0.83/1.07  assert (zenon_L417_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((hskp24)\/((hskp4)\/(hskp18))) -> (~(hskp18)) -> (~(hskp4)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (~(c0_1 (a219))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H100 zenon_Heb zenon_H12f zenon_H12e zenon_H12d zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_Hd9 zenon_H23a zenon_H238 zenon_H7c zenon_H44 zenon_H76 zenon_H13c zenon_H1c zenon_H13a zenon_H165 zenon_H150 zenon_H14e zenon_H172 zenon_H10b zenon_H10c zenon_H10a zenon_H23c zenon_H176 zenon_H162 zenon_Hfb zenon_H228.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.07  apply (zenon_L397_); trivial.
% 0.83/1.07  apply (zenon_L416_); trivial.
% 0.83/1.07  (* end of lemma zenon_L417_ *)
% 0.83/1.07  assert (zenon_L418_ : ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> (~(c0_1 (a239))) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> (~(hskp3)) -> (~(hskp22)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hd9 zenon_H23a zenon_H238 zenon_H219 zenon_H20b zenon_H20c zenon_H44 zenon_H74 zenon_H76 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.07  apply (zenon_L392_); trivial.
% 0.83/1.07  apply (zenon_L390_); trivial.
% 0.83/1.07  (* end of lemma zenon_L418_ *)
% 0.83/1.07  assert (zenon_L419_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> (~(hskp19)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (c2_1 (a219)) -> (~(c0_1 (a219))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hf8 zenon_Hd9 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_H12d zenon_H12e zenon_H12f zenon_Heb zenon_H172 zenon_H20b zenon_H20c zenon_H7a zenon_H7c zenon_H10b zenon_H10a zenon_H1 zenon_H2b8 zenon_H2c6.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H2c6); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H2c8 ].
% 0.83/1.07  apply (zenon_L176_); trivial.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H2c8); [ zenon_intro zenon_H2 | zenon_intro zenon_H2b9 ].
% 0.83/1.07  exact (zenon_H1 zenon_H2).
% 0.83/1.07  exact (zenon_H2b8 zenon_H2b9).
% 0.83/1.07  apply (zenon_L104_); trivial.
% 0.83/1.07  (* end of lemma zenon_L419_ *)
% 0.83/1.07  assert (zenon_L420_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> (~(hskp6)) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hfc zenon_H100 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hd9 zenon_H23a zenon_H238 zenon_H44 zenon_H76 zenon_H14e zenon_H150 zenon_H2c6 zenon_H2b8 zenon_H1 zenon_H10a zenon_H10b zenon_H7c zenon_H172 zenon_Heb zenon_H12f zenon_H12e zenon_H12d zenon_Hf6 zenon_Hfb zenon_H228.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.07  apply (zenon_L382_); trivial.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.07  apply (zenon_L418_); trivial.
% 0.83/1.07  apply (zenon_L419_); trivial.
% 0.83/1.07  apply (zenon_L416_); trivial.
% 0.83/1.07  (* end of lemma zenon_L420_ *)
% 0.83/1.07  assert (zenon_L421_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp4)) -> ((hskp24)\/((hskp4)\/(hskp18))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp10)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> (~(hskp6)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H189 zenon_H129 zenon_Hff zenon_Hf6 zenon_H4f zenon_H2e3 zenon_H2e zenon_H270 zenon_H2b8 zenon_H2c6 zenon_H4c zenon_H228 zenon_Hfb zenon_H162 zenon_H176 zenon_H23c zenon_H172 zenon_H14e zenon_H150 zenon_H165 zenon_H13a zenon_H13c zenon_H76 zenon_H44 zenon_H7c zenon_H238 zenon_H23a zenon_Hd9 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_Heb zenon_H100 zenon_H102 zenon_H1 zenon_H2eb.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.07  apply (zenon_L415_); trivial.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.07  apply (zenon_L417_); trivial.
% 0.83/1.07  apply (zenon_L403_); trivial.
% 0.83/1.07  apply (zenon_L406_); trivial.
% 0.83/1.07  apply (zenon_L420_); trivial.
% 0.83/1.07  (* end of lemma zenon_L421_ *)
% 0.83/1.07  assert (zenon_L422_ : ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> (~(hskp0)) -> (c0_1 (a217)) -> (~(c3_1 (a217))) -> (~(c2_1 (a217))) -> (ndr1_0) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> (~(hskp6)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (~(c0_1 (a219))) -> (~(hskp4)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp10)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (~(hskp15)) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H102 zenon_H183 zenon_H181 zenon_H17a zenon_H179 zenon_H178 zenon_H7 zenon_H228 zenon_Hfb zenon_H4c zenon_H2c6 zenon_H2b8 zenon_H1 zenon_H172 zenon_H270 zenon_H10b zenon_H10c zenon_H10a zenon_H13a zenon_H23c zenon_H2e zenon_H76 zenon_H44 zenon_H7c zenon_H238 zenon_H23a zenon_Hd9 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H50 zenon_H2e3 zenon_H100 zenon_H4f.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.07  apply (zenon_L110_); trivial.
% 0.83/1.07  apply (zenon_L403_); trivial.
% 0.83/1.07  apply (zenon_L406_); trivial.
% 0.83/1.07  (* end of lemma zenon_L422_ *)
% 0.83/1.07  assert (zenon_L423_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c2_1 (a219)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(c2_1 (a217))) -> (~(c3_1 (a217))) -> (c0_1 (a217)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hfc zenon_H4f zenon_H100 zenon_H1e4 zenon_H10b zenon_H1b9 zenon_H10a zenon_H10c zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hd9 zenon_H23a zenon_H238 zenon_H7c zenon_H44 zenon_H76 zenon_Hab zenon_Heb zenon_Hf6 zenon_Hfb zenon_H228 zenon_H178 zenon_H179 zenon_H17a zenon_H181 zenon_H183.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.07  apply (zenon_L110_); trivial.
% 0.83/1.07  apply (zenon_L414_); trivial.
% 0.83/1.07  (* end of lemma zenon_L423_ *)
% 0.83/1.07  assert (zenon_L424_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp4)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(c2_1 (a217))) -> (~(c3_1 (a217))) -> (c0_1 (a217)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H12a zenon_Hff zenon_H1e4 zenon_H1b9 zenon_Hab zenon_Heb zenon_Hf6 zenon_H4f zenon_H100 zenon_H2e3 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hd9 zenon_H23a zenon_H238 zenon_H7c zenon_H44 zenon_H76 zenon_H2e zenon_H23c zenon_H13a zenon_H270 zenon_H172 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_H4c zenon_Hfb zenon_H228 zenon_H178 zenon_H179 zenon_H17a zenon_H181 zenon_H183 zenon_H102.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.07  apply (zenon_L422_); trivial.
% 0.83/1.07  apply (zenon_L423_); trivial.
% 0.83/1.07  (* end of lemma zenon_L424_ *)
% 0.83/1.07  assert (zenon_L425_ : ((hskp6)\/((hskp10)\/(hskp20))) -> (~(hskp6)) -> (~(hskp10)) -> (~(hskp20)) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H2ed zenon_H1 zenon_H238 zenon_H207.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H2ed); [ zenon_intro zenon_H2 | zenon_intro zenon_H2ee ].
% 0.83/1.07  exact (zenon_H1 zenon_H2).
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H2ee); [ zenon_intro zenon_H239 | zenon_intro zenon_H208 ].
% 0.83/1.07  exact (zenon_H238 zenon_H239).
% 0.83/1.07  exact (zenon_H207 zenon_H208).
% 0.83/1.07  (* end of lemma zenon_L425_ *)
% 0.83/1.07  assert (zenon_L426_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((hskp6)\/((hskp10)\/(hskp20))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp4)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(c2_1 (a217))) -> (~(c3_1 (a217))) -> (c0_1 (a217)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> (~(hskp6)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H189 zenon_H129 zenon_Hff zenon_Hab zenon_H2ed zenon_Heb zenon_Hf6 zenon_H4f zenon_H100 zenon_H2e3 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hd9 zenon_H23a zenon_H238 zenon_H7c zenon_H44 zenon_H76 zenon_H2e zenon_H23c zenon_H13a zenon_H270 zenon_H172 zenon_H2b8 zenon_H2c6 zenon_H4c zenon_Hfb zenon_H228 zenon_H178 zenon_H179 zenon_H17a zenon_H181 zenon_H183 zenon_H102 zenon_H1 zenon_H2eb.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.07  apply (zenon_L415_); trivial.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.07  apply (zenon_L422_); trivial.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.07  apply (zenon_L110_); trivial.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.07  apply (zenon_L425_); trivial.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.07  apply (zenon_L391_); trivial.
% 0.83/1.07  apply (zenon_L419_); trivial.
% 0.83/1.07  apply (zenon_L313_); trivial.
% 0.83/1.07  (* end of lemma zenon_L426_ *)
% 0.83/1.07  assert (zenon_L427_ : ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (~(c2_1 (a214))) -> (ndr1_0) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Ha5 zenon_H20c zenon_H20b zenon_H219 zenon_H242 zenon_H241 zenon_H1f3 zenon_H240 zenon_H7 zenon_H9c zenon_H9d zenon_H9e.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Ha5); [ zenon_intro zenon_H92 | zenon_intro zenon_Ha6 ].
% 0.83/1.07  apply (zenon_L171_); trivial.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Ha6); [ zenon_intro zenon_H30 | zenon_intro zenon_H9b ].
% 0.83/1.07  apply (zenon_L204_); trivial.
% 0.83/1.07  apply (zenon_L40_); trivial.
% 0.83/1.07  (* end of lemma zenon_L427_ *)
% 0.83/1.07  assert (zenon_L428_ : (forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))) -> (ndr1_0) -> (~(c3_1 (a239))) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (~(c0_1 (a239))) -> (c2_1 (a239)) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H56 zenon_H7 zenon_H20b zenon_H1c2 zenon_H219 zenon_H20c.
% 0.83/1.07  generalize (zenon_H56 (a239)). zenon_intro zenon_H20d.
% 0.83/1.07  apply (zenon_imply_s _ _ zenon_H20d); [ zenon_intro zenon_H6 | zenon_intro zenon_H20e ].
% 0.83/1.07  exact (zenon_H6 zenon_H7).
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H20e); [ zenon_intro zenon_H210 | zenon_intro zenon_H20f ].
% 0.83/1.07  exact (zenon_H20b zenon_H210).
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H20f); [ zenon_intro zenon_H212 | zenon_intro zenon_H211 ].
% 0.83/1.07  apply (zenon_L182_); trivial.
% 0.83/1.07  exact (zenon_H211 zenon_H20c).
% 0.83/1.07  (* end of lemma zenon_L428_ *)
% 0.83/1.07  assert (zenon_L429_ : ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (c2_1 (a198)) -> (c1_1 (a198)) -> (c0_1 (a198)) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c2_1 (a239)) -> (~(c0_1 (a239))) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (~(c3_1 (a239))) -> (ndr1_0) -> (~(hskp0)) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H251 zenon_H9e zenon_H9d zenon_H9c zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H20c zenon_H219 zenon_H1c2 zenon_H20b zenon_H7 zenon_H181.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H251); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H252 ].
% 0.83/1.07  apply (zenon_L427_); trivial.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H252); [ zenon_intro zenon_H56 | zenon_intro zenon_H182 ].
% 0.83/1.07  apply (zenon_L428_); trivial.
% 0.83/1.07  exact (zenon_H181 zenon_H182).
% 0.83/1.07  (* end of lemma zenon_L429_ *)
% 0.83/1.07  assert (zenon_L430_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp0)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (c2_1 (a239)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp6)) -> (~(hskp7)) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hd1 zenon_H2c6 zenon_H181 zenon_H20b zenon_H219 zenon_H20c zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H251 zenon_H1 zenon_H2b8.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H2c6); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H2c8 ].
% 0.83/1.07  apply (zenon_L429_); trivial.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H2c8); [ zenon_intro zenon_H2 | zenon_intro zenon_H2b9 ].
% 0.83/1.07  exact (zenon_H1 zenon_H2).
% 0.83/1.07  exact (zenon_H2b8 zenon_H2b9).
% 0.83/1.07  (* end of lemma zenon_L430_ *)
% 0.83/1.07  assert (zenon_L431_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> (~(hskp6)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (~(hskp0)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H228 zenon_Hd9 zenon_H2c6 zenon_H2b8 zenon_H1 zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H181 zenon_H251 zenon_H21 zenon_H22 zenon_H23 zenon_Hab zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.07  apply (zenon_L382_); trivial.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.07  apply (zenon_L45_); trivial.
% 0.83/1.07  apply (zenon_L430_); trivial.
% 0.83/1.07  (* end of lemma zenon_L431_ *)
% 0.83/1.07  assert (zenon_L432_ : ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(hskp15)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(hskp8)) -> (~(hskp13)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H4f zenon_H100 zenon_H69 zenon_H261 zenon_H50 zenon_H54 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_H251 zenon_H181 zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_Hd9 zenon_H228 zenon_H18 zenon_H1a zenon_H1e.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.07  apply (zenon_L12_); trivial.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.07  apply (zenon_L431_); trivial.
% 0.83/1.07  apply (zenon_L377_); trivial.
% 0.83/1.07  (* end of lemma zenon_L432_ *)
% 0.83/1.07  assert (zenon_L433_ : ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp14)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((hskp8)\/((hskp13)\/(hskp18))) -> (~(hskp13)) -> (~(hskp8)) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> (~(hskp6)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (~(hskp0)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hff zenon_Hfb zenon_Hf6 zenon_Heb zenon_H60 zenon_He0 zenon_H1e zenon_H1a zenon_H18 zenon_H228 zenon_Hd9 zenon_H2c6 zenon_H2b8 zenon_H1 zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H181 zenon_H251 zenon_Hab zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H54 zenon_H261 zenon_H69 zenon_H100 zenon_H4f.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.07  apply (zenon_L432_); trivial.
% 0.83/1.07  apply (zenon_L64_); trivial.
% 0.83/1.07  (* end of lemma zenon_L433_ *)
% 0.83/1.07  assert (zenon_L434_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c2_1 (a219)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H4b zenon_H100 zenon_H1e4 zenon_H10b zenon_H1b9 zenon_H10a zenon_H10c zenon_Heb zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_H251 zenon_H181 zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_Hd9 zenon_H228.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.07  apply (zenon_L431_); trivial.
% 0.83/1.07  apply (zenon_L413_); trivial.
% 0.83/1.07  (* end of lemma zenon_L434_ *)
% 0.83/1.07  assert (zenon_L435_ : ((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> (~(hskp6)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (~(hskp0)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H220 zenon_Hd9 zenon_H2c6 zenon_H2b8 zenon_H1 zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H181 zenon_H251 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.07  apply (zenon_L392_); trivial.
% 0.83/1.07  apply (zenon_L430_); trivial.
% 0.83/1.07  (* end of lemma zenon_L435_ *)
% 0.83/1.07  assert (zenon_L436_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> (~(hskp6)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (~(hskp0)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H228 zenon_Hd9 zenon_H2c6 zenon_H2b8 zenon_H1 zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H181 zenon_H251 zenon_H14e zenon_H150 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.07  apply (zenon_L382_); trivial.
% 0.83/1.07  apply (zenon_L435_); trivial.
% 0.83/1.07  (* end of lemma zenon_L436_ *)
% 0.83/1.07  assert (zenon_L437_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H189 zenon_H100 zenon_Heb zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H150 zenon_H14e zenon_H251 zenon_H181 zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_Hd9 zenon_H228.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.07  apply (zenon_L436_); trivial.
% 0.83/1.07  apply (zenon_L416_); trivial.
% 0.83/1.07  (* end of lemma zenon_L437_ *)
% 0.83/1.07  assert (zenon_L438_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(c2_1 (a217))) -> (~(c3_1 (a217))) -> (c0_1 (a217)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H12a zenon_H4f zenon_H100 zenon_H1e4 zenon_H1b9 zenon_Heb zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_H251 zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_Hd9 zenon_H228 zenon_H178 zenon_H179 zenon_H17a zenon_H181 zenon_H183.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.07  apply (zenon_L110_); trivial.
% 0.83/1.07  apply (zenon_L434_); trivial.
% 0.83/1.07  (* end of lemma zenon_L438_ *)
% 0.83/1.07  assert (zenon_L439_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H4b zenon_H100 zenon_Heb zenon_H12f zenon_H12e zenon_H12d zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_H251 zenon_H181 zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_Hd9 zenon_H228.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.07  apply (zenon_L431_); trivial.
% 0.83/1.07  apply (zenon_L313_); trivial.
% 0.83/1.07  (* end of lemma zenon_L439_ *)
% 0.83/1.07  assert (zenon_L440_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(c2_1 (a217))) -> (~(c3_1 (a217))) -> (c0_1 (a217)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H189 zenon_H4f zenon_H100 zenon_Heb zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_H251 zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_Hd9 zenon_H228 zenon_H178 zenon_H179 zenon_H17a zenon_H181 zenon_H183.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.07  apply (zenon_L110_); trivial.
% 0.83/1.07  apply (zenon_L439_); trivial.
% 0.83/1.07  (* end of lemma zenon_L440_ *)
% 0.83/1.07  assert (zenon_L441_ : ((ndr1_0)/\((c1_1 (a214))/\((~(c2_1 (a214)))/\(~(c3_1 (a214)))))) -> ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(hskp8)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H263 zenon_H19c zenon_H183 zenon_H129 zenon_H1e4 zenon_H1b9 zenon_H4f zenon_H100 zenon_H69 zenon_H261 zenon_H54 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_H251 zenon_H181 zenon_Ha5 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_Hd9 zenon_H228 zenon_H18 zenon_H1e zenon_He0 zenon_Heb zenon_Hf6 zenon_Hfb zenon_Hff zenon_H150 zenon_H186.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.07  apply (zenon_L433_); trivial.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.07  apply (zenon_L12_); trivial.
% 0.83/1.07  apply (zenon_L434_); trivial.
% 0.83/1.07  apply (zenon_L437_); trivial.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.07  apply (zenon_L433_); trivial.
% 0.83/1.07  apply (zenon_L438_); trivial.
% 0.83/1.07  apply (zenon_L440_); trivial.
% 0.83/1.07  (* end of lemma zenon_L441_ *)
% 0.83/1.07  assert (zenon_L442_ : ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (c2_1 (a239)) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (~(c0_1 (a239))) -> (~(hskp19)) -> (~(hskp25)) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp13)) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H296 zenon_H20c zenon_H1c2 zenon_H219 zenon_H7a zenon_H163 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H165 zenon_H1a.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H296); [ zenon_intro zenon_H167 | zenon_intro zenon_H297 ].
% 0.83/1.07  apply (zenon_L183_); trivial.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H297); [ zenon_intro zenon_H272 | zenon_intro zenon_H1b ].
% 0.83/1.07  apply (zenon_L305_); trivial.
% 0.83/1.07  exact (zenon_H1a zenon_H1b).
% 0.83/1.07  (* end of lemma zenon_L442_ *)
% 0.83/1.07  assert (zenon_L443_ : ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp13)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> (~(hskp25)) -> (~(hskp19)) -> (~(c0_1 (a239))) -> (c2_1 (a239)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp6)) -> (~(hskp7)) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H2c6 zenon_H1a zenon_H165 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H163 zenon_H7a zenon_H219 zenon_H20c zenon_H296 zenon_H1 zenon_H2b8.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H2c6); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H2c8 ].
% 0.83/1.07  apply (zenon_L442_); trivial.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H2c8); [ zenon_intro zenon_H2 | zenon_intro zenon_H2b9 ].
% 0.83/1.07  exact (zenon_H1 zenon_H2).
% 0.83/1.07  exact (zenon_H2b8 zenon_H2b9).
% 0.83/1.07  (* end of lemma zenon_L443_ *)
% 0.83/1.07  assert (zenon_L444_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H228 zenon_H176 zenon_H60 zenon_H1a9 zenon_H296 zenon_H1a zenon_H1ab zenon_H19e zenon_H19f zenon_H165 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.07  apply (zenon_L382_); trivial.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.83/1.07  apply (zenon_L443_); trivial.
% 0.83/1.07  apply (zenon_L329_); trivial.
% 0.83/1.07  (* end of lemma zenon_L444_ *)
% 0.83/1.07  assert (zenon_L445_ : ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp3)) -> (c3_1 (a212)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (~(c2_1 (a238))) -> (~(hskp21)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hd9 zenon_Heb zenon_H47 zenon_H44 zenon_H19f zenon_H1ab zenon_H19e zenon_Hb9 zenon_Hb8 zenon_Hb7 zenon_Ha7 zenon_Ha9 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.07  apply (zenon_L392_); trivial.
% 0.83/1.07  apply (zenon_L137_); trivial.
% 0.83/1.07  (* end of lemma zenon_L445_ *)
% 0.83/1.07  assert (zenon_L446_ : ((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp3)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hd8 zenon_Hd9 zenon_Hd2 zenon_Hcf zenon_Hb7 zenon_Hb8 zenon_Hb9 zenon_H47 zenon_H44 zenon_Hd3 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hd8). zenon_intro zenon_H7. zenon_intro zenon_Hda.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hda). zenon_intro zenon_Haf. zenon_intro zenon_Hdb.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hdb). zenon_intro zenon_Had. zenon_intro zenon_Hae.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.07  apply (zenon_L392_); trivial.
% 0.83/1.07  apply (zenon_L53_); trivial.
% 0.83/1.07  (* end of lemma zenon_L446_ *)
% 0.83/1.07  assert (zenon_L447_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (c3_1 (a212)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hdc zenon_Hdd zenon_Hd2 zenon_Hcf zenon_Hd3 zenon_H150 zenon_H14e zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Ha9 zenon_H19e zenon_H1ab zenon_H19f zenon_H44 zenon_H47 zenon_Heb zenon_Hd9.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.83/1.07  apply (zenon_L445_); trivial.
% 0.83/1.07  apply (zenon_L446_); trivial.
% 0.83/1.07  (* end of lemma zenon_L447_ *)
% 0.83/1.07  assert (zenon_L448_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> (~(hskp6)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(hskp13)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp14)) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H100 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_Hd3 zenon_H150 zenon_H14e zenon_Ha9 zenon_H44 zenon_H47 zenon_Heb zenon_Hd9 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H2c6 zenon_H2b8 zenon_H1 zenon_H165 zenon_H19f zenon_H19e zenon_H1ab zenon_H1a zenon_H296 zenon_H1a9 zenon_H60 zenon_H176 zenon_H228.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.07  apply (zenon_L444_); trivial.
% 0.83/1.07  apply (zenon_L447_); trivial.
% 0.83/1.07  (* end of lemma zenon_L448_ *)
% 0.83/1.07  assert (zenon_L449_ : ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (ndr1_0) -> (forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))) -> (~(hskp3)) -> (~(hskp22)) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H76 zenon_H20c zenon_H20b zenon_H7 zenon_H56 zenon_H44 zenon_H74.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H76); [ zenon_intro zenon_H6a | zenon_intro zenon_H77 ].
% 0.83/1.07  apply (zenon_L168_); trivial.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H77); [ zenon_intro zenon_H45 | zenon_intro zenon_H75 ].
% 0.83/1.07  exact (zenon_H44 zenon_H45).
% 0.83/1.07  exact (zenon_H74 zenon_H75).
% 0.83/1.07  (* end of lemma zenon_L449_ *)
% 0.83/1.07  assert (zenon_L450_ : ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (c0_1 (a241)) -> (~(c3_1 (a241))) -> (~(c1_1 (a241))) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (~(c2_1 (a238))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (ndr1_0) -> (~(hskp3)) -> (~(hskp22)) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hd3 zenon_Haf zenon_Hae zenon_Had zenon_Hb9 zenon_Hb8 zenon_Hb7 zenon_H76 zenon_H20c zenon_H20b zenon_H7 zenon_H44 zenon_H74.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hd3); [ zenon_intro zenon_Hac | zenon_intro zenon_Hd7 ].
% 0.83/1.07  apply (zenon_L46_); trivial.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hd7); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H56 ].
% 0.83/1.07  apply (zenon_L47_); trivial.
% 0.83/1.07  apply (zenon_L449_); trivial.
% 0.83/1.07  (* end of lemma zenon_L450_ *)
% 0.83/1.07  assert (zenon_L451_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hf8 zenon_Hd9 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Heb zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.07  apply (zenon_L392_); trivial.
% 0.83/1.07  apply (zenon_L61_); trivial.
% 0.83/1.07  (* end of lemma zenon_L451_ *)
% 0.83/1.07  assert (zenon_L452_ : ((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hd8 zenon_Hfb zenon_Hd9 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Heb zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150 zenon_Hb7 zenon_Hb8 zenon_Hb9 zenon_H76 zenon_H44 zenon_H20c zenon_H20b zenon_Hd3.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hd8). zenon_intro zenon_H7. zenon_intro zenon_Hda.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hda). zenon_intro zenon_Haf. zenon_intro zenon_Hdb.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hdb). zenon_intro zenon_Had. zenon_intro zenon_Hae.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.07  apply (zenon_L450_); trivial.
% 0.83/1.07  apply (zenon_L451_); trivial.
% 0.83/1.07  (* end of lemma zenon_L452_ *)
% 0.83/1.07  assert (zenon_L453_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (c3_1 (a212)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> (~(hskp6)) -> (~(hskp10)) -> ((hskp6)\/((hskp10)\/(hskp20))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hdc zenon_H228 zenon_Hdd zenon_Hfb zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_H76 zenon_Hd3 zenon_H150 zenon_H14e zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Ha9 zenon_H19e zenon_H1ab zenon_H19f zenon_H44 zenon_H47 zenon_Heb zenon_Hd9 zenon_H1 zenon_H238 zenon_H2ed.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.07  apply (zenon_L425_); trivial.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.83/1.07  apply (zenon_L445_); trivial.
% 0.83/1.07  apply (zenon_L452_); trivial.
% 0.83/1.07  (* end of lemma zenon_L453_ *)
% 0.83/1.07  assert (zenon_L454_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (c3_1 (a212)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp6)) -> ((hskp6)\/((hskp10)\/(hskp20))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((hskp24)\/((hskp4)\/(hskp18))) -> (~(hskp18)) -> (~(hskp4)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (~(c0_1 (a219))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H100 zenon_Hdd zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Hd3 zenon_Ha9 zenon_H19e zenon_H1ab zenon_H19f zenon_H47 zenon_Heb zenon_H1 zenon_H2ed zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_Hd9 zenon_H23a zenon_H238 zenon_H7c zenon_H44 zenon_H76 zenon_H13c zenon_H1c zenon_H13a zenon_H165 zenon_H150 zenon_H14e zenon_H172 zenon_H10b zenon_H10c zenon_H10a zenon_H23c zenon_H176 zenon_H162 zenon_Hfb zenon_H228.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.07  apply (zenon_L397_); trivial.
% 0.83/1.07  apply (zenon_L453_); trivial.
% 0.83/1.07  (* end of lemma zenon_L454_ *)
% 0.83/1.07  assert (zenon_L455_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (c3_1 (a212)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H4b zenon_H100 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_Hd3 zenon_Ha9 zenon_H19e zenon_H1ab zenon_H19f zenon_H47 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hd9 zenon_H23a zenon_H238 zenon_H7c zenon_H44 zenon_H76 zenon_Hab zenon_Heb zenon_Hed zenon_Hee zenon_Hef zenon_Hf6 zenon_Hfb zenon_H228.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.07  apply (zenon_L408_); trivial.
% 0.83/1.07  apply (zenon_L138_); trivial.
% 0.83/1.07  (* end of lemma zenon_L455_ *)
% 0.83/1.07  assert (zenon_L456_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> (c2_1 (a219)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp4)) -> ((hskp24)\/((hskp4)\/(hskp18))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp10)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((hskp6)\/((hskp10)\/(hskp20))) -> (~(hskp6)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (c3_1 (a212)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hfc zenon_H4f zenon_Hd2 zenon_Hcf zenon_Hab zenon_H228 zenon_Hfb zenon_H162 zenon_H176 zenon_H23c zenon_H10a zenon_H10c zenon_H10b zenon_H172 zenon_H14e zenon_H150 zenon_H165 zenon_H13a zenon_H13c zenon_H76 zenon_H44 zenon_H7c zenon_H238 zenon_H23a zenon_Hd9 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H2ed zenon_H1 zenon_Heb zenon_H47 zenon_H19f zenon_H1ab zenon_H19e zenon_Ha9 zenon_Hd3 zenon_Hf6 zenon_Hdd zenon_H100.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.07  apply (zenon_L454_); trivial.
% 0.83/1.07  apply (zenon_L455_); trivial.
% 0.83/1.07  (* end of lemma zenon_L456_ *)
% 0.83/1.07  assert (zenon_L457_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> (~(hskp6)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(hskp13)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp14)) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H100 zenon_H2e3 zenon_H50 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H2c6 zenon_H2b8 zenon_H1 zenon_H165 zenon_H19f zenon_H19e zenon_H1ab zenon_H1a zenon_H296 zenon_H1a9 zenon_H60 zenon_H176 zenon_H228.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.07  apply (zenon_L444_); trivial.
% 0.83/1.07  apply (zenon_L385_); trivial.
% 0.83/1.07  (* end of lemma zenon_L457_ *)
% 0.83/1.07  assert (zenon_L458_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (c3_1 (a212)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(c2_1 (a217))) -> (~(c3_1 (a217))) -> (c0_1 (a217)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hfc zenon_H4f zenon_H100 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_Hd3 zenon_Ha9 zenon_H19e zenon_H1ab zenon_H19f zenon_H47 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hd9 zenon_H23a zenon_H238 zenon_H7c zenon_H44 zenon_H76 zenon_Hab zenon_Heb zenon_Hf6 zenon_Hfb zenon_H228 zenon_H178 zenon_H179 zenon_H17a zenon_H181 zenon_H183.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.07  apply (zenon_L110_); trivial.
% 0.83/1.07  apply (zenon_L455_); trivial.
% 0.83/1.07  (* end of lemma zenon_L458_ *)
% 0.83/1.07  assert (zenon_L459_ : ((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(hskp14)) -> (~(hskp8)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp8)\/(hskp14))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H220 zenon_H2c3 zenon_Hb zenon_Ha zenon_H9 zenon_H60 zenon_H18 zenon_H2e1 zenon_H2ba zenon_H2bb zenon_H2bc.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H2c3); [ zenon_intro zenon_H8 | zenon_intro zenon_H2c4 ].
% 0.83/1.07  apply (zenon_L5_); trivial.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H2c4); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H24e ].
% 0.83/1.07  apply (zenon_L383_); trivial.
% 0.83/1.07  apply (zenon_L342_); trivial.
% 0.83/1.07  (* end of lemma zenon_L459_ *)
% 0.83/1.07  assert (zenon_L460_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(hskp8)) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp8)\/(hskp14))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H228 zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H18 zenon_H60 zenon_H2e1 zenon_Hb zenon_Ha zenon_H9 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.07  apply (zenon_L382_); trivial.
% 0.83/1.07  apply (zenon_L459_); trivial.
% 0.83/1.07  (* end of lemma zenon_L460_ *)
% 0.83/1.07  assert (zenon_L461_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> (~(hskp6)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp8)\/(hskp14))) -> (~(hskp14)) -> (~(hskp8)) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H100 zenon_H2e3 zenon_H50 zenon_H1 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H9 zenon_Ha zenon_Hb zenon_H2e1 zenon_H60 zenon_H18 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H2c3 zenon_H228.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.07  apply (zenon_L460_); trivial.
% 0.83/1.07  apply (zenon_L385_); trivial.
% 0.83/1.07  (* end of lemma zenon_L461_ *)
% 0.83/1.07  assert (zenon_L462_ : ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> (~(hskp13)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(hskp8)) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp8)\/(hskp14))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (~(hskp6)) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hff zenon_H4f zenon_Hfb zenon_Hd9 zenon_Hf6 zenon_Heb zenon_Hab zenon_He0 zenon_H1a zenon_H1e zenon_H228 zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H18 zenon_H60 zenon_H2e1 zenon_Hb zenon_Ha zenon_H9 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H1 zenon_H2e3 zenon_H100.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.07  apply (zenon_L461_); trivial.
% 0.83/1.07  apply (zenon_L64_); trivial.
% 0.83/1.07  (* end of lemma zenon_L462_ *)
% 0.83/1.07  assert (zenon_L463_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(hskp16)) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp4)) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> (c2_1 (a219)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H4b zenon_H100 zenon_H1e4 zenon_H1b9 zenon_Heb zenon_Hab zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hd9 zenon_H23a zenon_H238 zenon_H7c zenon_H44 zenon_H76 zenon_H2e zenon_H2c zenon_H9 zenon_Ha zenon_Hb zenon_H23c zenon_H13a zenon_H10a zenon_H10c zenon_H10b zenon_H270 zenon_H172 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H2c3 zenon_H4c zenon_Hfb zenon_H228.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.07  apply (zenon_L382_); trivial.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.07  apply (zenon_L391_); trivial.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H4c); [ zenon_intro zenon_H2a | zenon_intro zenon_H46 ].
% 0.83/1.07  apply (zenon_L16_); trivial.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H46). zenon_intro zenon_H7. zenon_intro zenon_H48.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H48). zenon_intro zenon_H3b. zenon_intro zenon_H49.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H49). zenon_intro zenon_H3c. zenon_intro zenon_H3d.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H2c3); [ zenon_intro zenon_H8 | zenon_intro zenon_H2c4 ].
% 0.83/1.07  apply (zenon_L5_); trivial.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H2c4); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H24e ].
% 0.83/1.07  apply (zenon_L401_); trivial.
% 0.83/1.07  apply (zenon_L342_); trivial.
% 0.83/1.07  apply (zenon_L413_); trivial.
% 0.83/1.07  (* end of lemma zenon_L463_ *)
% 0.83/1.07  assert (zenon_L464_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> (~(c1_1 (a231))) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hf8 zenon_H2c3 zenon_Hb zenon_Ha zenon_H9 zenon_H6d zenon_H6c zenon_H6b zenon_H10a zenon_H10b zenon_H172 zenon_H2ba zenon_H2bb zenon_H2bc.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H2c3); [ zenon_intro zenon_H8 | zenon_intro zenon_H2c4 ].
% 0.83/1.07  apply (zenon_L5_); trivial.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H2c4); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H24e ].
% 0.83/1.07  apply (zenon_L404_); trivial.
% 0.83/1.07  apply (zenon_L342_); trivial.
% 0.83/1.07  (* end of lemma zenon_L464_ *)
% 0.83/1.07  assert (zenon_L465_ : ((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H103 zenon_Hfb zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H10a zenon_H10b zenon_H172 zenon_Hb zenon_Ha zenon_H9 zenon_H44 zenon_H76.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.07  apply (zenon_L33_); trivial.
% 0.83/1.07  apply (zenon_L464_); trivial.
% 0.83/1.07  (* end of lemma zenon_L465_ *)
% 0.83/1.07  assert (zenon_L466_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> (~(hskp0)) -> (c0_1 (a217)) -> (~(c3_1 (a217))) -> (~(c2_1 (a217))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(hskp4)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp10)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H12a zenon_H102 zenon_H183 zenon_H181 zenon_H17a zenon_H179 zenon_H178 zenon_H228 zenon_Hfb zenon_H4c zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H172 zenon_H270 zenon_H13a zenon_H23c zenon_Hb zenon_Ha zenon_H9 zenon_H2e zenon_H76 zenon_H44 zenon_H7c zenon_H238 zenon_H23a zenon_Hd9 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_Hab zenon_Heb zenon_H1b9 zenon_H1e4 zenon_H100 zenon_H4f.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.07  apply (zenon_L110_); trivial.
% 0.83/1.07  apply (zenon_L463_); trivial.
% 0.83/1.07  apply (zenon_L465_); trivial.
% 0.83/1.07  (* end of lemma zenon_L466_ *)
% 0.83/1.07  assert (zenon_L467_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> False).
% 0.83/1.07  do 0 intro. intros zenon_Hd1 zenon_H253 zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H20c zenon_H20b zenon_H219 zenon_H2ba zenon_H2bb zenon_H2bc.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H253); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H254 ].
% 0.83/1.07  apply (zenon_L427_); trivial.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_H254); [ zenon_intro zenon_H92 | zenon_intro zenon_H24e ].
% 0.83/1.07  apply (zenon_L171_); trivial.
% 0.83/1.07  apply (zenon_L342_); trivial.
% 0.83/1.07  (* end of lemma zenon_L467_ *)
% 0.83/1.07  assert (zenon_L468_ : ((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.83/1.07  do 0 intro. intros zenon_H220 zenon_Hd9 zenon_H253 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H21 zenon_H22 zenon_H23 zenon_Hab.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.07  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.07  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.07  apply (zenon_L45_); trivial.
% 0.83/1.07  apply (zenon_L467_); trivial.
% 0.83/1.07  (* end of lemma zenon_L468_ *)
% 0.83/1.07  assert (zenon_L469_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H228 zenon_Hd9 zenon_H253 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H21 zenon_H22 zenon_H23 zenon_Hab zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.08  apply (zenon_L382_); trivial.
% 0.83/1.08  apply (zenon_L468_); trivial.
% 0.83/1.08  (* end of lemma zenon_L469_ *)
% 0.83/1.08  assert (zenon_L470_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c2_1 (a219)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H4b zenon_H100 zenon_H1e4 zenon_H10b zenon_H1b9 zenon_H10a zenon_H10c zenon_Heb zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H253 zenon_Hd9 zenon_H228.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.08  apply (zenon_L469_); trivial.
% 0.83/1.08  apply (zenon_L413_); trivial.
% 0.83/1.08  (* end of lemma zenon_L470_ *)
% 0.83/1.08  assert (zenon_L471_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H228 zenon_Hd9 zenon_H253 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H14e zenon_H150 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.08  apply (zenon_L382_); trivial.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.08  apply (zenon_L392_); trivial.
% 0.83/1.08  apply (zenon_L467_); trivial.
% 0.83/1.08  (* end of lemma zenon_L471_ *)
% 0.83/1.08  assert (zenon_L472_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H189 zenon_H100 zenon_Heb zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H150 zenon_H14e zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H253 zenon_Hd9 zenon_H228.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.08  apply (zenon_L471_); trivial.
% 0.83/1.08  apply (zenon_L416_); trivial.
% 0.83/1.08  (* end of lemma zenon_L472_ *)
% 0.83/1.08  assert (zenon_L473_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H4b zenon_H100 zenon_Heb zenon_H12f zenon_H12e zenon_H12d zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H253 zenon_Hd9 zenon_H228.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.08  apply (zenon_L469_); trivial.
% 0.83/1.08  apply (zenon_L313_); trivial.
% 0.83/1.08  (* end of lemma zenon_L473_ *)
% 0.83/1.08  assert (zenon_L474_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(c2_1 (a217))) -> (~(c3_1 (a217))) -> (c0_1 (a217)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H189 zenon_H4f zenon_H100 zenon_Heb zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H253 zenon_Hd9 zenon_H228 zenon_H178 zenon_H179 zenon_H17a zenon_H181 zenon_H183.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.08  apply (zenon_L110_); trivial.
% 0.83/1.08  apply (zenon_L473_); trivial.
% 0.83/1.08  (* end of lemma zenon_L474_ *)
% 0.83/1.08  assert (zenon_L475_ : ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(hskp13)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(hskp25)) -> (~(hskp19)) -> (~(c0_1 (a239))) -> (c2_1 (a239)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (ndr1_0) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H2c3 zenon_Hb zenon_Ha zenon_H9 zenon_H1a zenon_H165 zenon_H19f zenon_H19e zenon_H1ab zenon_H163 zenon_H7a zenon_H219 zenon_H20c zenon_H296 zenon_H7 zenon_H2ba zenon_H2bb zenon_H2bc.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H2c3); [ zenon_intro zenon_H8 | zenon_intro zenon_H2c4 ].
% 0.83/1.08  apply (zenon_L5_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H2c4); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H24e ].
% 0.83/1.08  apply (zenon_L442_); trivial.
% 0.83/1.08  apply (zenon_L342_); trivial.
% 0.83/1.08  (* end of lemma zenon_L475_ *)
% 0.83/1.08  assert (zenon_L476_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H228 zenon_H176 zenon_H60 zenon_H1a9 zenon_H9 zenon_Ha zenon_Hb zenon_H296 zenon_H1a zenon_H1ab zenon_H19e zenon_H19f zenon_H165 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H2c3 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.08  apply (zenon_L382_); trivial.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.83/1.08  apply (zenon_L475_); trivial.
% 0.83/1.08  apply (zenon_L329_); trivial.
% 0.83/1.08  (* end of lemma zenon_L476_ *)
% 0.83/1.08  assert (zenon_L477_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(hskp13)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp14)) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H100 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_Hd3 zenon_H150 zenon_H14e zenon_Ha9 zenon_H44 zenon_H47 zenon_Heb zenon_Hd9 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H165 zenon_H19f zenon_H19e zenon_H1ab zenon_H1a zenon_H296 zenon_Hb zenon_Ha zenon_H9 zenon_H1a9 zenon_H60 zenon_H176 zenon_H228.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.08  apply (zenon_L476_); trivial.
% 0.83/1.08  apply (zenon_L447_); trivial.
% 0.83/1.08  (* end of lemma zenon_L477_ *)
% 0.83/1.08  assert (zenon_L478_ : ((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp4)) -> (~(c0_1 (a244))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> (c2_1 (a219)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H171 zenon_Hd9 zenon_H23c zenon_H13a zenon_H7f zenon_H80 zenon_H81 zenon_H10a zenon_H10c zenon_H10b zenon_H23a zenon_H238 zenon_H20c zenon_H20b zenon_H219 zenon_H172 zenon_H21 zenon_H22 zenon_H23 zenon_Hab.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H171). zenon_intro zenon_H7. zenon_intro zenon_H173.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H173). zenon_intro zenon_H169. zenon_intro zenon_H174.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H174). zenon_intro zenon_H16a. zenon_intro zenon_H168.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.08  apply (zenon_L45_); trivial.
% 0.83/1.08  apply (zenon_L396_); trivial.
% 0.83/1.08  (* end of lemma zenon_L478_ *)
% 0.83/1.08  assert (zenon_L479_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> (~(hskp6)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(hskp13)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (~(c0_1 (a219))) -> (~(hskp4)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H4b zenon_H100 zenon_H2e3 zenon_H50 zenon_H1 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hd9 zenon_H23a zenon_H238 zenon_H7c zenon_H44 zenon_H76 zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H165 zenon_H19f zenon_H19e zenon_H1ab zenon_H1a zenon_H296 zenon_Hb zenon_Ha zenon_H9 zenon_Hab zenon_H172 zenon_H10b zenon_H10c zenon_H10a zenon_H13a zenon_H23c zenon_H176 zenon_Hfb zenon_H228.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.08  apply (zenon_L382_); trivial.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.08  apply (zenon_L391_); trivial.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.83/1.08  apply (zenon_L475_); trivial.
% 0.83/1.08  apply (zenon_L478_); trivial.
% 0.83/1.08  apply (zenon_L385_); trivial.
% 0.83/1.08  (* end of lemma zenon_L479_ *)
% 0.83/1.08  assert (zenon_L480_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (~(hskp19)) -> (~(hskp25)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (ndr1_0) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H275 zenon_H81 zenon_H80 zenon_Hb6 zenon_H7a zenon_H163 zenon_H1ab zenon_H19e zenon_H19f zenon_H165 zenon_H7 zenon_H2ba zenon_H2bb zenon_H2bc.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.83/1.08  apply (zenon_L58_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.83/1.08  apply (zenon_L305_); trivial.
% 0.83/1.08  apply (zenon_L342_); trivial.
% 0.83/1.08  (* end of lemma zenon_L480_ *)
% 0.83/1.08  assert (zenon_L481_ : ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> (~(hskp27)) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c0_1 (a239))) -> (~(c0_1 (a244))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (ndr1_0) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(hskp25)) -> (~(hskp19)) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(hskp0)) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H2d3 zenon_H78 zenon_H20b zenon_H20c zenon_H7c zenon_H219 zenon_H7f zenon_H172 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H7 zenon_H165 zenon_H19f zenon_H19e zenon_H1ab zenon_H163 zenon_H7a zenon_H80 zenon_H81 zenon_H275 zenon_H181.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H2d3); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H2d4 ].
% 0.83/1.08  apply (zenon_L184_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H2d4); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H182 ].
% 0.83/1.08  apply (zenon_L480_); trivial.
% 0.83/1.08  exact (zenon_H181 zenon_H182).
% 0.83/1.08  (* end of lemma zenon_L481_ *)
% 0.83/1.08  assert (zenon_L482_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp19)) -> (~(hskp25)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> False).
% 0.83/1.08  do 0 intro. intros zenon_Hd1 zenon_H275 zenon_H80 zenon_H81 zenon_H12d zenon_H12e zenon_H12f zenon_Heb zenon_H7a zenon_H163 zenon_H1ab zenon_H19e zenon_H19f zenon_H165 zenon_H2ba zenon_H2bb zenon_H2bc.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.83/1.08  apply (zenon_L103_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.83/1.08  apply (zenon_L305_); trivial.
% 0.83/1.08  apply (zenon_L342_); trivial.
% 0.83/1.08  (* end of lemma zenon_L482_ *)
% 0.83/1.08  assert (zenon_L483_ : ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c3_1 (a239))) -> (~(hskp19)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (c2_1 (a239)) -> (~(c0_1 (a239))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (ndr1_0) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp25)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp0)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_Hd9 zenon_H12d zenon_H12e zenon_H12f zenon_Heb zenon_H172 zenon_H20b zenon_H7a zenon_H7c zenon_H20c zenon_H219 zenon_H81 zenon_H80 zenon_H7f zenon_H7 zenon_H275 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1ab zenon_H19e zenon_H19f zenon_H163 zenon_H165 zenon_H181 zenon_H2d3.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.08  apply (zenon_L481_); trivial.
% 0.83/1.08  apply (zenon_L482_); trivial.
% 0.83/1.08  (* end of lemma zenon_L483_ *)
% 0.83/1.08  assert (zenon_L484_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> (~(hskp6)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp0)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(hskp0))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (~(c0_1 (a219))) -> (~(hskp4)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H4b zenon_H100 zenon_H2e3 zenon_H50 zenon_H1 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hd9 zenon_H23a zenon_H238 zenon_H7c zenon_H44 zenon_H76 zenon_H12d zenon_H12e zenon_H12f zenon_Heb zenon_H172 zenon_H275 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1ab zenon_H19e zenon_H19f zenon_H165 zenon_H181 zenon_H2d3 zenon_Hab zenon_H10b zenon_H10c zenon_H10a zenon_H13a zenon_H23c zenon_H176 zenon_Hfb zenon_H228.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.08  apply (zenon_L382_); trivial.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.08  apply (zenon_L391_); trivial.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.83/1.08  apply (zenon_L483_); trivial.
% 0.83/1.08  apply (zenon_L478_); trivial.
% 0.83/1.08  apply (zenon_L385_); trivial.
% 0.83/1.08  (* end of lemma zenon_L484_ *)
% 0.83/1.08  assert (zenon_L485_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> (~(hskp6)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(hskp13)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp14)) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H100 zenon_H2e3 zenon_H50 zenon_H1 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H165 zenon_H19f zenon_H19e zenon_H1ab zenon_H1a zenon_H296 zenon_Hb zenon_Ha zenon_H9 zenon_H1a9 zenon_H60 zenon_H176 zenon_H228.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.08  apply (zenon_L476_); trivial.
% 0.83/1.08  apply (zenon_L385_); trivial.
% 0.83/1.08  (* end of lemma zenon_L485_ *)
% 0.83/1.08  assert (zenon_L486_ : ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(hskp19)) -> (~(hskp27)) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> (~(c0_1 (a244))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (ndr1_0) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H2c3 zenon_Hb zenon_Ha zenon_H9 zenon_H7a zenon_H78 zenon_H20b zenon_H20c zenon_H7c zenon_H10a zenon_H10b zenon_H7f zenon_H80 zenon_H81 zenon_H172 zenon_H7 zenon_H2ba zenon_H2bb zenon_H2bc.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H2c3); [ zenon_intro zenon_H8 | zenon_intro zenon_H2c4 ].
% 0.83/1.08  apply (zenon_L5_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H2c4); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H24e ].
% 0.83/1.08  apply (zenon_L176_); trivial.
% 0.83/1.08  apply (zenon_L342_); trivial.
% 0.83/1.08  (* end of lemma zenon_L486_ *)
% 0.83/1.08  assert (zenon_L487_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> (~(hskp19)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (c2_1 (a219)) -> (~(c0_1 (a219))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_Hf8 zenon_Hd9 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_H12d zenon_H12e zenon_H12f zenon_Heb zenon_H9 zenon_Ha zenon_Hb zenon_H172 zenon_H20b zenon_H20c zenon_H7a zenon_H7c zenon_H10b zenon_H10a zenon_H2ba zenon_H2bb zenon_H2bc zenon_H2c3.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.08  apply (zenon_L486_); trivial.
% 0.83/1.08  apply (zenon_L104_); trivial.
% 0.83/1.08  (* end of lemma zenon_L487_ *)
% 0.83/1.08  assert (zenon_L488_ : ((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H220 zenon_Hd9 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_H21 zenon_H22 zenon_H23 zenon_Hab.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.08  apply (zenon_L45_); trivial.
% 0.83/1.08  apply (zenon_L172_); trivial.
% 0.83/1.08  (* end of lemma zenon_L488_ *)
% 0.83/1.08  assert (zenon_L489_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H228 zenon_Hd9 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_H21 zenon_H22 zenon_H23 zenon_Hab zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.08  apply (zenon_L382_); trivial.
% 0.83/1.08  apply (zenon_L488_); trivial.
% 0.83/1.08  (* end of lemma zenon_L489_ *)
% 0.83/1.08  assert (zenon_L490_ : ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp14)) -> (~(hskp8)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((hskp8)\/((hskp13)\/(hskp18))) -> (~(hskp13)) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_Hff zenon_Hfb zenon_Hf6 zenon_Heb zenon_He0 zenon_H69 zenon_H65 zenon_H60 zenon_H18 zenon_H54 zenon_H1e zenon_H1a zenon_H228 zenon_Hd9 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_Hab zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_Ha9 zenon_H150 zenon_H14e zenon_Hd3 zenon_H44 zenon_H47 zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H100 zenon_H4f zenon_H101.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.83/1.08  apply (zenon_L30_); trivial.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.08  apply (zenon_L12_); trivial.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.08  apply (zenon_L489_); trivial.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.83/1.08  apply (zenon_L44_); trivial.
% 0.83/1.08  apply (zenon_L446_); trivial.
% 0.83/1.08  apply (zenon_L64_); trivial.
% 0.83/1.08  (* end of lemma zenon_L490_ *)
% 0.83/1.08  assert (zenon_L491_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c2_1 (a219)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H4b zenon_H100 zenon_H1e4 zenon_H10b zenon_H1b9 zenon_H10a zenon_H10c zenon_Heb zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9 zenon_H228.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.08  apply (zenon_L489_); trivial.
% 0.83/1.08  apply (zenon_L413_); trivial.
% 0.83/1.08  (* end of lemma zenon_L491_ *)
% 0.83/1.08  assert (zenon_L492_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(hskp8)) -> (~(hskp13)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H12a zenon_H4f zenon_H100 zenon_H1e4 zenon_H1b9 zenon_Heb zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9 zenon_H228 zenon_H18 zenon_H1a zenon_H1e.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.08  apply (zenon_L12_); trivial.
% 0.83/1.08  apply (zenon_L491_); trivial.
% 0.83/1.08  (* end of lemma zenon_L492_ *)
% 0.83/1.08  assert (zenon_L493_ : ((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H220 zenon_Hd9 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.08  apply (zenon_L392_); trivial.
% 0.83/1.08  apply (zenon_L172_); trivial.
% 0.83/1.08  (* end of lemma zenon_L493_ *)
% 0.83/1.08  assert (zenon_L494_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H228 zenon_Hd9 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_H14e zenon_H150 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.08  apply (zenon_L382_); trivial.
% 0.83/1.08  apply (zenon_L493_); trivial.
% 0.83/1.08  (* end of lemma zenon_L494_ *)
% 0.83/1.08  assert (zenon_L495_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H189 zenon_H100 zenon_Heb zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H150 zenon_H14e zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9 zenon_H228.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.08  apply (zenon_L494_); trivial.
% 0.83/1.08  apply (zenon_L416_); trivial.
% 0.83/1.08  (* end of lemma zenon_L495_ *)
% 0.83/1.08  assert (zenon_L496_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp8)) -> (~(hskp14)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> (~(c2_1 (a217))) -> (~(c3_1 (a217))) -> (c0_1 (a217)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_Hfc zenon_H4f zenon_Hfb zenon_Hd9 zenon_Hf6 zenon_Heb zenon_Hab zenon_H18 zenon_H60 zenon_He0 zenon_H178 zenon_H179 zenon_H17a zenon_H181 zenon_H183.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.08  apply (zenon_L110_); trivial.
% 0.83/1.08  apply (zenon_L63_); trivial.
% 0.83/1.08  (* end of lemma zenon_L496_ *)
% 0.83/1.08  assert (zenon_L497_ : ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp14)) -> (~(hskp8)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> (~(hskp0)) -> (c0_1 (a217)) -> (~(c3_1 (a217))) -> (~(c2_1 (a217))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_Hff zenon_Hfb zenon_Hf6 zenon_Heb zenon_He0 zenon_H69 zenon_H65 zenon_H60 zenon_H18 zenon_H54 zenon_H183 zenon_H181 zenon_H17a zenon_H179 zenon_H178 zenon_H228 zenon_Hd9 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_Hab zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_Ha9 zenon_Hd3 zenon_H44 zenon_H47 zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H100 zenon_H4f zenon_H101.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.83/1.08  apply (zenon_L30_); trivial.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.08  apply (zenon_L110_); trivial.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.08  apply (zenon_L489_); trivial.
% 0.83/1.08  apply (zenon_L55_); trivial.
% 0.83/1.08  apply (zenon_L496_); trivial.
% 0.83/1.08  (* end of lemma zenon_L497_ *)
% 0.83/1.08  assert (zenon_L498_ : ((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217)))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp3)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp8)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H185 zenon_H129 zenon_H1e4 zenon_H1b9 zenon_H101 zenon_H4f zenon_H100 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_H47 zenon_H44 zenon_Hd3 zenon_Ha9 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9 zenon_H228 zenon_H181 zenon_H183 zenon_H54 zenon_H18 zenon_H65 zenon_H69 zenon_He0 zenon_Heb zenon_Hf6 zenon_Hfb zenon_Hff.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.83/1.08  apply (zenon_L497_); trivial.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.08  apply (zenon_L110_); trivial.
% 0.83/1.08  apply (zenon_L491_); trivial.
% 0.83/1.08  (* end of lemma zenon_L498_ *)
% 0.83/1.08  assert (zenon_L499_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (c3_1 (a212)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H100 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_Hd3 zenon_Ha9 zenon_H19e zenon_H1ab zenon_H19f zenon_H44 zenon_H47 zenon_Heb zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H150 zenon_H14e zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9 zenon_H228.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.08  apply (zenon_L494_); trivial.
% 0.83/1.08  apply (zenon_L447_); trivial.
% 0.83/1.08  (* end of lemma zenon_L499_ *)
% 0.83/1.08  assert (zenon_L500_ : ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (c2_1 (a239)) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (~(c0_1 (a239))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (ndr1_0) -> (~(hskp13)) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H296 zenon_H20c zenon_H1c2 zenon_H219 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H7 zenon_H1a.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H296); [ zenon_intro zenon_H167 | zenon_intro zenon_H297 ].
% 0.83/1.08  apply (zenon_L183_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H297); [ zenon_intro zenon_H272 | zenon_intro zenon_H1b ].
% 0.83/1.08  apply (zenon_L241_); trivial.
% 0.83/1.08  exact (zenon_H1a zenon_H1b).
% 0.83/1.08  (* end of lemma zenon_L500_ *)
% 0.83/1.08  assert (zenon_L501_ : (forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))) -> (ndr1_0) -> (~(c2_1 (a238))) -> (forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59)))))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H152 zenon_H7 zenon_Hb7 zenon_Hc0 zenon_Hb8 zenon_Hb9.
% 0.83/1.08  generalize (zenon_H152 (a238)). zenon_intro zenon_H2ef.
% 0.83/1.08  apply (zenon_imply_s _ _ zenon_H2ef); [ zenon_intro zenon_H6 | zenon_intro zenon_H2f0 ].
% 0.83/1.08  exact (zenon_H6 zenon_H7).
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H2f0); [ zenon_intro zenon_Hbd | zenon_intro zenon_H2f1 ].
% 0.83/1.08  exact (zenon_Hb7 zenon_Hbd).
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H2f1); [ zenon_intro zenon_Hc1 | zenon_intro zenon_Hbe ].
% 0.83/1.08  apply (zenon_L48_); trivial.
% 0.83/1.08  exact (zenon_Hbe zenon_Hb9).
% 0.83/1.08  (* end of lemma zenon_L501_ *)
% 0.83/1.08  assert (zenon_L502_ : ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (~(c2_1 (a238))) -> (ndr1_0) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.83/1.08  do 0 intro. intros zenon_Heb zenon_H152 zenon_Hb9 zenon_Hb8 zenon_Hb7 zenon_H7 zenon_H9c zenon_H9d zenon_H9e.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Heb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hec ].
% 0.83/1.08  apply (zenon_L501_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hec); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H9b ].
% 0.83/1.08  apply (zenon_L47_); trivial.
% 0.83/1.08  apply (zenon_L40_); trivial.
% 0.83/1.08  (* end of lemma zenon_L502_ *)
% 0.83/1.08  assert (zenon_L503_ : ((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c3_1 (a233))) -> (~(c2_1 (a233))) -> (~(c1_1 (a233))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (~(c2_1 (a238))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H220 zenon_Hfb zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Hab zenon_H23 zenon_H22 zenon_H21 zenon_H296 zenon_H1a zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H76 zenon_H44 zenon_Heb zenon_Hb9 zenon_Hb8 zenon_Hb7 zenon_H277 zenon_Hd9.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.08  apply (zenon_L45_); trivial.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.83/1.08  apply (zenon_L500_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.83/1.08  apply (zenon_L389_); trivial.
% 0.83/1.08  apply (zenon_L502_); trivial.
% 0.83/1.08  apply (zenon_L62_); trivial.
% 0.83/1.08  (* end of lemma zenon_L503_ *)
% 0.83/1.08  assert (zenon_L504_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c3_1 (a233))) -> (~(c2_1 (a233))) -> (~(c1_1 (a233))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> (~(hskp6)) -> (~(hskp10)) -> ((hskp6)\/((hskp10)\/(hskp20))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_Hdc zenon_H228 zenon_Hfb zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Hab zenon_H23 zenon_H22 zenon_H21 zenon_H296 zenon_H1a zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H76 zenon_H44 zenon_Heb zenon_H277 zenon_Hd9 zenon_H1 zenon_H238 zenon_H2ed.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.08  apply (zenon_L425_); trivial.
% 0.83/1.08  apply (zenon_L503_); trivial.
% 0.83/1.08  (* end of lemma zenon_L504_ *)
% 0.83/1.08  assert (zenon_L505_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((hskp6)\/((hskp10)\/(hskp20))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(hskp16)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp4)) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> (c2_1 (a219)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H4b zenon_H100 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Hab zenon_H296 zenon_H1a zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_Heb zenon_H277 zenon_H2ed zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hd9 zenon_H23a zenon_H238 zenon_H7c zenon_H44 zenon_H76 zenon_H2e zenon_H2c zenon_H23c zenon_H13a zenon_H10a zenon_H10c zenon_H10b zenon_H270 zenon_H172 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_H4c zenon_Hfb zenon_H228.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.08  apply (zenon_L402_); trivial.
% 0.83/1.08  apply (zenon_L504_); trivial.
% 0.83/1.08  (* end of lemma zenon_L505_ *)
% 0.83/1.08  assert (zenon_L506_ : ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((hskp6)\/((hskp10)\/(hskp20))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(hskp16)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp4)) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> (c2_1 (a219)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (ndr1_0) -> (~(c2_1 (a217))) -> (~(c3_1 (a217))) -> (c0_1 (a217)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H4f zenon_H100 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Hab zenon_H296 zenon_H1a zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_Heb zenon_H277 zenon_H2ed zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hd9 zenon_H23a zenon_H238 zenon_H7c zenon_H44 zenon_H76 zenon_H2e zenon_H2c zenon_H23c zenon_H13a zenon_H10a zenon_H10c zenon_H10b zenon_H270 zenon_H172 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_H4c zenon_Hfb zenon_H228 zenon_H7 zenon_H178 zenon_H179 zenon_H17a zenon_H181 zenon_H183.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.08  apply (zenon_L110_); trivial.
% 0.83/1.08  apply (zenon_L505_); trivial.
% 0.83/1.08  (* end of lemma zenon_L506_ *)
% 0.83/1.08  assert (zenon_L507_ : ((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> (~(c1_1 (a231))) -> (~(hskp17)) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H15f zenon_H217 zenon_H6d zenon_H6c zenon_H6b zenon_H62.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H217); [ zenon_intro zenon_H6a | zenon_intro zenon_H218 ].
% 0.83/1.08  apply (zenon_L31_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H218); [ zenon_intro zenon_H152 | zenon_intro zenon_H63 ].
% 0.83/1.08  apply (zenon_L89_); trivial.
% 0.83/1.08  exact (zenon_H62 zenon_H63).
% 0.83/1.08  (* end of lemma zenon_L507_ *)
% 0.83/1.08  assert (zenon_L508_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> (~(hskp17)) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> (~(c1_1 (a231))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp22)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H162 zenon_H217 zenon_H62 zenon_H6d zenon_H6c zenon_H6b zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H74 zenon_H205.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.83/1.08  apply (zenon_L159_); trivial.
% 0.83/1.08  apply (zenon_L507_); trivial.
% 0.83/1.08  (* end of lemma zenon_L508_ *)
% 0.83/1.08  assert (zenon_L509_ : ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> (~(c1_1 (a231))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> (~(hskp17)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_Hfb zenon_Hd9 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Heb zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H6b zenon_H6c zenon_H6d zenon_H62 zenon_H217 zenon_H162.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.08  apply (zenon_L508_); trivial.
% 0.83/1.08  apply (zenon_L451_); trivial.
% 0.83/1.08  (* end of lemma zenon_L509_ *)
% 0.83/1.08  assert (zenon_L510_ : ((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> (~(c1_1 (a231))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H106 zenon_Hfb zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_H6b zenon_H6c zenon_H6d zenon_H44 zenon_H76.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.08  apply (zenon_L33_); trivial.
% 0.83/1.08  apply (zenon_L179_); trivial.
% 0.83/1.08  (* end of lemma zenon_L510_ *)
% 0.83/1.08  assert (zenon_L511_ : ((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H103 zenon_H101 zenon_H44 zenon_H76 zenon_H162 zenon_H217 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H150 zenon_H14e zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Heb zenon_Hed zenon_Hee zenon_Hef zenon_Hf6 zenon_Hd9 zenon_Hfb.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.83/1.08  apply (zenon_L509_); trivial.
% 0.83/1.08  apply (zenon_L510_); trivial.
% 0.83/1.08  (* end of lemma zenon_L511_ *)
% 0.83/1.08  assert (zenon_L512_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> (~(hskp10)) -> ((hskp6)\/((hskp10)\/(hskp20))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> (~(hskp6)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(hskp13)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp14)) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H4b zenon_H100 zenon_Hfb zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Hab zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H76 zenon_H44 zenon_Heb zenon_H277 zenon_Hd9 zenon_H238 zenon_H2ed zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H2c6 zenon_H2b8 zenon_H1 zenon_H165 zenon_H19f zenon_H19e zenon_H1ab zenon_H1a zenon_H296 zenon_H1a9 zenon_H60 zenon_H176 zenon_H228.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.08  apply (zenon_L444_); trivial.
% 0.83/1.08  apply (zenon_L504_); trivial.
% 0.83/1.08  (* end of lemma zenon_L512_ *)
% 0.83/1.08  assert (zenon_L513_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(c1_1 (a231))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> (~(hskp17)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H4b zenon_Hfb zenon_Hd9 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Heb zenon_Hab zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H6b zenon_H6c zenon_H6d zenon_H62 zenon_H217 zenon_H162.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.83/1.08  apply (zenon_L508_); trivial.
% 0.83/1.08  apply (zenon_L62_); trivial.
% 0.83/1.08  (* end of lemma zenon_L513_ *)
% 0.83/1.08  assert (zenon_L514_ : ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(c1_1 (a231))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> (~(hskp17)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> (ndr1_0) -> (~(c2_1 (a217))) -> (~(c3_1 (a217))) -> (c0_1 (a217)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H4f zenon_Hfb zenon_Hd9 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Heb zenon_Hab zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H6b zenon_H6c zenon_H6d zenon_H62 zenon_H217 zenon_H162 zenon_H7 zenon_H178 zenon_H179 zenon_H17a zenon_H181 zenon_H183.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.08  apply (zenon_L110_); trivial.
% 0.83/1.08  apply (zenon_L513_); trivial.
% 0.83/1.08  (* end of lemma zenon_L514_ *)
% 0.83/1.08  assert (zenon_L515_ : ((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> (~(hskp0)) -> (c0_1 (a217)) -> (~(c3_1 (a217))) -> (~(c2_1 (a217))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H103 zenon_H101 zenon_H44 zenon_H76 zenon_H183 zenon_H181 zenon_H17a zenon_H179 zenon_H178 zenon_H162 zenon_H217 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_Hab zenon_Heb zenon_Hed zenon_Hee zenon_Hef zenon_Hf6 zenon_Hd9 zenon_Hfb zenon_H4f.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.83/1.08  apply (zenon_L514_); trivial.
% 0.83/1.08  apply (zenon_L510_); trivial.
% 0.83/1.08  (* end of lemma zenon_L515_ *)
% 0.83/1.08  assert (zenon_L516_ : ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (~(c1_1 (a205))) -> (ndr1_0) -> (~(hskp24)) -> (~(hskp22)) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H205 zenon_H1cc zenon_H1c5 zenon_H1c2 zenon_H1c4 zenon_H7 zenon_H138 zenon_H74.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H205); [ zenon_intro zenon_H1ea | zenon_intro zenon_H206 ].
% 0.83/1.08  generalize (zenon_H1ea (a205)). zenon_intro zenon_H26a.
% 0.83/1.08  apply (zenon_imply_s _ _ zenon_H26a); [ zenon_intro zenon_H6 | zenon_intro zenon_H26b ].
% 0.83/1.08  exact (zenon_H6 zenon_H7).
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H26b); [ zenon_intro zenon_H1cb | zenon_intro zenon_H26c ].
% 0.83/1.08  exact (zenon_H1c4 zenon_H1cb).
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H26c); [ zenon_intro zenon_H1c3 | zenon_intro zenon_H1d0 ].
% 0.83/1.08  apply (zenon_L142_); trivial.
% 0.83/1.08  exact (zenon_H1d0 zenon_H1cc).
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H206); [ zenon_intro zenon_H139 | zenon_intro zenon_H75 ].
% 0.83/1.08  exact (zenon_H138 zenon_H139).
% 0.83/1.08  exact (zenon_H74 zenon_H75).
% 0.83/1.08  (* end of lemma zenon_L516_ *)
% 0.83/1.08  assert (zenon_L517_ : ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp22)) -> (~(hskp24)) -> (ndr1_0) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(hskp6)) -> (~(hskp7)) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H2c6 zenon_H74 zenon_H138 zenon_H7 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H205 zenon_H1 zenon_H2b8.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H2c6); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H2c8 ].
% 0.83/1.08  apply (zenon_L516_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H2c8); [ zenon_intro zenon_H2 | zenon_intro zenon_H2b9 ].
% 0.83/1.08  exact (zenon_H1 zenon_H2).
% 0.83/1.08  exact (zenon_H2b8 zenon_H2b9).
% 0.83/1.08  (* end of lemma zenon_L517_ *)
% 0.83/1.08  assert (zenon_L518_ : ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9)))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (c3_1 (a212)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (~(hskp3)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (~(c2_1 (a238))) -> (ndr1_0) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.83/1.08  do 0 intro. intros zenon_Heb zenon_H242 zenon_H241 zenon_H22e zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H47 zenon_H19f zenon_H1ab zenon_H19e zenon_H44 zenon_H275 zenon_Hb9 zenon_Hb8 zenon_Hb7 zenon_H7 zenon_H9c zenon_H9d zenon_H9e.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Heb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hec ].
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.83/1.08  apply (zenon_L136_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.83/1.08  apply (zenon_L241_); trivial.
% 0.83/1.08  apply (zenon_L325_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hec); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H9b ].
% 0.83/1.08  apply (zenon_L47_); trivial.
% 0.83/1.08  apply (zenon_L40_); trivial.
% 0.83/1.08  (* end of lemma zenon_L518_ *)
% 0.83/1.08  assert (zenon_L519_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c2_1 (a198)) -> (c1_1 (a198)) -> (c0_1 (a198)) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(hskp3)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (c3_1 (a212)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (ndr1_0) -> (~(hskp11)) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H23e zenon_H9e zenon_H9d zenon_H9c zenon_Hb7 zenon_Hb8 zenon_Hb9 zenon_H275 zenon_H44 zenon_H19e zenon_H1ab zenon_H19f zenon_H47 zenon_H241 zenon_H242 zenon_Heb zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H1c2 zenon_H7 zenon_H121.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H23e); [ zenon_intro zenon_H22e | zenon_intro zenon_H23f ].
% 0.83/1.08  apply (zenon_L518_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H23f); [ zenon_intro zenon_H3a | zenon_intro zenon_H122 ].
% 0.83/1.08  apply (zenon_L143_); trivial.
% 0.83/1.08  exact (zenon_H121 zenon_H122).
% 0.83/1.08  (* end of lemma zenon_L519_ *)
% 0.83/1.08  assert (zenon_L520_ : (forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))) -> (ndr1_0) -> (~(c2_1 (a238))) -> (forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y)))))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H152 zenon_H7 zenon_Hb7 zenon_H1da zenon_Hb8 zenon_Hb9.
% 0.83/1.08  generalize (zenon_H152 (a238)). zenon_intro zenon_H2ef.
% 0.83/1.08  apply (zenon_imply_s _ _ zenon_H2ef); [ zenon_intro zenon_H6 | zenon_intro zenon_H2f0 ].
% 0.83/1.08  exact (zenon_H6 zenon_H7).
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H2f0); [ zenon_intro zenon_Hbd | zenon_intro zenon_H2f1 ].
% 0.83/1.08  exact (zenon_Hb7 zenon_Hbd).
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H2f1); [ zenon_intro zenon_Hc1 | zenon_intro zenon_Hbe ].
% 0.83/1.08  apply (zenon_L410_); trivial.
% 0.83/1.08  exact (zenon_Hbe zenon_Hb9).
% 0.83/1.08  (* end of lemma zenon_L520_ *)
% 0.83/1.08  assert (zenon_L521_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp11)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (c3_1 (a212)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(hskp18)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(hskp22)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (ndr1_0) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H162 zenon_Hd9 zenon_H128 zenon_H2f2 zenon_H23e zenon_H121 zenon_H275 zenon_H242 zenon_H241 zenon_Hb7 zenon_Hb8 zenon_Hb9 zenon_H19e zenon_H1ab zenon_H19f zenon_H44 zenon_H47 zenon_Heb zenon_H277 zenon_Hb zenon_Ha zenon_H9 zenon_H1c zenon_H156 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150 zenon_H205 zenon_H74 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H7 zenon_H1 zenon_H2b8 zenon_H2c6.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.83/1.08  apply (zenon_L517_); trivial.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.08  apply (zenon_L392_); trivial.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H128); [ zenon_intro zenon_H113 | zenon_intro zenon_H123 ].
% 0.83/1.08  apply (zenon_L90_); trivial.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H123). zenon_intro zenon_H7. zenon_intro zenon_H125.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H125). zenon_intro zenon_H118. zenon_intro zenon_H126.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H126). zenon_intro zenon_H119. zenon_intro zenon_H11a.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H2f2); [ zenon_intro zenon_H8 | zenon_intro zenon_H2f3 ].
% 0.83/1.08  apply (zenon_L5_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H2f3); [ zenon_intro zenon_H1da | zenon_intro zenon_H117 ].
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.83/1.08  apply (zenon_L519_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.83/1.08  apply (zenon_L518_); trivial.
% 0.83/1.08  apply (zenon_L520_); trivial.
% 0.83/1.08  apply (zenon_L69_); trivial.
% 0.83/1.08  (* end of lemma zenon_L521_ *)
% 0.83/1.08  assert (zenon_L522_ : ((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c2_1 (a198)) -> (c1_1 (a198)) -> (c0_1 (a198)) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(hskp3)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (c3_1 (a212)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp11)) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H46 zenon_H23e zenon_H9e zenon_H9d zenon_H9c zenon_Hb7 zenon_Hb8 zenon_Hb9 zenon_H275 zenon_H44 zenon_H19e zenon_H1ab zenon_H19f zenon_H47 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H241 zenon_H242 zenon_Heb zenon_H121.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H46). zenon_intro zenon_H7. zenon_intro zenon_H48.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H48). zenon_intro zenon_H3b. zenon_intro zenon_H49.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H49). zenon_intro zenon_H3c. zenon_intro zenon_H3d.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H23e); [ zenon_intro zenon_H22e | zenon_intro zenon_H23f ].
% 0.83/1.08  apply (zenon_L518_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H23f); [ zenon_intro zenon_H3a | zenon_intro zenon_H122 ].
% 0.83/1.08  apply (zenon_L18_); trivial.
% 0.83/1.08  exact (zenon_H121 zenon_H122).
% 0.83/1.08  (* end of lemma zenon_L522_ *)
% 0.83/1.08  assert (zenon_L523_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp11)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (c3_1 (a212)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.83/1.08  do 0 intro. intros zenon_Hdc zenon_Hd9 zenon_H4c zenon_H23e zenon_H121 zenon_H275 zenon_H242 zenon_H241 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H19e zenon_H1ab zenon_H19f zenon_H44 zenon_H47 zenon_Heb zenon_H2c zenon_H2e zenon_H21 zenon_H22 zenon_H23 zenon_Hab.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.08  apply (zenon_L45_); trivial.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H4c); [ zenon_intro zenon_H2a | zenon_intro zenon_H46 ].
% 0.83/1.08  apply (zenon_L16_); trivial.
% 0.83/1.08  apply (zenon_L522_); trivial.
% 0.83/1.08  (* end of lemma zenon_L523_ *)
% 0.83/1.08  assert (zenon_L524_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp11)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (c3_1 (a212)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H4b zenon_H100 zenon_H4c zenon_H23e zenon_H121 zenon_H275 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H19e zenon_H1ab zenon_H19f zenon_H44 zenon_H47 zenon_Heb zenon_H2c zenon_H2e zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_H251 zenon_H181 zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_Hd9 zenon_H228.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.08  apply (zenon_L431_); trivial.
% 0.83/1.08  apply (zenon_L523_); trivial.
% 0.83/1.08  (* end of lemma zenon_L524_ *)
% 0.83/1.08  assert (zenon_L525_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp4)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (c3_1 (a212)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_Hdc zenon_Hd9 zenon_H23c zenon_H13a zenon_H275 zenon_H242 zenon_H241 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H19e zenon_H1ab zenon_H19f zenon_H44 zenon_H47 zenon_H10a zenon_H10c zenon_Heb zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.83/1.08  apply (zenon_L392_); trivial.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H23c); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H23d ].
% 0.83/1.08  apply (zenon_L409_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H23d); [ zenon_intro zenon_H22e | zenon_intro zenon_H13b ].
% 0.83/1.08  apply (zenon_L518_); trivial.
% 0.83/1.08  exact (zenon_H13a zenon_H13b).
% 0.83/1.08  (* end of lemma zenon_L525_ *)
% 0.83/1.08  assert (zenon_L526_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))) -> (c3_1 (a212)) -> (forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))) -> (c0_1 (a212)) -> (ndr1_0) -> (~(hskp11)) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H23e zenon_H242 zenon_H241 zenon_H24e zenon_H19f zenon_H152 zenon_H19e zenon_H7 zenon_H121.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H23e); [ zenon_intro zenon_H22e | zenon_intro zenon_H23f ].
% 0.83/1.08  apply (zenon_L325_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H23f); [ zenon_intro zenon_H3a | zenon_intro zenon_H122 ].
% 0.83/1.08  apply (zenon_L117_); trivial.
% 0.83/1.08  exact (zenon_H121 zenon_H122).
% 0.83/1.08  (* end of lemma zenon_L526_ *)
% 0.83/1.08  assert (zenon_L527_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H228 zenon_H176 zenon_H60 zenon_H1a9 zenon_H9 zenon_Ha zenon_Hb zenon_H296 zenon_H1a zenon_H1ab zenon_H19e zenon_H19f zenon_H165 zenon_H277 zenon_H121 zenon_H23e zenon_H242 zenon_H241 zenon_H2c3 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.83/1.08  apply (zenon_L382_); trivial.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.83/1.08  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H2c3); [ zenon_intro zenon_H8 | zenon_intro zenon_H2c4 ].
% 0.83/1.08  apply (zenon_L5_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H2c4); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H24e ].
% 0.83/1.08  apply (zenon_L442_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.83/1.08  apply (zenon_L442_); trivial.
% 0.83/1.08  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.83/1.08  apply (zenon_L325_); trivial.
% 0.83/1.08  apply (zenon_L526_); trivial.
% 0.83/1.08  apply (zenon_L329_); trivial.
% 0.83/1.08  (* end of lemma zenon_L527_ *)
% 0.83/1.08  assert (zenon_L528_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> (~(hskp6)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp11)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(hskp13)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp14)) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.83/1.08  do 0 intro. intros zenon_H100 zenon_H2e3 zenon_H50 zenon_H1 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H2c3 zenon_H241 zenon_H242 zenon_H23e zenon_H121 zenon_H277 zenon_H165 zenon_H19f zenon_H19e zenon_H1ab zenon_H1a zenon_H296 zenon_Hb zenon_Ha zenon_H9 zenon_H1a9 zenon_H60 zenon_H176 zenon_H228.
% 0.83/1.09  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.83/1.09  apply (zenon_L527_); trivial.
% 0.83/1.09  apply (zenon_L385_); trivial.
% 0.83/1.09  (* end of lemma zenon_L528_ *)
% 0.83/1.09  assert (zenon_L529_ : ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp11)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (c3_1 (a212)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (ndr1_0) -> (~(c2_1 (a217))) -> (~(c3_1 (a217))) -> (c0_1 (a217)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> False).
% 0.83/1.09  do 0 intro. intros zenon_H4f zenon_H100 zenon_H4c zenon_H23e zenon_H121 zenon_H275 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H19e zenon_H1ab zenon_H19f zenon_H44 zenon_H47 zenon_Heb zenon_H2c zenon_H2e zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_H251 zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_Hd9 zenon_H228 zenon_H7 zenon_H178 zenon_H179 zenon_H17a zenon_H181 zenon_H183.
% 0.83/1.09  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.83/1.09  apply (zenon_L110_); trivial.
% 0.83/1.09  apply (zenon_L524_); trivial.
% 0.83/1.09  (* end of lemma zenon_L529_ *)
% 0.83/1.09  assert (zenon_L530_ : ((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216)))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/(hskp3))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (~(hskp3)) -> False).
% 0.83/1.09  do 0 intro. intros zenon_H196 zenon_H2f4 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H44.
% 0.83/1.09  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.83/1.09  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.83/1.09  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.83/1.09  apply (zenon_or_s _ _ zenon_H2f4); [ zenon_intro zenon_H18c | zenon_intro zenon_H2f5 ].
% 0.93/1.09  apply (zenon_L113_); trivial.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H2f5); [ zenon_intro zenon_H147 | zenon_intro zenon_H45 ].
% 0.93/1.09  apply (zenon_L381_); trivial.
% 0.93/1.09  exact (zenon_H44 zenon_H45).
% 0.93/1.09  (* end of lemma zenon_L530_ *)
% 0.93/1.09  assert (zenon_L531_ : ((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(hskp13)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H220 zenon_H2c3 zenon_Hb zenon_Ha zenon_H9 zenon_H1a zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H296 zenon_H2ba zenon_H2bb zenon_H2bc.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H2c3); [ zenon_intro zenon_H8 | zenon_intro zenon_H2c4 ].
% 0.93/1.09  apply (zenon_L5_); trivial.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H2c4); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H24e ].
% 0.93/1.09  apply (zenon_L500_); trivial.
% 0.93/1.09  apply (zenon_L342_); trivial.
% 0.93/1.09  (* end of lemma zenon_L531_ *)
% 0.93/1.09  assert (zenon_L532_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(hskp13)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(hskp6)) -> (~(hskp10)) -> ((hskp6)\/((hskp10)\/(hskp20))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H228 zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H1a zenon_H296 zenon_Hb zenon_Ha zenon_H9 zenon_H1 zenon_H238 zenon_H2ed.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.09  apply (zenon_L425_); trivial.
% 0.93/1.09  apply (zenon_L531_); trivial.
% 0.93/1.09  (* end of lemma zenon_L532_ *)
% 0.93/1.09  assert (zenon_L533_ : ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(hskp22)) -> (~(hskp24)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (ndr1_0) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H2c3 zenon_Hb zenon_Ha zenon_H9 zenon_H74 zenon_H138 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H205 zenon_H7 zenon_H2ba zenon_H2bb zenon_H2bc.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H2c3); [ zenon_intro zenon_H8 | zenon_intro zenon_H2c4 ].
% 0.93/1.09  apply (zenon_L5_); trivial.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H2c4); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H24e ].
% 0.93/1.09  apply (zenon_L516_); trivial.
% 0.93/1.09  apply (zenon_L342_); trivial.
% 0.93/1.09  (* end of lemma zenon_L533_ *)
% 0.93/1.09  assert (zenon_L534_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a249)) -> (~(c2_1 (a249))) -> (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (ndr1_0) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H275 zenon_H140 zenon_H13e zenon_Hb6 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H7 zenon_H2ba zenon_H2bb zenon_H2bc.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.93/1.09  apply (zenon_L256_); trivial.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.93/1.09  apply (zenon_L241_); trivial.
% 0.93/1.09  apply (zenon_L342_); trivial.
% 0.93/1.09  (* end of lemma zenon_L534_ *)
% 0.93/1.09  assert (zenon_L535_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c2_1 (a249))) -> (c3_1 (a249)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_Hd1 zenon_Heb zenon_H12f zenon_H12e zenon_H12d zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H13e zenon_H140 zenon_H275.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Heb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hec ].
% 0.93/1.09  apply (zenon_L75_); trivial.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Hec); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H9b ].
% 0.93/1.09  apply (zenon_L534_); trivial.
% 0.93/1.09  apply (zenon_L40_); trivial.
% 0.93/1.09  (* end of lemma zenon_L535_ *)
% 0.93/1.09  assert (zenon_L536_ : ((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp19)) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(hskp17)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H15f zenon_Hd9 zenon_Heb zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H2ba zenon_H2bb zenon_H2bc zenon_H275 zenon_H12f zenon_H12e zenon_H12d zenon_H7c zenon_H7a zenon_H20c zenon_H20b zenon_H62 zenon_H217.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.09  apply (zenon_L170_); trivial.
% 0.93/1.09  apply (zenon_L535_); trivial.
% 0.93/1.09  (* end of lemma zenon_L536_ *)
% 0.93/1.09  assert (zenon_L537_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (ndr1_0) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H275 zenon_H81 zenon_H80 zenon_Hb6 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H7 zenon_H2ba zenon_H2bb zenon_H2bc.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.93/1.09  apply (zenon_L58_); trivial.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.93/1.09  apply (zenon_L241_); trivial.
% 0.93/1.09  apply (zenon_L342_); trivial.
% 0.93/1.09  (* end of lemma zenon_L537_ *)
% 0.93/1.09  assert (zenon_L538_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_Hd1 zenon_Heb zenon_H12f zenon_H12e zenon_H12d zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H80 zenon_H81 zenon_H275.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Heb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hec ].
% 0.93/1.09  apply (zenon_L75_); trivial.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Hec); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H9b ].
% 0.93/1.09  apply (zenon_L537_); trivial.
% 0.93/1.09  apply (zenon_L40_); trivial.
% 0.93/1.09  (* end of lemma zenon_L538_ *)
% 0.93/1.09  assert (zenon_L539_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> (~(hskp19)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (c2_1 (a219)) -> (~(c0_1 (a219))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_Hf8 zenon_Hd9 zenon_Heb zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H275 zenon_H12f zenon_H12e zenon_H12d zenon_H9 zenon_Ha zenon_Hb zenon_H172 zenon_H20b zenon_H20c zenon_H7a zenon_H7c zenon_H10b zenon_H10a zenon_H2ba zenon_H2bb zenon_H2bc zenon_H2c3.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.09  apply (zenon_L486_); trivial.
% 0.93/1.09  apply (zenon_L538_); trivial.
% 0.93/1.09  (* end of lemma zenon_L539_ *)
% 0.93/1.09  assert (zenon_L540_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c2_1 (a219)) -> (~(c0_1 (a219))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> (~(hskp17)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H228 zenon_Hfb zenon_H172 zenon_H10b zenon_H10a zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H205 zenon_Hb zenon_Ha zenon_H9 zenon_H217 zenon_H62 zenon_H7c zenon_H12d zenon_H12e zenon_H12f zenon_H275 zenon_Heb zenon_Hd9 zenon_H162 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.09  apply (zenon_L382_); trivial.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.93/1.09  apply (zenon_L533_); trivial.
% 0.93/1.09  apply (zenon_L536_); trivial.
% 0.93/1.09  apply (zenon_L539_); trivial.
% 0.93/1.09  (* end of lemma zenon_L540_ *)
% 0.93/1.09  assert (zenon_L541_ : ((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232)))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H106 zenon_H275 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H2ba zenon_H2bb zenon_H2bc.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.93/1.09  apply (zenon_L38_); trivial.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.93/1.09  apply (zenon_L241_); trivial.
% 0.93/1.09  apply (zenon_L342_); trivial.
% 0.93/1.09  (* end of lemma zenon_L541_ *)
% 0.93/1.09  assert (zenon_L542_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> (~(hskp6)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H189 zenon_H129 zenon_H101 zenon_H228 zenon_Hfb zenon_H172 zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H205 zenon_Hb zenon_Ha zenon_H9 zenon_H217 zenon_H7c zenon_H275 zenon_Heb zenon_Hd9 zenon_H162 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H150 zenon_H14e zenon_H100 zenon_H1 zenon_H2eb.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.09  apply (zenon_L415_); trivial.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.09  apply (zenon_L540_); trivial.
% 0.93/1.09  apply (zenon_L416_); trivial.
% 0.93/1.09  apply (zenon_L541_); trivial.
% 0.93/1.09  (* end of lemma zenon_L542_ *)
% 0.93/1.09  assert (zenon_L543_ : ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c2_1 (a219)) -> (~(c0_1 (a219))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (~(hskp6)) -> (~(hskp15)) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H101 zenon_H228 zenon_Hfb zenon_H172 zenon_H10b zenon_H10a zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H205 zenon_Hb zenon_Ha zenon_H9 zenon_H217 zenon_H7c zenon_H12d zenon_H12e zenon_H12f zenon_H275 zenon_Heb zenon_Hd9 zenon_H162 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H1 zenon_H50 zenon_H2e3 zenon_H100.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.09  apply (zenon_L540_); trivial.
% 0.93/1.09  apply (zenon_L385_); trivial.
% 0.93/1.09  apply (zenon_L541_); trivial.
% 0.93/1.09  (* end of lemma zenon_L543_ *)
% 0.93/1.09  assert (zenon_L544_ : ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c2_1 (a198)) -> (c1_1 (a198)) -> (c0_1 (a198)) -> (c3_1 (a238)) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a238)) -> (forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y)))))) -> (~(c2_1 (a238))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a249)) -> (~(c2_1 (a249))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (ndr1_0) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H1b9 zenon_H9e zenon_H9d zenon_H9c zenon_Hb9 zenon_H10a zenon_H10c zenon_Heb zenon_Hb8 zenon_H1da zenon_Hb7 zenon_H275 zenon_H140 zenon_H13e zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H7 zenon_H2ba zenon_H2bb zenon_H2bc.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H1b9); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1ba ].
% 0.93/1.09  apply (zenon_L409_); trivial.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H1ba); [ zenon_intro zenon_H30 | zenon_intro zenon_Hb6 ].
% 0.93/1.09  apply (zenon_L411_); trivial.
% 0.93/1.09  apply (zenon_L534_); trivial.
% 0.93/1.09  (* end of lemma zenon_L544_ *)
% 0.93/1.09  assert (zenon_L545_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c3_1 (a233))) -> (~(c2_1 (a233))) -> (~(c1_1 (a233))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a219)) -> (~(c0_1 (a219))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c2_1 (a219)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_Hdc zenon_Hfb zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H205 zenon_Hb zenon_Ha zenon_H9 zenon_Hab zenon_H23 zenon_H22 zenon_H21 zenon_Heb zenon_H10c zenon_H10a zenon_H1b9 zenon_H275 zenon_H10b zenon_H1e4 zenon_Hd9 zenon_H162.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.93/1.09  apply (zenon_L533_); trivial.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.09  apply (zenon_L45_); trivial.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.09  apply (zenon_L409_); trivial.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.09  apply (zenon_L544_); trivial.
% 0.93/1.09  apply (zenon_L66_); trivial.
% 0.93/1.09  apply (zenon_L62_); trivial.
% 0.93/1.09  (* end of lemma zenon_L545_ *)
% 0.93/1.09  assert (zenon_L546_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(hskp13)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H228 zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H1a zenon_H296 zenon_Hb zenon_Ha zenon_H9 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.09  apply (zenon_L382_); trivial.
% 0.93/1.09  apply (zenon_L531_); trivial.
% 0.93/1.09  (* end of lemma zenon_L546_ *)
% 0.93/1.09  assert (zenon_L547_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> (~(hskp6)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H100 zenon_H2e3 zenon_H50 zenon_H1 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H9 zenon_Ha zenon_Hb zenon_H296 zenon_H1a zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H2c3 zenon_H228.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.09  apply (zenon_L546_); trivial.
% 0.93/1.09  apply (zenon_L385_); trivial.
% 0.93/1.09  (* end of lemma zenon_L547_ *)
% 0.93/1.09  assert (zenon_L548_ : ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp6)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp8)\/(hskp14))) -> (~(hskp8)) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((hskp8)\/((hskp13)\/(hskp18))) -> (~(hskp13)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H129 zenon_H205 zenon_H1b9 zenon_H275 zenon_H1e4 zenon_H162 zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H253 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H296 zenon_H100 zenon_H2e3 zenon_H1 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H9 zenon_Ha zenon_Hb zenon_H2e1 zenon_H18 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H2c3 zenon_H228 zenon_H1e zenon_H1a zenon_He0 zenon_Hab zenon_Heb zenon_Hf6 zenon_Hd9 zenon_Hfb zenon_H4f zenon_Hff.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.09  apply (zenon_L462_); trivial.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.09  apply (zenon_L547_); trivial.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.09  apply (zenon_L12_); trivial.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.09  apply (zenon_L469_); trivial.
% 0.93/1.09  apply (zenon_L545_); trivial.
% 0.93/1.09  (* end of lemma zenon_L548_ *)
% 0.93/1.09  assert (zenon_L549_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp22)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H162 zenon_Hd9 zenon_Heb zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H2ba zenon_H2bb zenon_H2bc zenon_H275 zenon_H12f zenon_H12e zenon_H12d zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H74 zenon_H205.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.93/1.09  apply (zenon_L159_); trivial.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.09  apply (zenon_L392_); trivial.
% 0.93/1.09  apply (zenon_L535_); trivial.
% 0.93/1.09  (* end of lemma zenon_L549_ *)
% 0.93/1.09  assert (zenon_L550_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_Hf8 zenon_Hd9 zenon_Heb zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H2ba zenon_H2bb zenon_H2bc zenon_H275 zenon_H12f zenon_H12e zenon_H12d zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.09  apply (zenon_L392_); trivial.
% 0.93/1.09  apply (zenon_L538_); trivial.
% 0.93/1.09  (* end of lemma zenon_L550_ *)
% 0.93/1.09  assert (zenon_L551_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H189 zenon_Hfb zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H150 zenon_H14e zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H275 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_Heb zenon_Hd9 zenon_H162.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.09  apply (zenon_L549_); trivial.
% 0.93/1.09  apply (zenon_L550_); trivial.
% 0.93/1.09  (* end of lemma zenon_L551_ *)
% 0.93/1.09  assert (zenon_L552_ : ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((hskp6)\/((hskp10)\/(hskp20))) -> (~(hskp10)) -> (~(hskp6)) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H186 zenon_Hfb zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H150 zenon_H14e zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H275 zenon_Heb zenon_Hd9 zenon_H162 zenon_H2ed zenon_H238 zenon_H1 zenon_H9 zenon_Ha zenon_Hb zenon_H296 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H2c3 zenon_H228.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.09  apply (zenon_L532_); trivial.
% 0.93/1.09  apply (zenon_L551_); trivial.
% 0.93/1.09  (* end of lemma zenon_L552_ *)
% 0.93/1.09  assert (zenon_L553_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp19)) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp22)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H162 zenon_Hd9 zenon_Heb zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H2ba zenon_H2bb zenon_H2bc zenon_H275 zenon_H12f zenon_H12e zenon_H12d zenon_H7c zenon_H7a zenon_H20c zenon_H20b zenon_H44 zenon_H76 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H74 zenon_H205.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.93/1.09  apply (zenon_L159_); trivial.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.09  apply (zenon_L180_); trivial.
% 0.93/1.09  apply (zenon_L535_); trivial.
% 0.93/1.09  (* end of lemma zenon_L553_ *)
% 0.93/1.09  assert (zenon_L554_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.93/1.09  do 0 intro. intros zenon_Hf8 zenon_Hd9 zenon_Heb zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H2ba zenon_H2bb zenon_H2bc zenon_H275 zenon_H12f zenon_H12e zenon_H12d zenon_H21 zenon_H22 zenon_H23 zenon_Hab.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.09  apply (zenon_L45_); trivial.
% 0.93/1.09  apply (zenon_L538_); trivial.
% 0.93/1.09  (* end of lemma zenon_L554_ *)
% 0.93/1.09  assert (zenon_L555_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H228 zenon_Hfb zenon_H21 zenon_H22 zenon_H23 zenon_Hab zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H76 zenon_H44 zenon_H7c zenon_H12d zenon_H12e zenon_H12f zenon_H275 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_Heb zenon_Hd9 zenon_H162 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.09  apply (zenon_L382_); trivial.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.09  apply (zenon_L553_); trivial.
% 0.93/1.09  apply (zenon_L554_); trivial.
% 0.93/1.09  (* end of lemma zenon_L555_ *)
% 0.93/1.09  assert (zenon_L556_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H228 zenon_H176 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H9 zenon_Ha zenon_Hb zenon_H296 zenon_H1a zenon_H1ab zenon_H19e zenon_H19f zenon_H165 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H2c3 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.09  apply (zenon_L382_); trivial.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.93/1.09  apply (zenon_L475_); trivial.
% 0.93/1.09  apply (zenon_L284_); trivial.
% 0.93/1.09  (* end of lemma zenon_L556_ *)
% 0.93/1.09  assert (zenon_L557_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> (~(hskp6)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(hskp13)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H100 zenon_H2e3 zenon_H50 zenon_H1 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H165 zenon_H19f zenon_H19e zenon_H1ab zenon_H1a zenon_H296 zenon_Hb zenon_Ha zenon_H9 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H176 zenon_H228.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.09  apply (zenon_L556_); trivial.
% 0.93/1.09  apply (zenon_L385_); trivial.
% 0.93/1.09  (* end of lemma zenon_L557_ *)
% 0.93/1.09  assert (zenon_L558_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp11)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (c3_1 (a212)) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H4b zenon_H100 zenon_H4c zenon_H23e zenon_H121 zenon_H275 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H19e zenon_H1ab zenon_H19f zenon_H44 zenon_H47 zenon_Heb zenon_H2c zenon_H2e zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H253 zenon_Hd9 zenon_H228.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.09  apply (zenon_L469_); trivial.
% 0.93/1.09  apply (zenon_L523_); trivial.
% 0.93/1.09  (* end of lemma zenon_L558_ *)
% 0.93/1.09  assert (zenon_L559_ : ((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> (~(hskp0)) -> (c0_1 (a217)) -> (~(c3_1 (a217))) -> (~(c2_1 (a217))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H103 zenon_H101 zenon_H275 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H183 zenon_H181 zenon_H17a zenon_H179 zenon_H178 zenon_H162 zenon_H217 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_Hab zenon_Heb zenon_Hed zenon_Hee zenon_Hef zenon_Hf6 zenon_Hd9 zenon_Hfb zenon_H4f.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.09  apply (zenon_L514_); trivial.
% 0.93/1.09  apply (zenon_L541_); trivial.
% 0.93/1.09  (* end of lemma zenon_L559_ *)
% 0.93/1.09  assert (zenon_L560_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> (~(hskp0)) -> (c0_1 (a217)) -> (~(c3_1 (a217))) -> (~(c2_1 (a217))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp3)) -> (c3_1 (a212)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_Hfc zenon_H102 zenon_H101 zenon_H162 zenon_H217 zenon_H205 zenon_Hf6 zenon_Hfb zenon_H183 zenon_H181 zenon_H17a zenon_H179 zenon_H178 zenon_H228 zenon_Hd9 zenon_H253 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_Hab zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H2e zenon_Heb zenon_H47 zenon_H44 zenon_H19f zenon_H1ab zenon_H19e zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H275 zenon_H121 zenon_H23e zenon_H4c zenon_H100 zenon_H4f.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.09  apply (zenon_L110_); trivial.
% 0.93/1.09  apply (zenon_L558_); trivial.
% 0.93/1.09  apply (zenon_L559_); trivial.
% 0.93/1.09  (* end of lemma zenon_L560_ *)
% 0.93/1.09  assert (zenon_L561_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> (~(hskp6)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H100 zenon_H2e3 zenon_H50 zenon_H1 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H162 zenon_Hd9 zenon_Heb zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H2ba zenon_H2bb zenon_H2bc zenon_H275 zenon_H12f zenon_H12e zenon_H12d zenon_H7c zenon_H44 zenon_H76 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H2c3 zenon_H10a zenon_H10b zenon_H172 zenon_Hb zenon_Ha zenon_H9 zenon_Hfb zenon_H228.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.09  apply (zenon_L382_); trivial.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.09  apply (zenon_L553_); trivial.
% 0.93/1.09  apply (zenon_L539_); trivial.
% 0.93/1.09  apply (zenon_L385_); trivial.
% 0.93/1.09  (* end of lemma zenon_L561_ *)
% 0.93/1.09  assert (zenon_L562_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp6)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp8)) -> (~(hskp15)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (~(c0_1 (a219))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H100 zenon_H2e3 zenon_H1 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_Hd9 zenon_H23a zenon_H238 zenon_H44 zenon_H76 zenon_H14e zenon_H150 zenon_H54 zenon_H18 zenon_H50 zenon_H7c zenon_H172 zenon_H10b zenon_H10c zenon_H10a zenon_H1db zenon_H1dc zenon_H1dd zenon_H1e4 zenon_H69 zenon_Hfb zenon_H228.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.09  apply (zenon_L382_); trivial.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.09  apply (zenon_L418_); trivial.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H69); [ zenon_intro zenon_H52 | zenon_intro zenon_H64 ].
% 0.93/1.09  apply (zenon_L25_); trivial.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H64). zenon_intro zenon_H7. zenon_intro zenon_H66.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H66). zenon_intro zenon_H58. zenon_intro zenon_H67.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H67). zenon_intro zenon_H59. zenon_intro zenon_H57.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.09  apply (zenon_L36_); trivial.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.09  apply (zenon_L394_); trivial.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.09  apply (zenon_L148_); trivial.
% 0.93/1.09  apply (zenon_L66_); trivial.
% 0.93/1.09  apply (zenon_L385_); trivial.
% 0.93/1.09  (* end of lemma zenon_L562_ *)
% 0.93/1.09  assert (zenon_L563_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(hskp22)) -> (~(hskp3)) -> (~(c0_1 (a239))) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16)))))) -> (~(c0_1 (a219))) -> (ndr1_0) -> (c0_1 (a230)) -> (c2_1 (a230)) -> (c3_1 (a230)) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H270 zenon_H74 zenon_H44 zenon_H219 zenon_H20b zenon_H20c zenon_H76 zenon_H10b zenon_H10c zenon_H1b0 zenon_H10a zenon_H7 zenon_H3b zenon_H3c zenon_H3d.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H270); [ zenon_intro zenon_H22e | zenon_intro zenon_H271 ].
% 0.93/1.09  apply (zenon_L389_); trivial.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H271); [ zenon_intro zenon_H167 | zenon_intro zenon_H3a ].
% 0.93/1.09  apply (zenon_L146_); trivial.
% 0.93/1.09  apply (zenon_L18_); trivial.
% 0.93/1.09  (* end of lemma zenon_L563_ *)
% 0.93/1.09  assert (zenon_L564_ : ((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (~(hskp3)) -> (~(hskp22)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H46 zenon_H1e4 zenon_H76 zenon_H20c zenon_H20b zenon_H219 zenon_H44 zenon_H74 zenon_H270 zenon_H1dd zenon_H1dc zenon_H1db zenon_H10a zenon_H10b zenon_H10c.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H46). zenon_intro zenon_H7. zenon_intro zenon_H48.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H48). zenon_intro zenon_H3b. zenon_intro zenon_H49.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H49). zenon_intro zenon_H3c. zenon_intro zenon_H3d.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.09  apply (zenon_L563_); trivial.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.09  apply (zenon_L148_); trivial.
% 0.93/1.09  apply (zenon_L66_); trivial.
% 0.93/1.09  (* end of lemma zenon_L564_ *)
% 0.93/1.09  assert (zenon_L565_ : ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp22)) -> (~(hskp3)) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> (c2_1 (a219)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (ndr1_0) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H4c zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H76 zenon_H74 zenon_H44 zenon_H20c zenon_H20b zenon_H219 zenon_H10a zenon_H10c zenon_H10b zenon_H270 zenon_H7 zenon_H21 zenon_H22 zenon_H23 zenon_H2c zenon_H2e.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H4c); [ zenon_intro zenon_H2a | zenon_intro zenon_H46 ].
% 0.93/1.09  apply (zenon_L16_); trivial.
% 0.93/1.09  apply (zenon_L564_); trivial.
% 0.93/1.09  (* end of lemma zenon_L565_ *)
% 0.93/1.09  assert (zenon_L566_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(hskp16)) -> (~(c3_1 (a233))) -> (~(c2_1 (a233))) -> (~(c1_1 (a233))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (~(c0_1 (a219))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H228 zenon_Hfb zenon_Hd9 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Heb zenon_H14e zenon_H150 zenon_H2e zenon_H2c zenon_H23 zenon_H22 zenon_H21 zenon_H270 zenon_H10b zenon_H10c zenon_H10a zenon_H44 zenon_H76 zenon_H1db zenon_H1dc zenon_H1dd zenon_H1e4 zenon_H4c zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.09  apply (zenon_L382_); trivial.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.09  apply (zenon_L565_); trivial.
% 0.93/1.09  apply (zenon_L451_); trivial.
% 0.93/1.09  (* end of lemma zenon_L566_ *)
% 0.93/1.09  assert (zenon_L567_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> False).
% 0.93/1.09  do 0 intro. intros zenon_Hd1 zenon_H1e4 zenon_Hb7 zenon_Hb8 zenon_Hb9 zenon_Heb zenon_H1dd zenon_H1dc zenon_H1db zenon_H10a zenon_H10b zenon_H10c.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.09  apply (zenon_L409_); trivial.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.09  apply (zenon_L148_); trivial.
% 0.93/1.09  apply (zenon_L66_); trivial.
% 0.93/1.09  (* end of lemma zenon_L567_ *)
% 0.93/1.09  assert (zenon_L568_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c2_1 (a219)) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_Hdc zenon_Hd9 zenon_H1e4 zenon_H10b zenon_H1dd zenon_H1dc zenon_H1db zenon_H10a zenon_H10c zenon_Heb zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.09  apply (zenon_L392_); trivial.
% 0.93/1.09  apply (zenon_L567_); trivial.
% 0.93/1.09  (* end of lemma zenon_L568_ *)
% 0.93/1.09  assert (zenon_L569_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> (c2_1 (a219)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.09  do 0 intro. intros zenon_H4b zenon_H100 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H4c zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H76 zenon_H44 zenon_H10a zenon_H10c zenon_H10b zenon_H270 zenon_H2c zenon_H2e zenon_H150 zenon_H14e zenon_Heb zenon_Hed zenon_Hee zenon_Hef zenon_Hf6 zenon_Hd9 zenon_Hfb zenon_H228.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.09  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.09  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.09  apply (zenon_L566_); trivial.
% 0.93/1.09  apply (zenon_L568_); trivial.
% 0.93/1.09  (* end of lemma zenon_L569_ *)
% 0.93/1.09  assert (zenon_L570_ : ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> (c2_1 (a219)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(hskp8)) -> (~(hskp13)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H4f zenon_H100 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H4c zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H76 zenon_H44 zenon_H10a zenon_H10c zenon_H10b zenon_H270 zenon_H2c zenon_H2e zenon_H150 zenon_H14e zenon_Heb zenon_Hed zenon_Hee zenon_Hef zenon_Hf6 zenon_Hd9 zenon_Hfb zenon_H228 zenon_H18 zenon_H1a zenon_H1e.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.10  apply (zenon_L12_); trivial.
% 0.93/1.10  apply (zenon_L569_); trivial.
% 0.93/1.10  (* end of lemma zenon_L570_ *)
% 0.93/1.10  assert (zenon_L571_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H12a zenon_H100 zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_Heb zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H150 zenon_H14e zenon_H251 zenon_H181 zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_Hd9 zenon_H228.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.10  apply (zenon_L436_); trivial.
% 0.93/1.10  apply (zenon_L568_); trivial.
% 0.93/1.10  (* end of lemma zenon_L571_ *)
% 0.93/1.10  assert (zenon_L572_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(hskp6)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H189 zenon_H129 zenon_H100 zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_Heb zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H150 zenon_H14e zenon_H251 zenon_H181 zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H2b8 zenon_H2c6 zenon_Hd9 zenon_H228 zenon_H1 zenon_H2eb.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.10  apply (zenon_L415_); trivial.
% 0.93/1.10  apply (zenon_L571_); trivial.
% 0.93/1.10  (* end of lemma zenon_L572_ *)
% 0.93/1.10  assert (zenon_L573_ : ((ndr1_0)/\((c1_1 (a214))/\((~(c2_1 (a214)))/\(~(c3_1 (a214)))))) -> ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(hskp8)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H263 zenon_H19c zenon_H229 zenon_H183 zenon_H129 zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H150 zenon_H4f zenon_H100 zenon_H69 zenon_H261 zenon_H54 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_H251 zenon_H181 zenon_Ha5 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_Hd9 zenon_H228 zenon_H18 zenon_H1e zenon_He0 zenon_Heb zenon_Hf6 zenon_Hfb zenon_Hff zenon_H2eb zenon_H186.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.10  apply (zenon_L433_); trivial.
% 0.93/1.10  apply (zenon_L571_); trivial.
% 0.93/1.10  apply (zenon_L572_); trivial.
% 0.93/1.10  apply (zenon_L190_); trivial.
% 0.93/1.10  (* end of lemma zenon_L573_ *)
% 0.93/1.10  assert (zenon_L574_ : ((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H123 zenon_H2f2 zenon_Hb zenon_Ha zenon_H9 zenon_H1dd zenon_H1dc zenon_H1db.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H123). zenon_intro zenon_H7. zenon_intro zenon_H125.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H125). zenon_intro zenon_H118. zenon_intro zenon_H126.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H126). zenon_intro zenon_H119. zenon_intro zenon_H11a.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H2f2); [ zenon_intro zenon_H8 | zenon_intro zenon_H2f3 ].
% 0.93/1.10  apply (zenon_L5_); trivial.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H2f3); [ zenon_intro zenon_H1da | zenon_intro zenon_H117 ].
% 0.93/1.10  apply (zenon_L148_); trivial.
% 0.93/1.10  apply (zenon_L69_); trivial.
% 0.93/1.10  (* end of lemma zenon_L574_ *)
% 0.93/1.10  assert (zenon_L575_ : ((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(hskp18)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H15f zenon_H128 zenon_H2f2 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hb zenon_Ha zenon_H9 zenon_H1c zenon_H156.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H128); [ zenon_intro zenon_H113 | zenon_intro zenon_H123 ].
% 0.93/1.10  apply (zenon_L90_); trivial.
% 0.93/1.10  apply (zenon_L574_); trivial.
% 0.93/1.10  (* end of lemma zenon_L575_ *)
% 0.93/1.10  assert (zenon_L576_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(hskp18)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp22)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H162 zenon_H128 zenon_H2f2 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hb zenon_Ha zenon_H9 zenon_H1c zenon_H156 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H74 zenon_H205.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.93/1.10  apply (zenon_L159_); trivial.
% 0.93/1.10  apply (zenon_L575_); trivial.
% 0.93/1.10  (* end of lemma zenon_L576_ *)
% 0.93/1.10  assert (zenon_L577_ : ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (ndr1_0) -> (forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))) -> (~(hskp29)) -> (~(hskp18)) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H156 zenon_H19f zenon_H19e zenon_H7 zenon_H3a zenon_H113 zenon_H1c.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H156); [ zenon_intro zenon_H152 | zenon_intro zenon_H157 ].
% 0.93/1.10  apply (zenon_L117_); trivial.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H157); [ zenon_intro zenon_H114 | zenon_intro zenon_H1d ].
% 0.93/1.10  exact (zenon_H113 zenon_H114).
% 0.93/1.10  exact (zenon_H1c zenon_H1d).
% 0.93/1.10  (* end of lemma zenon_L577_ *)
% 0.93/1.10  assert (zenon_L578_ : ((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(c0_1 (a239))) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(c0_1 (a244))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H46 zenon_H1e4 zenon_H219 zenon_H20b zenon_H20c zenon_H270 zenon_H7f zenon_H80 zenon_H81 zenon_H172 zenon_H1dd zenon_H1dc zenon_H1db zenon_H10a zenon_H10b zenon_H10c.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H46). zenon_intro zenon_H7. zenon_intro zenon_H48.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H48). zenon_intro zenon_H3b. zenon_intro zenon_H49.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H49). zenon_intro zenon_H3c. zenon_intro zenon_H3d.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.10  apply (zenon_L399_); trivial.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.10  apply (zenon_L148_); trivial.
% 0.93/1.10  apply (zenon_L66_); trivial.
% 0.93/1.10  (* end of lemma zenon_L578_ *)
% 0.93/1.10  assert (zenon_L579_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> (c2_1 (a219)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H4b zenon_H100 zenon_Hd9 zenon_Heb zenon_H14e zenon_H150 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H4c zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H76 zenon_H44 zenon_H10a zenon_H10c zenon_H10b zenon_H270 zenon_H2c zenon_H2e zenon_H172 zenon_Hfb zenon_H228.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.10  apply (zenon_L382_); trivial.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.10  apply (zenon_L565_); trivial.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H4c); [ zenon_intro zenon_H2a | zenon_intro zenon_H46 ].
% 0.93/1.10  apply (zenon_L16_); trivial.
% 0.93/1.10  apply (zenon_L578_); trivial.
% 0.93/1.10  apply (zenon_L568_); trivial.
% 0.93/1.10  (* end of lemma zenon_L579_ *)
% 0.93/1.10  assert (zenon_L580_ : ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (~(c0_1 (a219))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp3)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H4f zenon_H4c zenon_H76 zenon_H2c zenon_H2e zenon_H228 zenon_Hfb zenon_H172 zenon_H270 zenon_H10b zenon_H10c zenon_H10a zenon_H1e4 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H156 zenon_H9 zenon_Ha zenon_Hb zenon_H1db zenon_H1dc zenon_H1dd zenon_H2f2 zenon_H128 zenon_H162 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_Hd9 zenon_Heb zenon_H47 zenon_H44 zenon_Ha9 zenon_H14e zenon_H150 zenon_Hd3 zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H100.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.10  apply (zenon_L382_); trivial.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.10  apply (zenon_L576_); trivial.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H128); [ zenon_intro zenon_H113 | zenon_intro zenon_H123 ].
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H172); [ zenon_intro zenon_H7e | zenon_intro zenon_H175 ].
% 0.93/1.10  apply (zenon_L37_); trivial.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H175); [ zenon_intro zenon_H167 | zenon_intro zenon_H6a ].
% 0.93/1.10  apply (zenon_L146_); trivial.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H270); [ zenon_intro zenon_H22e | zenon_intro zenon_H271 ].
% 0.93/1.10  apply (zenon_L388_); trivial.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H271); [ zenon_intro zenon_H167 | zenon_intro zenon_H3a ].
% 0.93/1.10  apply (zenon_L146_); trivial.
% 0.93/1.10  apply (zenon_L577_); trivial.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.10  apply (zenon_L148_); trivial.
% 0.93/1.10  apply (zenon_L66_); trivial.
% 0.93/1.10  apply (zenon_L574_); trivial.
% 0.93/1.10  apply (zenon_L447_); trivial.
% 0.93/1.10  apply (zenon_L579_); trivial.
% 0.93/1.10  (* end of lemma zenon_L580_ *)
% 0.93/1.10  assert (zenon_L581_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> (~(hskp6)) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H12a zenon_H102 zenon_H2c6 zenon_H2b8 zenon_H1 zenon_H100 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_Hd3 zenon_H150 zenon_H14e zenon_Ha9 zenon_H44 zenon_H47 zenon_Heb zenon_Hd9 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H162 zenon_H128 zenon_H2f2 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hb zenon_Ha zenon_H9 zenon_H156 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H1e4 zenon_H270 zenon_H172 zenon_Hfb zenon_H228 zenon_H2e zenon_H76 zenon_H4c zenon_H4f.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.10  apply (zenon_L580_); trivial.
% 0.93/1.10  apply (zenon_L406_); trivial.
% 0.93/1.10  (* end of lemma zenon_L581_ *)
% 0.93/1.10  assert (zenon_L582_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H12a zenon_H100 zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_Heb zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H150 zenon_H14e zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H253 zenon_Hd9 zenon_H228.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.10  apply (zenon_L471_); trivial.
% 0.93/1.10  apply (zenon_L568_); trivial.
% 0.93/1.10  (* end of lemma zenon_L582_ *)
% 0.93/1.10  assert (zenon_L583_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(hskp6)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H189 zenon_H129 zenon_H100 zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_Heb zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H150 zenon_H14e zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H253 zenon_Hd9 zenon_H228 zenon_H1 zenon_H2eb.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.10  apply (zenon_L415_); trivial.
% 0.93/1.10  apply (zenon_L582_); trivial.
% 0.93/1.10  (* end of lemma zenon_L583_ *)
% 0.93/1.10  assert (zenon_L584_ : ((ndr1_0)/\((c1_1 (a214))/\((~(c2_1 (a214)))/\(~(c3_1 (a214)))))) -> ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp6)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp8)\/(hskp14))) -> (~(hskp8)) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((hskp8)\/((hskp13)\/(hskp18))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H263 zenon_H19c zenon_H229 zenon_H181 zenon_H183 zenon_H129 zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H150 zenon_Ha5 zenon_H253 zenon_H100 zenon_H2e3 zenon_H1 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H9 zenon_Ha zenon_Hb zenon_H2e1 zenon_H18 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H2c3 zenon_H228 zenon_H1e zenon_He0 zenon_Hab zenon_Heb zenon_Hf6 zenon_Hd9 zenon_Hfb zenon_H4f zenon_Hff zenon_H2eb zenon_H186.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.10  apply (zenon_L462_); trivial.
% 0.93/1.10  apply (zenon_L582_); trivial.
% 0.93/1.10  apply (zenon_L583_); trivial.
% 0.93/1.10  apply (zenon_L190_); trivial.
% 0.93/1.10  (* end of lemma zenon_L584_ *)
% 0.93/1.10  assert (zenon_L585_ : ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> (~(c1_1 (a231))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> (~(hskp17)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_Hfb zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H10a zenon_H10b zenon_H172 zenon_Hb zenon_Ha zenon_H9 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H6b zenon_H6c zenon_H6d zenon_H62 zenon_H217 zenon_H162.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.10  apply (zenon_L508_); trivial.
% 0.93/1.10  apply (zenon_L464_); trivial.
% 0.93/1.10  (* end of lemma zenon_L585_ *)
% 0.93/1.10  assert (zenon_L586_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c3_1 (a232)) -> (~(c2_1 (a232))) -> (~(c1_1 (a232))) -> (c2_1 (a239)) -> (~(c0_1 (a239))) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (~(c3_1 (a239))) -> (ndr1_0) -> (~(hskp21)) -> False).
% 0.93/1.10  do 0 intro. intros zenon_Ha9 zenon_H8b zenon_H8a zenon_H89 zenon_H20c zenon_H219 zenon_H1c2 zenon_H20b zenon_H7 zenon_Ha7.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_Ha9); [ zenon_intro zenon_H88 | zenon_intro zenon_Haa ].
% 0.93/1.10  apply (zenon_L38_); trivial.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_Haa); [ zenon_intro zenon_H56 | zenon_intro zenon_Ha8 ].
% 0.93/1.10  apply (zenon_L428_); trivial.
% 0.93/1.10  exact (zenon_Ha7 zenon_Ha8).
% 0.93/1.10  (* end of lemma zenon_L586_ *)
% 0.93/1.10  assert (zenon_L587_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c3_1 (a232)) -> (~(c2_1 (a232))) -> (~(c1_1 (a232))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H228 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_H12f zenon_H12e zenon_H12d zenon_H9 zenon_Ha zenon_Hb zenon_Ha9 zenon_H8b zenon_H8a zenon_H89 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H2c3 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.10  apply (zenon_L382_); trivial.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H2c3); [ zenon_intro zenon_H8 | zenon_intro zenon_H2c4 ].
% 0.93/1.10  apply (zenon_L5_); trivial.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H2c4); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H24e ].
% 0.93/1.10  apply (zenon_L586_); trivial.
% 0.93/1.10  apply (zenon_L342_); trivial.
% 0.93/1.10  apply (zenon_L76_); trivial.
% 0.93/1.10  (* end of lemma zenon_L587_ *)
% 0.93/1.10  assert (zenon_L588_ : ((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> (~(hskp6)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H106 zenon_H100 zenon_H2e3 zenon_H50 zenon_H1 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_Ha9 zenon_Hb zenon_Ha zenon_H9 zenon_H12d zenon_H12e zenon_H12f zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H228.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.10  apply (zenon_L587_); trivial.
% 0.93/1.10  apply (zenon_L385_); trivial.
% 0.93/1.10  (* end of lemma zenon_L588_ *)
% 0.93/1.10  assert (zenon_L589_ : ((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> (~(hskp6)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c2_1 (a219)) -> (~(c0_1 (a219))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H103 zenon_H101 zenon_H100 zenon_H2e3 zenon_H50 zenon_H1 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Ha9 zenon_H12d zenon_H12e zenon_H12f zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H228 zenon_H162 zenon_H217 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H9 zenon_Ha zenon_Hb zenon_H172 zenon_H10b zenon_H10a zenon_H2ba zenon_H2bb zenon_H2bc zenon_H2c3 zenon_Hfb.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.10  apply (zenon_L585_); trivial.
% 0.93/1.10  apply (zenon_L588_); trivial.
% 0.93/1.10  (* end of lemma zenon_L589_ *)
% 0.93/1.10  assert (zenon_L590_ : ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (~(hskp18)) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_Hfb zenon_Hd9 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Heb zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H156 zenon_H1c zenon_H9 zenon_Ha zenon_Hb zenon_H1db zenon_H1dc zenon_H1dd zenon_H2f2 zenon_H128 zenon_H162.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.10  apply (zenon_L576_); trivial.
% 0.93/1.10  apply (zenon_L451_); trivial.
% 0.93/1.10  (* end of lemma zenon_L590_ *)
% 0.93/1.10  assert (zenon_L591_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (~(c0_1 (a219))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_Hfc zenon_H102 zenon_H101 zenon_H217 zenon_Hfb zenon_Hd9 zenon_Hf6 zenon_Heb zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H156 zenon_H9 zenon_Ha zenon_Hb zenon_H1db zenon_H1dc zenon_H1dd zenon_H2f2 zenon_H128 zenon_H162 zenon_H228 zenon_H2e zenon_H270 zenon_H10b zenon_H10c zenon_H10a zenon_H44 zenon_H76 zenon_H1e4 zenon_H4c zenon_H209 zenon_H100 zenon_H4f.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.10  apply (zenon_L590_); trivial.
% 0.93/1.10  apply (zenon_L569_); trivial.
% 0.93/1.10  apply (zenon_L511_); trivial.
% 0.93/1.10  (* end of lemma zenon_L591_ *)
% 0.93/1.10  assert (zenon_L592_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H12a zenon_H100 zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_Heb zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H150 zenon_H14e zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9 zenon_H228.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.10  apply (zenon_L494_); trivial.
% 0.93/1.10  apply (zenon_L568_); trivial.
% 0.93/1.10  (* end of lemma zenon_L592_ *)
% 0.93/1.10  assert (zenon_L593_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(hskp18)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(hskp22)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (ndr1_0) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H162 zenon_H128 zenon_H2f2 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hb zenon_Ha zenon_H9 zenon_H1c zenon_H156 zenon_H205 zenon_H74 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H7 zenon_H1 zenon_H2b8 zenon_H2c6.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.93/1.10  apply (zenon_L517_); trivial.
% 0.93/1.10  apply (zenon_L575_); trivial.
% 0.93/1.10  (* end of lemma zenon_L593_ *)
% 0.93/1.10  assert (zenon_L594_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(c0_1 (a244))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> (~(hskp15)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_Hd1 zenon_H128 zenon_H2f2 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hb zenon_Ha zenon_H9 zenon_H7f zenon_H80 zenon_H81 zenon_Heb zenon_H115 zenon_H50 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_Hf6.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H128); [ zenon_intro zenon_H113 | zenon_intro zenon_H123 ].
% 0.93/1.10  apply (zenon_L375_); trivial.
% 0.93/1.10  apply (zenon_L574_); trivial.
% 0.93/1.10  (* end of lemma zenon_L594_ *)
% 0.93/1.10  assert (zenon_L595_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> (~(hskp15)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_Hf8 zenon_Hd9 zenon_H128 zenon_H2f2 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hb zenon_Ha zenon_H9 zenon_Heb zenon_H115 zenon_H50 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_Hf6 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.10  apply (zenon_L392_); trivial.
% 0.93/1.10  apply (zenon_L594_); trivial.
% 0.93/1.10  (* end of lemma zenon_L595_ *)
% 0.93/1.10  assert (zenon_L596_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp6)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> (c2_1 (a219)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(hskp15)) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H4b zenon_H100 zenon_H2e3 zenon_H1 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H4c zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H76 zenon_H44 zenon_H10a zenon_H10c zenon_H10b zenon_H270 zenon_H2c zenon_H2e zenon_H150 zenon_H14e zenon_Hf6 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H50 zenon_H115 zenon_Heb zenon_H9 zenon_Ha zenon_Hb zenon_H2f2 zenon_H128 zenon_Hd9 zenon_Hfb zenon_H228.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.10  apply (zenon_L382_); trivial.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.10  apply (zenon_L565_); trivial.
% 0.93/1.10  apply (zenon_L595_); trivial.
% 0.93/1.10  apply (zenon_L385_); trivial.
% 0.93/1.10  (* end of lemma zenon_L596_ *)
% 0.93/1.10  assert (zenon_L597_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H12a zenon_Hff zenon_H4f zenon_H100 zenon_H2e3 zenon_H209 zenon_H4c zenon_H1e4 zenon_H76 zenon_H44 zenon_H270 zenon_H2e zenon_H228 zenon_H162 zenon_H128 zenon_H2f2 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hb zenon_Ha zenon_H9 zenon_H156 zenon_H205 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_H150 zenon_H14e zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hf6 zenon_H115 zenon_Heb zenon_Hd9 zenon_Hfb zenon_H172 zenon_H102.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.10  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.10  apply (zenon_L593_); trivial.
% 0.93/1.10  apply (zenon_L595_); trivial.
% 0.93/1.10  apply (zenon_L596_); trivial.
% 0.93/1.10  apply (zenon_L406_); trivial.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.10  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.10  apply (zenon_L593_); trivial.
% 0.93/1.10  apply (zenon_L451_); trivial.
% 0.93/1.10  apply (zenon_L569_); trivial.
% 0.93/1.10  apply (zenon_L406_); trivial.
% 0.93/1.10  (* end of lemma zenon_L597_ *)
% 0.93/1.10  assert (zenon_L598_ : ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> (~(hskp15)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (~(hskp18)) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_Hfb zenon_Hd9 zenon_Heb zenon_H115 zenon_H50 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_Hf6 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H156 zenon_H1c zenon_H9 zenon_Ha zenon_Hb zenon_H1db zenon_H1dc zenon_H1dd zenon_H2f2 zenon_H128 zenon_H162.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.10  apply (zenon_L576_); trivial.
% 0.93/1.10  apply (zenon_L595_); trivial.
% 0.93/1.10  (* end of lemma zenon_L598_ *)
% 0.93/1.10  assert (zenon_L599_ : ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> (~(hskp15)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> (~(c0_1 (a219))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (~(hskp6)) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H102 zenon_H2c6 zenon_H2b8 zenon_H172 zenon_Hfb zenon_Hd9 zenon_Heb zenon_H115 zenon_H50 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_Hf6 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H156 zenon_H9 zenon_Ha zenon_Hb zenon_H1db zenon_H1dc zenon_H1dd zenon_H2f2 zenon_H128 zenon_H162 zenon_H228 zenon_H2e zenon_H270 zenon_H10b zenon_H10c zenon_H10a zenon_H44 zenon_H76 zenon_H1e4 zenon_H4c zenon_H209 zenon_H1 zenon_H2e3 zenon_H100 zenon_H4f.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.10  apply (zenon_L598_); trivial.
% 0.93/1.10  apply (zenon_L596_); trivial.
% 0.93/1.10  apply (zenon_L406_); trivial.
% 0.93/1.10  (* end of lemma zenon_L599_ *)
% 0.93/1.10  assert (zenon_L600_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> (c2_1 (a219)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H4b zenon_H100 zenon_H12f zenon_H12e zenon_H12d zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H4c zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H76 zenon_H44 zenon_H10a zenon_H10c zenon_H10b zenon_H270 zenon_H2c zenon_H2e zenon_H150 zenon_H14e zenon_Heb zenon_Hed zenon_Hee zenon_Hef zenon_Hf6 zenon_Hd9 zenon_Hfb zenon_H228.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.10  apply (zenon_L566_); trivial.
% 0.93/1.10  apply (zenon_L416_); trivial.
% 0.93/1.10  (* end of lemma zenon_L600_ *)
% 0.93/1.10  assert (zenon_L601_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c2_1 (a219)) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.93/1.10  do 0 intro. intros zenon_Hdc zenon_Hd9 zenon_H1e4 zenon_H10b zenon_H1dd zenon_H1dc zenon_H1db zenon_H10a zenon_H10c zenon_Heb zenon_H21 zenon_H22 zenon_H23 zenon_Hab.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.10  apply (zenon_L45_); trivial.
% 0.93/1.10  apply (zenon_L567_); trivial.
% 0.93/1.10  (* end of lemma zenon_L601_ *)
% 0.93/1.10  assert (zenon_L602_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c2_1 (a219)) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H4b zenon_H100 zenon_H1e4 zenon_H10b zenon_H1dd zenon_H1dc zenon_H1db zenon_H10a zenon_H10c zenon_Heb zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_H251 zenon_H181 zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_Hd9 zenon_H228.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.10  apply (zenon_L431_); trivial.
% 0.93/1.10  apply (zenon_L601_); trivial.
% 0.93/1.10  (* end of lemma zenon_L602_ *)
% 0.93/1.10  assert (zenon_L603_ : ((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H103 zenon_H101 zenon_H275 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H162 zenon_H217 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H150 zenon_H14e zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Heb zenon_Hed zenon_Hee zenon_Hef zenon_Hf6 zenon_Hd9 zenon_Hfb.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.10  apply (zenon_L509_); trivial.
% 0.93/1.10  apply (zenon_L541_); trivial.
% 0.93/1.10  (* end of lemma zenon_L603_ *)
% 0.93/1.10  assert (zenon_L604_ : ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_Hd9 zenon_H23a zenon_H238 zenon_H231 zenon_H230 zenon_H22f zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.10  apply (zenon_L392_); trivial.
% 0.93/1.10  apply (zenon_L194_); trivial.
% 0.93/1.10  (* end of lemma zenon_L604_ *)
% 0.93/1.10  assert (zenon_L605_ : ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp10)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H19c zenon_H4f zenon_Hab zenon_H181 zenon_H183 zenon_H150 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H22f zenon_H230 zenon_H231 zenon_H238 zenon_H23a zenon_Hd9.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.10  apply (zenon_L604_); trivial.
% 0.93/1.10  apply (zenon_L272_); trivial.
% 0.93/1.10  (* end of lemma zenon_L605_ *)
% 0.93/1.10  assert (zenon_L606_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_Hdc zenon_Hd9 zenon_H251 zenon_H181 zenon_H121 zenon_H23e zenon_H240 zenon_H241 zenon_H242 zenon_H22f zenon_H230 zenon_H231 zenon_H261 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.10  apply (zenon_L392_); trivial.
% 0.93/1.10  apply (zenon_L218_); trivial.
% 0.93/1.10  (* end of lemma zenon_L606_ *)
% 0.93/1.10  assert (zenon_L607_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H100 zenon_H121 zenon_H23e zenon_H22f zenon_H230 zenon_H231 zenon_H261 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H150 zenon_H14e zenon_H251 zenon_H181 zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_Hd9 zenon_H228.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.10  apply (zenon_L436_); trivial.
% 0.93/1.10  apply (zenon_L606_); trivial.
% 0.93/1.10  (* end of lemma zenon_L607_ *)
% 0.93/1.10  assert (zenon_L608_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H100 zenon_H251 zenon_H181 zenon_H121 zenon_H23e zenon_H240 zenon_H241 zenon_H242 zenon_H22f zenon_H230 zenon_H231 zenon_H261 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H150 zenon_H14e zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9 zenon_H228.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.10  apply (zenon_L494_); trivial.
% 0.93/1.10  apply (zenon_L606_); trivial.
% 0.93/1.10  (* end of lemma zenon_L608_ *)
% 0.93/1.10  assert (zenon_L609_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H4b zenon_H100 zenon_H251 zenon_H181 zenon_H121 zenon_H23e zenon_H240 zenon_H241 zenon_H242 zenon_H22f zenon_H230 zenon_H231 zenon_H261 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9 zenon_H228.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.10  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.10  apply (zenon_L489_); trivial.
% 0.93/1.10  apply (zenon_L219_); trivial.
% 0.93/1.10  (* end of lemma zenon_L609_ *)
% 0.93/1.10  assert (zenon_L610_ : ((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> False).
% 0.93/1.10  do 0 intro. intros zenon_H185 zenon_H4f zenon_H100 zenon_H251 zenon_H121 zenon_H23e zenon_H240 zenon_H241 zenon_H242 zenon_H22f zenon_H230 zenon_H231 zenon_H261 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9 zenon_H228 zenon_H181 zenon_H183.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.10  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.11  apply (zenon_L110_); trivial.
% 0.93/1.11  apply (zenon_L609_); trivial.
% 0.93/1.11  (* end of lemma zenon_L610_ *)
% 0.93/1.11  assert (zenon_L611_ : ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp11)) -> (ndr1_0) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp6)) -> (~(hskp7)) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H2c6 zenon_H121 zenon_H7 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H22f zenon_H230 zenon_H231 zenon_H23e zenon_H1 zenon_H2b8.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H2c6); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H2c8 ].
% 0.93/1.11  apply (zenon_L247_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H2c8); [ zenon_intro zenon_H2 | zenon_intro zenon_H2b9 ].
% 0.93/1.11  exact (zenon_H1 zenon_H2).
% 0.93/1.11  exact (zenon_H2b8 zenon_H2b9).
% 0.93/1.11  (* end of lemma zenon_L611_ *)
% 0.93/1.11  assert (zenon_L612_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_Hd1 zenon_H28d zenon_H289 zenon_H14e zenon_H231 zenon_H230 zenon_H22f zenon_H18d zenon_H18e zenon_H18f zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H20c zenon_H20b zenon_H219 zenon_H28e.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.93/1.11  apply (zenon_L113_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.93/1.11  apply (zenon_L427_); trivial.
% 0.93/1.11  exact (zenon_H27c zenon_H27d).
% 0.93/1.11  apply (zenon_L259_); trivial.
% 0.93/1.11  (* end of lemma zenon_L612_ *)
% 0.93/1.11  assert (zenon_L613_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H100 zenon_H261 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H150 zenon_H14e zenon_H28e zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H18f zenon_H18e zenon_H18d zenon_H22f zenon_H230 zenon_H231 zenon_H289 zenon_H28d zenon_Hd9 zenon_H228.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.11  apply (zenon_L382_); trivial.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.11  apply (zenon_L392_); trivial.
% 0.93/1.11  apply (zenon_L612_); trivial.
% 0.93/1.11  apply (zenon_L280_); trivial.
% 0.93/1.11  (* end of lemma zenon_L613_ *)
% 0.93/1.11  assert (zenon_L614_ : ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(hskp24)) -> (~(hskp22)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (ndr1_0) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.93/1.11  do 0 intro. intros zenon_Hd9 zenon_H277 zenon_Hb7 zenon_Hb8 zenon_Hb9 zenon_Heb zenon_H231 zenon_H230 zenon_H22f zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H138 zenon_H74 zenon_H205 zenon_H7 zenon_H21 zenon_H22 zenon_H23 zenon_Hab.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.11  apply (zenon_L45_); trivial.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.93/1.11  apply (zenon_L516_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.93/1.11  apply (zenon_L192_); trivial.
% 0.93/1.11  apply (zenon_L502_); trivial.
% 0.93/1.11  (* end of lemma zenon_L614_ *)
% 0.93/1.11  assert (zenon_L615_ : ((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H15f zenon_H277 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H10a zenon_H10b zenon_H270 zenon_H231 zenon_H230 zenon_H22f.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.93/1.11  apply (zenon_L269_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.93/1.11  apply (zenon_L192_); trivial.
% 0.93/1.11  apply (zenon_L89_); trivial.
% 0.93/1.11  (* end of lemma zenon_L615_ *)
% 0.93/1.11  assert (zenon_L616_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c3_1 (a233))) -> (~(c2_1 (a233))) -> (~(c1_1 (a233))) -> (ndr1_0) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(hskp22)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (~(c2_1 (a238))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H162 zenon_H10a zenon_H10b zenon_H270 zenon_Hab zenon_H23 zenon_H22 zenon_H21 zenon_H7 zenon_H205 zenon_H74 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H22f zenon_H230 zenon_H231 zenon_Heb zenon_Hb9 zenon_Hb8 zenon_Hb7 zenon_H277 zenon_Hd9.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.93/1.11  apply (zenon_L614_); trivial.
% 0.93/1.11  apply (zenon_L615_); trivial.
% 0.93/1.11  (* end of lemma zenon_L616_ *)
% 0.93/1.11  assert (zenon_L617_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c2_1 (a219)) -> (~(c0_1 (a219))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_Hdc zenon_Hfb zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Hd9 zenon_H277 zenon_Heb zenon_H231 zenon_H230 zenon_H22f zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H205 zenon_H21 zenon_H22 zenon_H23 zenon_Hab zenon_H270 zenon_H10b zenon_H10a zenon_H162.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.11  apply (zenon_L616_); trivial.
% 0.93/1.11  apply (zenon_L62_); trivial.
% 0.93/1.11  (* end of lemma zenon_L617_ *)
% 0.93/1.11  assert (zenon_L618_ : ((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(hskp11)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H15f zenon_H277 zenon_H121 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H23e zenon_H231 zenon_H230 zenon_H22f.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.93/1.11  apply (zenon_L247_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.93/1.11  apply (zenon_L192_); trivial.
% 0.93/1.11  apply (zenon_L89_); trivial.
% 0.93/1.11  (* end of lemma zenon_L618_ *)
% 0.93/1.11  assert (zenon_L619_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c3_1 (a212)) -> (~(c1_1 (a212))) -> (forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37)))))) -> (c0_1 (a212)) -> (ndr1_0) -> (~(hskp11)) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H23e zenon_H231 zenon_H230 zenon_H22f zenon_H19f zenon_H1ab zenon_H88 zenon_H19e zenon_H7 zenon_H121.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H23e); [ zenon_intro zenon_H22e | zenon_intro zenon_H23f ].
% 0.93/1.11  apply (zenon_L192_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H23f); [ zenon_intro zenon_H3a | zenon_intro zenon_H122 ].
% 0.93/1.11  apply (zenon_L135_); trivial.
% 0.93/1.11  exact (zenon_H121 zenon_H122).
% 0.93/1.11  (* end of lemma zenon_L619_ *)
% 0.93/1.11  assert (zenon_L620_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(hskp11)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (c3_1 (a212)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> False).
% 0.93/1.11  do 0 intro. intros zenon_Hf8 zenon_Hf6 zenon_H121 zenon_H19e zenon_H1ab zenon_H19f zenon_H22f zenon_H230 zenon_H231 zenon_H23e zenon_Hed zenon_Hee zenon_Hef.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.93/1.11  apply (zenon_L37_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.93/1.11  apply (zenon_L619_); trivial.
% 0.93/1.11  apply (zenon_L60_); trivial.
% 0.93/1.11  (* end of lemma zenon_L620_ *)
% 0.93/1.11  assert (zenon_L621_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp11)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_Hfc zenon_Hfb zenon_Hf6 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H23e zenon_H121 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H231 zenon_H230 zenon_H22f zenon_H277 zenon_H162.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.93/1.11  apply (zenon_L159_); trivial.
% 0.93/1.11  apply (zenon_L618_); trivial.
% 0.93/1.11  apply (zenon_L620_); trivial.
% 0.93/1.11  (* end of lemma zenon_L621_ *)
% 0.93/1.11  assert (zenon_L622_ : ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (~(hskp6)) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_Hff zenon_Hfb zenon_Hf6 zenon_H205 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H231 zenon_H230 zenon_H22f zenon_H162 zenon_H228 zenon_H176 zenon_H60 zenon_H1a9 zenon_H9 zenon_Ha zenon_Hb zenon_H296 zenon_H1a zenon_H1ab zenon_H19e zenon_H19f zenon_H165 zenon_H277 zenon_H121 zenon_H23e zenon_H242 zenon_H241 zenon_H2c3 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H1 zenon_H2e3 zenon_H100.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.11  apply (zenon_L528_); trivial.
% 0.93/1.11  apply (zenon_L621_); trivial.
% 0.93/1.11  (* end of lemma zenon_L622_ *)
% 0.93/1.11  assert (zenon_L623_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(hskp4)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(hskp6)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H189 zenon_H129 zenon_H277 zenon_H19f zenon_H19e zenon_H13a zenon_H23c zenon_H22f zenon_H230 zenon_H231 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H270 zenon_H1 zenon_H2eb.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.11  apply (zenon_L415_); trivial.
% 0.93/1.11  apply (zenon_L271_); trivial.
% 0.93/1.11  (* end of lemma zenon_L623_ *)
% 0.93/1.11  assert (zenon_L624_ : ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (~(hskp6)) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp4)) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H186 zenon_H2eb zenon_Hff zenon_Hfb zenon_Hf6 zenon_H205 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H231 zenon_H230 zenon_H22f zenon_H162 zenon_H228 zenon_H176 zenon_H1a9 zenon_H9 zenon_Ha zenon_Hb zenon_H296 zenon_H1ab zenon_H19e zenon_H19f zenon_H165 zenon_H277 zenon_H121 zenon_H23e zenon_H242 zenon_H241 zenon_H2c3 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H1 zenon_H2e3 zenon_H100 zenon_H270 zenon_H23c zenon_H13a zenon_H129.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.11  apply (zenon_L622_); trivial.
% 0.93/1.11  apply (zenon_L271_); trivial.
% 0.93/1.11  apply (zenon_L623_); trivial.
% 0.93/1.11  (* end of lemma zenon_L624_ *)
% 0.93/1.11  assert (zenon_L625_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H4b zenon_H100 zenon_H251 zenon_H181 zenon_H121 zenon_H23e zenon_H22f zenon_H230 zenon_H231 zenon_H261 zenon_Hab zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H150 zenon_H14e zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H253 zenon_Hd9 zenon_H228.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.11  apply (zenon_L471_); trivial.
% 0.93/1.11  apply (zenon_L219_); trivial.
% 0.93/1.11  (* end of lemma zenon_L625_ *)
% 0.93/1.11  assert (zenon_L626_ : ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(hskp8)) -> (~(hskp13)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H4f zenon_H100 zenon_H251 zenon_H181 zenon_H121 zenon_H23e zenon_H22f zenon_H230 zenon_H231 zenon_H261 zenon_Hab zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H150 zenon_H14e zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H253 zenon_Hd9 zenon_H228 zenon_H18 zenon_H1a zenon_H1e.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.11  apply (zenon_L12_); trivial.
% 0.93/1.11  apply (zenon_L625_); trivial.
% 0.93/1.11  (* end of lemma zenon_L626_ *)
% 0.93/1.11  assert (zenon_L627_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (ndr1_0) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(hskp22)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H162 zenon_H277 zenon_H22f zenon_H230 zenon_H231 zenon_H10a zenon_H10b zenon_H270 zenon_H7 zenon_H9 zenon_Ha zenon_Hb zenon_H205 zenon_H74 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H2c3.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.93/1.11  apply (zenon_L533_); trivial.
% 0.93/1.11  apply (zenon_L615_); trivial.
% 0.93/1.11  (* end of lemma zenon_L627_ *)
% 0.93/1.11  assert (zenon_L628_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c2_1 (a219)) -> (~(c0_1 (a219))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_Hfc zenon_Hfb zenon_Hd9 zenon_Hf6 zenon_Heb zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150 zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H205 zenon_Hb zenon_Ha zenon_H9 zenon_H270 zenon_H10b zenon_H10a zenon_H231 zenon_H230 zenon_H22f zenon_H277 zenon_H162.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.11  apply (zenon_L627_); trivial.
% 0.93/1.11  apply (zenon_L451_); trivial.
% 0.93/1.11  (* end of lemma zenon_L628_ *)
% 0.93/1.11  assert (zenon_L629_ : ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp6)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> (~(hskp0)) -> (c0_1 (a217)) -> (~(c3_1 (a217))) -> (~(c2_1 (a217))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> (~(hskp8)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H129 zenon_H277 zenon_H231 zenon_H230 zenon_H22f zenon_H205 zenon_H270 zenon_H162 zenon_H100 zenon_H2e3 zenon_H1 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H9 zenon_Ha zenon_Hb zenon_H296 zenon_H1a zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H2c3 zenon_H228 zenon_H183 zenon_H181 zenon_H17a zenon_H179 zenon_H178 zenon_He0 zenon_H18 zenon_Hab zenon_Heb zenon_Hf6 zenon_Hd9 zenon_Hfb zenon_H4f zenon_Hff.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.11  apply (zenon_L547_); trivial.
% 0.93/1.11  apply (zenon_L496_); trivial.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.11  apply (zenon_L547_); trivial.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.11  apply (zenon_L110_); trivial.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.11  apply (zenon_L546_); trivial.
% 0.93/1.11  apply (zenon_L617_); trivial.
% 0.93/1.11  (* end of lemma zenon_L629_ *)
% 0.93/1.11  assert (zenon_L630_ : ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp11)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (ndr1_0) -> (~(c2_1 (a217))) -> (~(c3_1 (a217))) -> (c0_1 (a217)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H4f zenon_H4c zenon_H23e zenon_H121 zenon_H231 zenon_H230 zenon_H22f zenon_H2c zenon_H2e zenon_H7 zenon_H178 zenon_H179 zenon_H17a zenon_H181 zenon_H183.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.11  apply (zenon_L110_); trivial.
% 0.93/1.11  apply (zenon_L202_); trivial.
% 0.93/1.11  (* end of lemma zenon_L630_ *)
% 0.93/1.11  assert (zenon_L631_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> (~(c1_1 (a231))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (~(c2_1 (a238))) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> (c3_1 (a219)) -> False).
% 0.93/1.11  do 0 intro. intros zenon_Hf8 zenon_H277 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H1e4 zenon_H6d zenon_H6c zenon_H6b zenon_H172 zenon_Hb9 zenon_Hb8 zenon_Hb7 zenon_H10a zenon_H10b zenon_H10c.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.93/1.11  apply (zenon_L269_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.93/1.11  apply (zenon_L192_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.11  apply (zenon_L147_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.11  apply (zenon_L520_); trivial.
% 0.93/1.11  apply (zenon_L66_); trivial.
% 0.93/1.11  (* end of lemma zenon_L631_ *)
% 0.93/1.11  assert (zenon_L632_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> (~(c1_1 (a231))) -> (c3_1 (a219)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c2_1 (a219)) -> (~(c0_1 (a219))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_Hdc zenon_Hfb zenon_H172 zenon_H6d zenon_H6c zenon_H6b zenon_H10c zenon_H1e4 zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H205 zenon_Hb zenon_Ha zenon_H9 zenon_H270 zenon_H10b zenon_H10a zenon_H231 zenon_H230 zenon_H22f zenon_H277 zenon_H162.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.11  apply (zenon_L627_); trivial.
% 0.93/1.11  apply (zenon_L631_); trivial.
% 0.93/1.11  (* end of lemma zenon_L632_ *)
% 0.93/1.11  assert (zenon_L633_ : ((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c2_1 (a219)) -> (~(c0_1 (a219))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c3_1 (a219)) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H103 zenon_H101 zenon_H228 zenon_Hfb zenon_H172 zenon_H10b zenon_H10a zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H205 zenon_Hb zenon_Ha zenon_H9 zenon_H217 zenon_H7c zenon_H12d zenon_H12e zenon_H12f zenon_H275 zenon_Heb zenon_Hd9 zenon_H162 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H277 zenon_H22f zenon_H230 zenon_H231 zenon_H270 zenon_H1e4 zenon_H10c zenon_H100.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.11  apply (zenon_L540_); trivial.
% 0.93/1.11  apply (zenon_L632_); trivial.
% 0.93/1.11  apply (zenon_L541_); trivial.
% 0.93/1.11  (* end of lemma zenon_L633_ *)
% 0.93/1.11  assert (zenon_L634_ : ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (~(c0_1 (a244))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (ndr1_0) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.93/1.11  do 0 intro. intros zenon_Heb zenon_H240 zenon_H242 zenon_H241 zenon_H1f3 zenon_H7f zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H80 zenon_H81 zenon_H275 zenon_H7 zenon_H9c zenon_H9d zenon_H9e.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Heb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hec ].
% 0.93/1.11  apply (zenon_L287_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hec); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H9b ].
% 0.93/1.11  apply (zenon_L537_); trivial.
% 0.93/1.11  apply (zenon_L40_); trivial.
% 0.93/1.11  (* end of lemma zenon_L634_ *)
% 0.93/1.11  assert (zenon_L635_ : ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (c2_1 (a198)) -> (c1_1 (a198)) -> (c0_1 (a198)) -> (ndr1_0) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> (~(c0_1 (a244))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp28)) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H28e zenon_H18f zenon_H18e zenon_H18d zenon_H9e zenon_H9d zenon_H9c zenon_H7 zenon_H275 zenon_H81 zenon_H80 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H7f zenon_H241 zenon_H242 zenon_H240 zenon_Heb zenon_H27c.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.93/1.11  apply (zenon_L113_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.93/1.11  apply (zenon_L634_); trivial.
% 0.93/1.11  exact (zenon_H27c zenon_H27d).
% 0.93/1.11  (* end of lemma zenon_L635_ *)
% 0.93/1.11  assert (zenon_L636_ : ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (ndr1_0) -> (forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y)))))) -> (~(hskp0)) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H251 zenon_Hb7 zenon_Hb8 zenon_Hb9 zenon_H240 zenon_H241 zenon_H242 zenon_H261 zenon_H231 zenon_H230 zenon_H22f zenon_H7 zenon_H1da zenon_H181.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H251); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H252 ].
% 0.93/1.11  apply (zenon_L216_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H252); [ zenon_intro zenon_H56 | zenon_intro zenon_H182 ].
% 0.93/1.11  apply (zenon_L291_); trivial.
% 0.93/1.11  exact (zenon_H181 zenon_H182).
% 0.93/1.11  (* end of lemma zenon_L636_ *)
% 0.93/1.11  assert (zenon_L637_ : (forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34)))))) -> (ndr1_0) -> (forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))) -> (c1_1 (a202)) -> (c3_1 (a202)) -> (c2_1 (a202)) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H167 zenon_H7 zenon_H117 zenon_H27f zenon_H281 zenon_H280.
% 0.93/1.11  generalize (zenon_H167 (a202)). zenon_intro zenon_H29f.
% 0.93/1.11  apply (zenon_imply_s _ _ zenon_H29f); [ zenon_intro zenon_H6 | zenon_intro zenon_H2a0 ].
% 0.93/1.11  exact (zenon_H6 zenon_H7).
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H2a0); [ zenon_intro zenon_H2a2 | zenon_intro zenon_H2a1 ].
% 0.93/1.11  generalize (zenon_H117 (a202)). zenon_intro zenon_H2f6.
% 0.93/1.11  apply (zenon_imply_s _ _ zenon_H2f6); [ zenon_intro zenon_H6 | zenon_intro zenon_H2f7 ].
% 0.93/1.11  exact (zenon_H6 zenon_H7).
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H2f7); [ zenon_intro zenon_H2a5 | zenon_intro zenon_H2f8 ].
% 0.93/1.11  exact (zenon_H2a5 zenon_H2a2).
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H2f8); [ zenon_intro zenon_H285 | zenon_intro zenon_H286 ].
% 0.93/1.11  exact (zenon_H285 zenon_H27f).
% 0.93/1.11  exact (zenon_H286 zenon_H281).
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H2a1); [ zenon_intro zenon_H285 | zenon_intro zenon_H287 ].
% 0.93/1.11  exact (zenon_H285 zenon_H27f).
% 0.93/1.11  exact (zenon_H287 zenon_H280).
% 0.93/1.11  (* end of lemma zenon_L637_ *)
% 0.93/1.11  assert (zenon_L638_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a202)) -> (c3_1 (a202)) -> (c1_1 (a202)) -> (forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))) -> (ndr1_0) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H280 zenon_H281 zenon_H27f zenon_H117 zenon_H7 zenon_H1c2 zenon_H1c4 zenon_H1c5 zenon_H1cc.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H270); [ zenon_intro zenon_H22e | zenon_intro zenon_H271 ].
% 0.93/1.11  apply (zenon_L192_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H271); [ zenon_intro zenon_H167 | zenon_intro zenon_H3a ].
% 0.93/1.11  apply (zenon_L637_); trivial.
% 0.93/1.11  apply (zenon_L143_); trivial.
% 0.93/1.11  (* end of lemma zenon_L638_ *)
% 0.93/1.11  assert (zenon_L639_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.93/1.11  do 0 intro. intros zenon_Hf8 zenon_Hd9 zenon_H28d zenon_H2c3 zenon_H251 zenon_H181 zenon_Hb7 zenon_Hb8 zenon_Hb9 zenon_H22f zenon_H230 zenon_H231 zenon_H261 zenon_H270 zenon_H2f2 zenon_Hb zenon_Ha zenon_H9 zenon_H18d zenon_H18e zenon_H18f zenon_Heb zenon_H2ba zenon_H2bb zenon_H2bc zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H241 zenon_H242 zenon_H240 zenon_H275 zenon_H28e zenon_H21 zenon_H22 zenon_H23 zenon_Hab.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.11  apply (zenon_L45_); trivial.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.11  apply (zenon_L635_); trivial.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H288). zenon_intro zenon_H7. zenon_intro zenon_H28a.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H28a). zenon_intro zenon_H27f. zenon_intro zenon_H28b.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H28b). zenon_intro zenon_H280. zenon_intro zenon_H281.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H2c3); [ zenon_intro zenon_H8 | zenon_intro zenon_H2c4 ].
% 0.93/1.11  apply (zenon_L5_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H2c4); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H24e ].
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H2f2); [ zenon_intro zenon_H8 | zenon_intro zenon_H2f3 ].
% 0.93/1.11  apply (zenon_L5_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H2f3); [ zenon_intro zenon_H1da | zenon_intro zenon_H117 ].
% 0.93/1.11  apply (zenon_L636_); trivial.
% 0.93/1.11  apply (zenon_L638_); trivial.
% 0.93/1.11  apply (zenon_L342_); trivial.
% 0.93/1.11  (* end of lemma zenon_L639_ *)
% 0.93/1.11  assert (zenon_L640_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(hskp0)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c2_1 (a219)) -> (~(c0_1 (a219))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_Hdc zenon_Hfb zenon_H28d zenon_H2c3 zenon_H251 zenon_H181 zenon_H261 zenon_H2f2 zenon_Hb zenon_Ha zenon_H9 zenon_H18d zenon_H18e zenon_H18f zenon_H2ba zenon_H2bb zenon_H2bc zenon_H241 zenon_H242 zenon_H240 zenon_H275 zenon_H28e zenon_Hd9 zenon_H277 zenon_Heb zenon_H231 zenon_H230 zenon_H22f zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H205 zenon_H21 zenon_H22 zenon_H23 zenon_Hab zenon_H270 zenon_H10b zenon_H10a zenon_H162.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.11  apply (zenon_L616_); trivial.
% 0.93/1.11  apply (zenon_L639_); trivial.
% 0.93/1.11  (* end of lemma zenon_L640_ *)
% 0.93/1.11  assert (zenon_L641_ : ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(hskp17)) -> (~(hskp14)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c2_1 (a249))) -> (c3_1 (a249)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H261 zenon_H62 zenon_H60 zenon_H65 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H13e zenon_H140 zenon_H275 zenon_H1f3 zenon_H7 zenon_H22f zenon_H230 zenon_H231.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H261); [ zenon_intro zenon_H255 | zenon_intro zenon_Hd7 ].
% 0.93/1.11  apply (zenon_L255_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hd7); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H56 ].
% 0.93/1.11  apply (zenon_L534_); trivial.
% 0.93/1.11  apply (zenon_L215_); trivial.
% 0.93/1.11  (* end of lemma zenon_L641_ *)
% 0.93/1.11  assert (zenon_L642_ : ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (ndr1_0) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a249)) -> (~(c2_1 (a249))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp14)) -> (~(hskp17)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(hskp28)) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H28e zenon_H18f zenon_H18e zenon_H18d zenon_H231 zenon_H230 zenon_H22f zenon_H7 zenon_H275 zenon_H140 zenon_H13e zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H65 zenon_H60 zenon_H62 zenon_H261 zenon_H27c.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.93/1.11  apply (zenon_L113_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.93/1.11  apply (zenon_L641_); trivial.
% 0.93/1.11  exact (zenon_H27c zenon_H27d).
% 0.93/1.11  (* end of lemma zenon_L642_ *)
% 0.93/1.11  assert (zenon_L643_ : ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a249)) -> (~(c2_1 (a249))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp14)) -> (~(hskp17)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (ndr1_0) -> (forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y)))))) -> (~(hskp0)) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H251 zenon_H275 zenon_H140 zenon_H13e zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H65 zenon_H60 zenon_H62 zenon_H261 zenon_H231 zenon_H230 zenon_H22f zenon_H7 zenon_H1da zenon_H181.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H251); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H252 ].
% 0.93/1.11  apply (zenon_L641_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H252); [ zenon_intro zenon_H56 | zenon_intro zenon_H182 ].
% 0.93/1.11  apply (zenon_L291_); trivial.
% 0.93/1.11  exact (zenon_H181 zenon_H182).
% 0.93/1.11  (* end of lemma zenon_L643_ *)
% 0.93/1.11  assert (zenon_L644_ : ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (c2_1 (a202)) -> (c3_1 (a202)) -> (c1_1 (a202)) -> (forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (ndr1_0) -> (~(hskp13)) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H296 zenon_H280 zenon_H281 zenon_H27f zenon_H117 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H7 zenon_H1a.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H296); [ zenon_intro zenon_H167 | zenon_intro zenon_H297 ].
% 0.93/1.11  apply (zenon_L637_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H297); [ zenon_intro zenon_H272 | zenon_intro zenon_H1b ].
% 0.93/1.11  apply (zenon_L241_); trivial.
% 0.93/1.11  exact (zenon_H1a zenon_H1b).
% 0.93/1.11  (* end of lemma zenon_L644_ *)
% 0.93/1.11  assert (zenon_L645_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (~(hskp13)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp0)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(c0_1 (a203))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp14)) -> (~(hskp17)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp22)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H162 zenon_H28d zenon_H2f2 zenon_H1a zenon_H296 zenon_H181 zenon_H251 zenon_Hb zenon_Ha zenon_H9 zenon_H18d zenon_H18e zenon_H18f zenon_H261 zenon_H22f zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H2ba zenon_H2bb zenon_H2bc zenon_H275 zenon_H230 zenon_H231 zenon_H60 zenon_H62 zenon_H65 zenon_H28e zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H74 zenon_H205.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.93/1.11  apply (zenon_L159_); trivial.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.11  apply (zenon_L642_); trivial.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H288). zenon_intro zenon_H7. zenon_intro zenon_H28a.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H28a). zenon_intro zenon_H27f. zenon_intro zenon_H28b.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H28b). zenon_intro zenon_H280. zenon_intro zenon_H281.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H2f2); [ zenon_intro zenon_H8 | zenon_intro zenon_H2f3 ].
% 0.93/1.11  apply (zenon_L5_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H2f3); [ zenon_intro zenon_H1da | zenon_intro zenon_H117 ].
% 0.93/1.11  apply (zenon_L643_); trivial.
% 0.93/1.11  apply (zenon_L644_); trivial.
% 0.93/1.11  (* end of lemma zenon_L645_ *)
% 0.93/1.11  assert (zenon_L646_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> (~(hskp0)) -> (c0_1 (a217)) -> (~(c3_1 (a217))) -> (~(c2_1 (a217))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (~(hskp13)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(c0_1 (a203))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp14)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_Hfc zenon_H101 zenon_H183 zenon_H181 zenon_H17a zenon_H179 zenon_H178 zenon_H162 zenon_H28d zenon_H2f2 zenon_H1a zenon_H296 zenon_H251 zenon_Hb zenon_Ha zenon_H9 zenon_H18d zenon_H18e zenon_H18f zenon_H261 zenon_H22f zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H2ba zenon_H2bb zenon_H2bc zenon_H275 zenon_H230 zenon_H231 zenon_H60 zenon_H65 zenon_H28e zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_Hab zenon_Heb zenon_Hf6 zenon_Hd9 zenon_Hfb zenon_H4f.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.11  apply (zenon_L110_); trivial.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.11  apply (zenon_L645_); trivial.
% 0.93/1.11  apply (zenon_L62_); trivial.
% 0.93/1.11  apply (zenon_L541_); trivial.
% 0.93/1.11  (* end of lemma zenon_L646_ *)
% 0.93/1.11  assert (zenon_L647_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(hskp11)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (~(c2_1 (a238))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_Hd1 zenon_H277 zenon_H121 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H23e zenon_H231 zenon_H230 zenon_H22f zenon_Heb zenon_Hb9 zenon_Hb8 zenon_Hb7.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.93/1.11  apply (zenon_L247_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.93/1.11  apply (zenon_L192_); trivial.
% 0.93/1.11  apply (zenon_L502_); trivial.
% 0.93/1.11  (* end of lemma zenon_L647_ *)
% 0.93/1.11  assert (zenon_L648_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H100 zenon_H277 zenon_Heb zenon_H22f zenon_H230 zenon_H231 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H121 zenon_H23e zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H150 zenon_H14e zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9 zenon_H228.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.11  apply (zenon_L494_); trivial.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.11  apply (zenon_L392_); trivial.
% 0.93/1.11  apply (zenon_L647_); trivial.
% 0.93/1.11  (* end of lemma zenon_L648_ *)
% 0.93/1.11  assert (zenon_L649_ : ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp0))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp11)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H19c zenon_H4f zenon_H251 zenon_H240 zenon_H241 zenon_H242 zenon_H261 zenon_Hab zenon_H181 zenon_H183 zenon_H228 zenon_Hd9 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_H150 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H23e zenon_H121 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H231 zenon_H230 zenon_H22f zenon_Heb zenon_H277 zenon_H100.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.11  apply (zenon_L648_); trivial.
% 0.93/1.11  apply (zenon_L610_); trivial.
% 0.93/1.11  (* end of lemma zenon_L649_ *)
% 0.93/1.11  assert (zenon_L650_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H100 zenon_H28d zenon_H289 zenon_H18d zenon_H18e zenon_H18f zenon_H261 zenon_H231 zenon_H230 zenon_H22f zenon_H242 zenon_H241 zenon_H240 zenon_H28e zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H150 zenon_H14e zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9 zenon_H228.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.11  apply (zenon_L494_); trivial.
% 0.93/1.11  apply (zenon_L280_); trivial.
% 0.93/1.11  (* end of lemma zenon_L650_ *)
% 0.93/1.11  assert (zenon_L651_ : ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> (~(hskp15)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(hskp8)) -> (~(hskp13)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H4f zenon_H100 zenon_H69 zenon_H261 zenon_H242 zenon_H241 zenon_H240 zenon_H50 zenon_H54 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9 zenon_H228 zenon_H18 zenon_H1a zenon_H1e.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.11  apply (zenon_L12_); trivial.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.11  apply (zenon_L489_); trivial.
% 0.93/1.11  apply (zenon_L377_); trivial.
% 0.93/1.11  (* end of lemma zenon_L651_ *)
% 0.93/1.11  assert (zenon_L652_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> (~(c2_1 (a217))) -> (~(c3_1 (a217))) -> (c0_1 (a217)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((hskp8)\/((hskp13)\/(hskp18))) -> (~(hskp13)) -> (~(hskp8)) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H12a zenon_Hff zenon_Hfb zenon_Hf6 zenon_H277 zenon_Heb zenon_H231 zenon_H230 zenon_H22f zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H205 zenon_H270 zenon_H162 zenon_H178 zenon_H179 zenon_H17a zenon_H181 zenon_H183 zenon_H1e zenon_H1a zenon_H18 zenon_H228 zenon_Hd9 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_Hab zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H54 zenon_H240 zenon_H241 zenon_H242 zenon_H261 zenon_H69 zenon_H100 zenon_H4f.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.11  apply (zenon_L651_); trivial.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.11  apply (zenon_L110_); trivial.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.11  apply (zenon_L489_); trivial.
% 0.93/1.11  apply (zenon_L617_); trivial.
% 0.93/1.11  (* end of lemma zenon_L652_ *)
% 0.93/1.11  assert (zenon_L653_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H4b zenon_H100 zenon_Heb zenon_H12f zenon_H12e zenon_H12d zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9 zenon_H228.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.11  apply (zenon_L489_); trivial.
% 0.93/1.11  apply (zenon_L313_); trivial.
% 0.93/1.11  (* end of lemma zenon_L653_ *)
% 0.93/1.11  assert (zenon_L654_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(c2_1 (a217))) -> (~(c3_1 (a217))) -> (c0_1 (a217)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H189 zenon_H4f zenon_H100 zenon_Heb zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9 zenon_H228 zenon_H178 zenon_H179 zenon_H17a zenon_H181 zenon_H183.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.11  apply (zenon_L110_); trivial.
% 0.93/1.11  apply (zenon_L653_); trivial.
% 0.93/1.11  (* end of lemma zenon_L654_ *)
% 0.93/1.11  assert (zenon_L655_ : ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp10)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H19c zenon_H4f zenon_H229 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hab zenon_H181 zenon_H183 zenon_H150 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H22f zenon_H230 zenon_H231 zenon_H238 zenon_H23a zenon_Hd9.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.11  apply (zenon_L604_); trivial.
% 0.93/1.11  apply (zenon_L190_); trivial.
% 0.93/1.11  (* end of lemma zenon_L655_ *)
% 0.93/1.11  assert (zenon_L656_ : ((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216)))))) -> ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H196 zenon_H19c zenon_H4f zenon_H229 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hab zenon_H181 zenon_H183 zenon_H228 zenon_Hd9 zenon_H28d zenon_H289 zenon_H231 zenon_H230 zenon_H22f zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H28e zenon_H150 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H261 zenon_H100.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.11  apply (zenon_L613_); trivial.
% 0.93/1.11  apply (zenon_L190_); trivial.
% 0.93/1.11  (* end of lemma zenon_L656_ *)
% 0.93/1.11  assert (zenon_L657_ : ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (ndr1_0) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (~(hskp18)) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H128 zenon_H2f2 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hb zenon_Ha zenon_H9 zenon_H7 zenon_H22f zenon_H230 zenon_H231 zenon_H156 zenon_H1c zenon_H19f zenon_H19e zenon_H121 zenon_H23e.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H128); [ zenon_intro zenon_H113 | zenon_intro zenon_H123 ].
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H23e); [ zenon_intro zenon_H22e | zenon_intro zenon_H23f ].
% 0.93/1.11  apply (zenon_L192_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H23f); [ zenon_intro zenon_H3a | zenon_intro zenon_H122 ].
% 0.93/1.11  apply (zenon_L577_); trivial.
% 0.93/1.11  exact (zenon_H121 zenon_H122).
% 0.93/1.11  apply (zenon_L574_); trivial.
% 0.93/1.11  (* end of lemma zenon_L657_ *)
% 0.93/1.11  assert (zenon_L658_ : ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp11)) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (ndr1_0) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H4f zenon_H4c zenon_H2c zenon_H2e zenon_H23e zenon_H121 zenon_H19e zenon_H19f zenon_H156 zenon_H231 zenon_H230 zenon_H22f zenon_H7 zenon_H9 zenon_Ha zenon_Hb zenon_H1db zenon_H1dc zenon_H1dd zenon_H2f2 zenon_H128.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.11  apply (zenon_L657_); trivial.
% 0.93/1.11  apply (zenon_L202_); trivial.
% 0.93/1.11  (* end of lemma zenon_L658_ *)
% 0.93/1.11  assert (zenon_L659_ : ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(hskp25)) -> (~(hskp19)) -> (~(c1_1 (a232))) -> (~(c2_1 (a232))) -> (c3_1 (a232)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (ndr1_0) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H253 zenon_H240 zenon_H242 zenon_H241 zenon_H165 zenon_H19f zenon_H19e zenon_H1ab zenon_H163 zenon_H7a zenon_H89 zenon_H8a zenon_H8b zenon_H275 zenon_H20c zenon_H20b zenon_H219 zenon_H7 zenon_H2ba zenon_H2bb zenon_H2bc.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H253); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H254 ].
% 0.93/1.11  apply (zenon_L323_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H254); [ zenon_intro zenon_H92 | zenon_intro zenon_H24e ].
% 0.93/1.11  apply (zenon_L171_); trivial.
% 0.93/1.11  apply (zenon_L342_); trivial.
% 0.93/1.11  (* end of lemma zenon_L659_ *)
% 0.93/1.11  assert (zenon_L660_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a232)) -> (~(c2_1 (a232))) -> (~(c1_1 (a232))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H228 zenon_H176 zenon_H296 zenon_H1a zenon_H60 zenon_H1a9 zenon_H275 zenon_H240 zenon_H242 zenon_H241 zenon_H1ab zenon_H19e zenon_H19f zenon_H165 zenon_H8b zenon_H8a zenon_H89 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H253 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.11  apply (zenon_L382_); trivial.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.93/1.11  apply (zenon_L659_); trivial.
% 0.93/1.11  apply (zenon_L329_); trivial.
% 0.93/1.11  (* end of lemma zenon_L660_ *)
% 0.93/1.11  assert (zenon_L661_ : ((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(hskp21)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (c2_1 (a239)) -> (~(c1_1 (a232))) -> (~(c2_1 (a232))) -> (c3_1 (a232)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H171 zenon_H277 zenon_Ha7 zenon_H20b zenon_H219 zenon_H20c zenon_H89 zenon_H8a zenon_H8b zenon_Ha9 zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H19e zenon_H19f.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H171). zenon_intro zenon_H7. zenon_intro zenon_H173.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H173). zenon_intro zenon_H169. zenon_intro zenon_H174.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H174). zenon_intro zenon_H16a. zenon_intro zenon_H168.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.93/1.11  apply (zenon_L586_); trivial.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.93/1.11  apply (zenon_L192_); trivial.
% 0.93/1.11  apply (zenon_L300_); trivial.
% 0.93/1.11  (* end of lemma zenon_L661_ *)
% 0.93/1.11  assert (zenon_L662_ : ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(hskp21)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp19)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a232)) -> (~(c2_1 (a232))) -> (~(c1_1 (a232))) -> (ndr1_0) -> (~(c0_1 (a239))) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H176 zenon_H277 zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_Ha7 zenon_Ha9 zenon_H275 zenon_H240 zenon_H242 zenon_H241 zenon_H1ab zenon_H19e zenon_H19f zenon_H7a zenon_H165 zenon_H8b zenon_H8a zenon_H89 zenon_H7 zenon_H219 zenon_H20b zenon_H20c zenon_H2ba zenon_H2bb zenon_H2bc zenon_H253.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.93/1.11  apply (zenon_L659_); trivial.
% 0.93/1.11  apply (zenon_L661_); trivial.
% 0.93/1.11  (* end of lemma zenon_L662_ *)
% 0.93/1.11  assert (zenon_L663_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a232)) -> (~(c2_1 (a232))) -> (~(c1_1 (a232))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> (c3_1 (a219)) -> (~(c0_1 (a219))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> (c2_1 (a219)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H4b zenon_H100 zenon_Hd9 zenon_Heb zenon_Hab zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H176 zenon_H277 zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_Ha9 zenon_H275 zenon_H240 zenon_H242 zenon_H241 zenon_H1ab zenon_H19e zenon_H19f zenon_H165 zenon_H8b zenon_H8a zenon_H89 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H253 zenon_Hd2 zenon_Hcf zenon_H10c zenon_H10a zenon_H1db zenon_H1dc zenon_H1dd zenon_H10b zenon_H1e4 zenon_Hdd zenon_H228.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.11  apply (zenon_L382_); trivial.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.93/1.11  apply (zenon_L662_); trivial.
% 0.93/1.11  apply (zenon_L167_); trivial.
% 0.93/1.11  apply (zenon_L601_); trivial.
% 0.93/1.11  (* end of lemma zenon_L663_ *)
% 0.93/1.11  assert (zenon_L664_ : ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> (c3_1 (a232)) -> (~(c2_1 (a232))) -> (~(c1_1 (a232))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (~(hskp18)) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_Hfb zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_H8b zenon_H8a zenon_H89 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H156 zenon_H1c zenon_H9 zenon_Ha zenon_Hb zenon_H1db zenon_H1dc zenon_H1dd zenon_H2f2 zenon_H128 zenon_H162.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.11  apply (zenon_L576_); trivial.
% 0.93/1.11  apply (zenon_L179_); trivial.
% 0.93/1.11  (* end of lemma zenon_L664_ *)
% 0.93/1.11  assert (zenon_L665_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c2_1 (a219)) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c1_1 (a232))) -> (~(c2_1 (a232))) -> (c3_1 (a232)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H4b zenon_H100 zenon_Hd9 zenon_H1e4 zenon_H10b zenon_H1dd zenon_H1dc zenon_H1db zenon_H10a zenon_H10c zenon_Heb zenon_Hab zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H89 zenon_H8a zenon_H8b zenon_Ha9 zenon_Hb zenon_Ha zenon_H9 zenon_H12d zenon_H12e zenon_H12f zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H228.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.11  apply (zenon_L587_); trivial.
% 0.93/1.11  apply (zenon_L601_); trivial.
% 0.93/1.11  (* end of lemma zenon_L665_ *)
% 0.93/1.11  assert (zenon_L666_ : ((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c2_1 (a219)) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.93/1.11  do 0 intro. intros zenon_H106 zenon_H4f zenon_H100 zenon_Hd9 zenon_H1e4 zenon_H10b zenon_H10a zenon_H10c zenon_Heb zenon_Hab zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_Ha9 zenon_H12d zenon_H12e zenon_H12f zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H228 zenon_H162 zenon_H128 zenon_H2f2 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hb zenon_Ha zenon_H9 zenon_H156 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_Hed zenon_Hee zenon_Hef zenon_Hf6 zenon_Hfb.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.93/1.11  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.93/1.11  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.11  apply (zenon_L664_); trivial.
% 0.93/1.11  apply (zenon_L665_); trivial.
% 0.93/1.11  (* end of lemma zenon_L666_ *)
% 0.93/1.11  assert (zenon_L667_ : ((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c2_1 (a219)) -> (~(c0_1 (a219))) -> (c3_1 (a219)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H103 zenon_H101 zenon_H4f zenon_H100 zenon_H1e4 zenon_H10b zenon_H10a zenon_H10c zenon_Hab zenon_H209 zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_Ha9 zenon_H12d zenon_H12e zenon_H12f zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H228 zenon_H128 zenon_H2f2 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hb zenon_Ha zenon_H9 zenon_H156 zenon_H162 zenon_H217 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H150 zenon_H14e zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Heb zenon_Hed zenon_Hee zenon_Hef zenon_Hf6 zenon_Hd9 zenon_Hfb.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.12  apply (zenon_L509_); trivial.
% 0.93/1.12  apply (zenon_L666_); trivial.
% 0.93/1.12  (* end of lemma zenon_L667_ *)
% 0.93/1.12  assert (zenon_L668_ : ((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216)))))) -> ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H196 zenon_H19c zenon_H4f zenon_H229 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hab zenon_H181 zenon_H183 zenon_H228 zenon_Hd9 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_H150 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H28e zenon_H240 zenon_H241 zenon_H242 zenon_H22f zenon_H230 zenon_H231 zenon_H261 zenon_H289 zenon_H28d zenon_H100.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.12  apply (zenon_L650_); trivial.
% 0.93/1.12  apply (zenon_L190_); trivial.
% 0.93/1.12  (* end of lemma zenon_L668_ *)
% 0.93/1.12  assert (zenon_L669_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a239)) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (~(c0_1 (a239))) -> (ndr1_0) -> (c0_1 (a230)) -> (c2_1 (a230)) -> (c3_1 (a230)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H20c zenon_H1c2 zenon_H219 zenon_H7 zenon_H3b zenon_H3c zenon_H3d.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H270); [ zenon_intro zenon_H22e | zenon_intro zenon_H271 ].
% 0.93/1.12  apply (zenon_L192_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H271); [ zenon_intro zenon_H167 | zenon_intro zenon_H3a ].
% 0.93/1.12  apply (zenon_L183_); trivial.
% 0.93/1.12  apply (zenon_L18_); trivial.
% 0.93/1.12  (* end of lemma zenon_L669_ *)
% 0.93/1.12  assert (zenon_L670_ : ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))) -> (ndr1_0) -> (~(hskp28)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H28e zenon_H18f zenon_H18e zenon_H18d zenon_H240 zenon_H242 zenon_H241 zenon_H24e zenon_H7 zenon_H27c.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.93/1.12  apply (zenon_L113_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.93/1.12  apply (zenon_L209_); trivial.
% 0.93/1.12  exact (zenon_H27c zenon_H27d).
% 0.93/1.12  (* end of lemma zenon_L670_ *)
% 0.93/1.12  assert (zenon_L671_ : ((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(c0_1 (a239))) -> (c2_1 (a239)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(hskp28)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H46 zenon_H2c3 zenon_Hb zenon_Ha zenon_H9 zenon_H219 zenon_H20c zenon_H22f zenon_H230 zenon_H231 zenon_H270 zenon_H28e zenon_H18f zenon_H18e zenon_H18d zenon_H240 zenon_H242 zenon_H241 zenon_H27c.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H46). zenon_intro zenon_H7. zenon_intro zenon_H48.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H48). zenon_intro zenon_H3b. zenon_intro zenon_H49.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H49). zenon_intro zenon_H3c. zenon_intro zenon_H3d.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H2c3); [ zenon_intro zenon_H8 | zenon_intro zenon_H2c4 ].
% 0.93/1.12  apply (zenon_L5_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H2c4); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H24e ].
% 0.93/1.12  apply (zenon_L669_); trivial.
% 0.93/1.12  apply (zenon_L670_); trivial.
% 0.93/1.12  (* end of lemma zenon_L671_ *)
% 0.93/1.12  assert (zenon_L672_ : ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> (~(hskp28)) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(c0_1 (a239))) -> (c2_1 (a239)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (ndr1_0) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H4c zenon_H2c3 zenon_H18d zenon_H18e zenon_H18f zenon_H241 zenon_H242 zenon_H240 zenon_H27c zenon_H28e zenon_H22f zenon_H230 zenon_H231 zenon_H219 zenon_H20c zenon_H270 zenon_Hb zenon_Ha zenon_H9 zenon_H7 zenon_H21 zenon_H22 zenon_H23 zenon_H2c zenon_H2e.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H4c); [ zenon_intro zenon_H2a | zenon_intro zenon_H46 ].
% 0.93/1.12  apply (zenon_L16_); trivial.
% 0.93/1.12  apply (zenon_L671_); trivial.
% 0.93/1.12  (* end of lemma zenon_L672_ *)
% 0.93/1.12  assert (zenon_L673_ : ((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp8)\/(hskp14))) -> (~(hskp8)) -> (~(hskp14)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H288 zenon_H2f2 zenon_Hb zenon_Ha zenon_H9 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2e1 zenon_H18 zenon_H60.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H288). zenon_intro zenon_H7. zenon_intro zenon_H28a.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H28a). zenon_intro zenon_H27f. zenon_intro zenon_H28b.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H28b). zenon_intro zenon_H280. zenon_intro zenon_H281.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H2f2); [ zenon_intro zenon_H8 | zenon_intro zenon_H2f3 ].
% 0.93/1.12  apply (zenon_L5_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H2f3); [ zenon_intro zenon_H1da | zenon_intro zenon_H117 ].
% 0.93/1.12  apply (zenon_L148_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H2e1); [ zenon_intro zenon_H167 | zenon_intro zenon_H2e2 ].
% 0.93/1.12  apply (zenon_L637_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H2e2); [ zenon_intro zenon_H19 | zenon_intro zenon_H61 ].
% 0.93/1.12  exact (zenon_H18 zenon_H19).
% 0.93/1.12  exact (zenon_H60 zenon_H61).
% 0.93/1.12  (* end of lemma zenon_L673_ *)
% 0.93/1.12  assert (zenon_L674_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (~(hskp8)) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp8)\/(hskp14))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(hskp16)) -> (~(c3_1 (a233))) -> (~(c2_1 (a233))) -> (~(c1_1 (a233))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H228 zenon_H28d zenon_H2f2 zenon_H18 zenon_H60 zenon_H2e1 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2e zenon_H2c zenon_H23 zenon_H22 zenon_H21 zenon_H9 zenon_Ha zenon_Hb zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H28e zenon_H240 zenon_H242 zenon_H241 zenon_H18f zenon_H18e zenon_H18d zenon_H2c3 zenon_H4c zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.12  apply (zenon_L382_); trivial.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.12  apply (zenon_L672_); trivial.
% 0.93/1.12  apply (zenon_L673_); trivial.
% 0.93/1.12  (* end of lemma zenon_L674_ *)
% 0.93/1.12  assert (zenon_L675_ : ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> (~(c1_1 (a231))) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59)))))) -> (~(c2_1 (a238))) -> (ndr1_0) -> (~(hskp17)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H217 zenon_H6d zenon_H6c zenon_H6b zenon_Hb9 zenon_Hb8 zenon_Hc0 zenon_Hb7 zenon_H7 zenon_H62.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H217); [ zenon_intro zenon_H6a | zenon_intro zenon_H218 ].
% 0.93/1.12  apply (zenon_L31_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H218); [ zenon_intro zenon_H152 | zenon_intro zenon_H63 ].
% 0.93/1.12  apply (zenon_L501_); trivial.
% 0.93/1.12  exact (zenon_H62 zenon_H63).
% 0.93/1.12  (* end of lemma zenon_L675_ *)
% 0.93/1.12  assert (zenon_L676_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c0_1 (a244))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (~(c2_1 (a238))) -> (~(hskp17)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> (~(c1_1 (a231))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (~(c2_1 (a214))) -> (ndr1_0) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_Hf6 zenon_H7f zenon_H80 zenon_H81 zenon_H217 zenon_Hb9 zenon_Hb8 zenon_Hb7 zenon_H62 zenon_Heb zenon_Ha5 zenon_H6c zenon_H6d zenon_H6b zenon_H242 zenon_H241 zenon_H1f3 zenon_H240 zenon_H7 zenon_H9c zenon_H9d zenon_H9e.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.93/1.12  apply (zenon_L37_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Heb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hec ].
% 0.93/1.12  apply (zenon_L675_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hec); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H9b ].
% 0.93/1.12  apply (zenon_L58_); trivial.
% 0.93/1.12  apply (zenon_L40_); trivial.
% 0.93/1.12  apply (zenon_L205_); trivial.
% 0.93/1.12  (* end of lemma zenon_L676_ *)
% 0.93/1.12  assert (zenon_L677_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> (~(hskp17)) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (~(c2_1 (a238))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> (~(c1_1 (a231))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_Hd1 zenon_H28d zenon_H289 zenon_H14e zenon_H231 zenon_H230 zenon_H22f zenon_H18d zenon_H18e zenon_H18f zenon_Hf6 zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H217 zenon_H62 zenon_Hb9 zenon_Hb8 zenon_Hb7 zenon_H6d zenon_H6c zenon_H6b zenon_Heb zenon_H81 zenon_H80 zenon_H7f zenon_H28e.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.93/1.12  apply (zenon_L113_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.93/1.12  apply (zenon_L676_); trivial.
% 0.93/1.12  exact (zenon_H27c zenon_H27d).
% 0.93/1.12  apply (zenon_L259_); trivial.
% 0.93/1.12  (* end of lemma zenon_L677_ *)
% 0.93/1.12  assert (zenon_L678_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> (~(hskp17)) -> (c3_1 (a238)) -> (c1_1 (a238)) -> (~(c2_1 (a238))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> (~(c1_1 (a231))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_Hf8 zenon_Hd9 zenon_H28d zenon_H289 zenon_H231 zenon_H230 zenon_H22f zenon_H18d zenon_H18e zenon_H18f zenon_Hf6 zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H217 zenon_H62 zenon_Hb9 zenon_Hb8 zenon_Hb7 zenon_H6d zenon_H6c zenon_H6b zenon_Heb zenon_H28e zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.12  apply (zenon_L392_); trivial.
% 0.93/1.12  apply (zenon_L677_); trivial.
% 0.93/1.12  (* end of lemma zenon_L678_ *)
% 0.93/1.12  assert (zenon_L679_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> (~(hskp17)) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> (~(c1_1 (a231))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp8)) -> (~(hskp14)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_Hdc zenon_Hfb zenon_Hd9 zenon_H28d zenon_H289 zenon_H231 zenon_H230 zenon_H22f zenon_H18d zenon_H18e zenon_H18f zenon_Hf6 zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_H217 zenon_H62 zenon_H6d zenon_H6c zenon_H6b zenon_Heb zenon_H28e zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150 zenon_H18 zenon_H60 zenon_He0.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.12  apply (zenon_L56_); trivial.
% 0.93/1.12  apply (zenon_L678_); trivial.
% 0.93/1.12  (* end of lemma zenon_L679_ *)
% 0.93/1.12  assert (zenon_L680_ : ((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> (~(hskp8)) -> (~(hskp14)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H106 zenon_Hfb zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_H18 zenon_H60 zenon_He0.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.12  apply (zenon_L56_); trivial.
% 0.93/1.12  apply (zenon_L179_); trivial.
% 0.93/1.12  (* end of lemma zenon_L680_ *)
% 0.93/1.12  assert (zenon_L681_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H12a zenon_H28d zenon_H289 zenon_H14e zenon_H9 zenon_Ha zenon_Hb zenon_H270 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H231 zenon_H230 zenon_H22f zenon_H28e zenon_H240 zenon_H242 zenon_H241 zenon_H18f zenon_H18e zenon_H18d zenon_H2c3.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H2c3); [ zenon_intro zenon_H8 | zenon_intro zenon_H2c4 ].
% 0.93/1.12  apply (zenon_L5_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H2c4); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H24e ].
% 0.93/1.12  apply (zenon_L269_); trivial.
% 0.93/1.12  apply (zenon_L670_); trivial.
% 0.93/1.12  apply (zenon_L259_); trivial.
% 0.93/1.12  (* end of lemma zenon_L681_ *)
% 0.93/1.12  assert (zenon_L682_ : ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(hskp10)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H19c zenon_H229 zenon_H181 zenon_H183 zenon_H4f zenon_H23a zenon_H238 zenon_H231 zenon_H230 zenon_H22f zenon_Hab zenon_H162 zenon_H128 zenon_H2f2 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hb zenon_Ha zenon_H9 zenon_H156 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H150 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hf6 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H115 zenon_Heb zenon_Hd9 zenon_Hfb zenon_Hff.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.12  apply (zenon_L598_); trivial.
% 0.93/1.12  apply (zenon_L195_); trivial.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.12  apply (zenon_L590_); trivial.
% 0.93/1.12  apply (zenon_L195_); trivial.
% 0.93/1.12  apply (zenon_L190_); trivial.
% 0.93/1.12  (* end of lemma zenon_L682_ *)
% 0.93/1.12  assert (zenon_L683_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(hskp6)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H189 zenon_H129 zenon_H277 zenon_H19f zenon_H19e zenon_H1db zenon_H1dc zenon_H1dd zenon_H1e4 zenon_H22f zenon_H230 zenon_H231 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H270 zenon_H1 zenon_H2eb.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.12  apply (zenon_L415_); trivial.
% 0.93/1.12  apply (zenon_L334_); trivial.
% 0.93/1.12  (* end of lemma zenon_L683_ *)
% 0.93/1.12  assert (zenon_L684_ : ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> (~(hskp10)) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp17)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp8)) -> (~(hskp14)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_Hfb zenon_H268 zenon_H238 zenon_H230 zenon_H231 zenon_H62 zenon_H65 zenon_H18 zenon_H60 zenon_He0.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.12  apply (zenon_L56_); trivial.
% 0.93/1.12  apply (zenon_L261_); trivial.
% 0.93/1.12  (* end of lemma zenon_L684_ *)
% 0.93/1.12  assert (zenon_L685_ : ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> (~(hskp14)) -> (~(hskp8)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(hskp10)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H101 zenon_H275 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_He0 zenon_H60 zenon_H18 zenon_H65 zenon_H231 zenon_H230 zenon_H238 zenon_H268 zenon_Hfb.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.12  apply (zenon_L684_); trivial.
% 0.93/1.12  apply (zenon_L541_); trivial.
% 0.93/1.12  (* end of lemma zenon_L685_ *)
% 0.93/1.12  assert (zenon_L686_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H12a zenon_Hff zenon_H162 zenon_H277 zenon_H22f zenon_H230 zenon_H231 zenon_H270 zenon_H9 zenon_Ha zenon_Hb zenon_H205 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H2c3 zenon_H150 zenon_H14e zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hf6 zenon_H115 zenon_Heb zenon_H1db zenon_H1dc zenon_H1dd zenon_H2f2 zenon_H128 zenon_Hd9 zenon_Hfb.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.12  apply (zenon_L627_); trivial.
% 0.93/1.12  apply (zenon_L595_); trivial.
% 0.93/1.12  apply (zenon_L628_); trivial.
% 0.93/1.12  (* end of lemma zenon_L686_ *)
% 0.93/1.12  assert (zenon_L687_ : ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> (~(hskp8)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(hskp10)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(c0_1 (a203))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H19c zenon_H4f zenon_H229 zenon_Hab zenon_H181 zenon_H183 zenon_H101 zenon_H275 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_He0 zenon_H18 zenon_H65 zenon_H231 zenon_H230 zenon_H238 zenon_H268 zenon_Hfb zenon_Hd9 zenon_H128 zenon_H2f2 zenon_H1dd zenon_H1dc zenon_H1db zenon_Heb zenon_H115 zenon_Hf6 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H150 zenon_H2c3 zenon_H205 zenon_Hb zenon_Ha zenon_H9 zenon_H270 zenon_H22f zenon_H277 zenon_H162 zenon_Hff zenon_H129.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.12  apply (zenon_L685_); trivial.
% 0.93/1.12  apply (zenon_L686_); trivial.
% 0.93/1.12  apply (zenon_L190_); trivial.
% 0.93/1.12  (* end of lemma zenon_L687_ *)
% 0.93/1.12  assert (zenon_L688_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_Hdc zenon_Hd9 zenon_H277 zenon_Heb zenon_H22f zenon_H230 zenon_H231 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H121 zenon_H23e zenon_H21 zenon_H22 zenon_H23 zenon_Hab.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.12  apply (zenon_L45_); trivial.
% 0.93/1.12  apply (zenon_L647_); trivial.
% 0.93/1.12  (* end of lemma zenon_L688_ *)
% 0.93/1.12  assert (zenon_L689_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> (~(c0_1 (a244))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_Hd1 zenon_H28d zenon_H289 zenon_H14e zenon_H231 zenon_H230 zenon_H22f zenon_H18d zenon_H18e zenon_H18f zenon_Heb zenon_H2ba zenon_H2bb zenon_H2bc zenon_H7f zenon_H80 zenon_H81 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H241 zenon_H242 zenon_H240 zenon_H275 zenon_H28e.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.12  apply (zenon_L635_); trivial.
% 0.93/1.12  apply (zenon_L259_); trivial.
% 0.93/1.12  (* end of lemma zenon_L689_ *)
% 0.93/1.12  assert (zenon_L690_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_Hf8 zenon_Hd9 zenon_H28d zenon_H289 zenon_H231 zenon_H230 zenon_H22f zenon_H18d zenon_H18e zenon_H18f zenon_Heb zenon_H2ba zenon_H2bb zenon_H2bc zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H241 zenon_H242 zenon_H240 zenon_H275 zenon_H28e zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.12  apply (zenon_L392_); trivial.
% 0.93/1.12  apply (zenon_L689_); trivial.
% 0.93/1.12  (* end of lemma zenon_L690_ *)
% 0.93/1.12  assert (zenon_L691_ : ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp8)) -> (~(hskp14)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_Hfb zenon_Hd9 zenon_H28d zenon_H289 zenon_H231 zenon_H230 zenon_H22f zenon_H18d zenon_H18e zenon_H18f zenon_Heb zenon_H2ba zenon_H2bb zenon_H2bc zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H241 zenon_H242 zenon_H240 zenon_H275 zenon_H28e zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150 zenon_H18 zenon_H60 zenon_He0.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.12  apply (zenon_L56_); trivial.
% 0.93/1.12  apply (zenon_L690_); trivial.
% 0.93/1.12  (* end of lemma zenon_L691_ *)
% 0.93/1.12  assert (zenon_L692_ : ((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216)))))) -> ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp8)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H196 zenon_H19c zenon_H4f zenon_H229 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hab zenon_H181 zenon_H183 zenon_Hfb zenon_Hd9 zenon_H28d zenon_H289 zenon_H231 zenon_H230 zenon_H22f zenon_Heb zenon_H2ba zenon_H2bb zenon_H2bc zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H241 zenon_H242 zenon_H240 zenon_H275 zenon_H28e zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H150 zenon_H18 zenon_He0 zenon_H162 zenon_H277 zenon_H270 zenon_H9 zenon_Ha zenon_Hb zenon_H205 zenon_H2c3 zenon_H129.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.12  apply (zenon_L691_); trivial.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.12  apply (zenon_L627_); trivial.
% 0.93/1.12  apply (zenon_L690_); trivial.
% 0.93/1.12  apply (zenon_L190_); trivial.
% 0.93/1.12  (* end of lemma zenon_L692_ *)
% 0.93/1.12  assert (zenon_L693_ : ((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(hskp15)) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H103 zenon_H101 zenon_H275 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H162 zenon_H217 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H150 zenon_H14e zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hf6 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H50 zenon_H115 zenon_Heb zenon_H9 zenon_Ha zenon_Hb zenon_H1db zenon_H1dc zenon_H1dd zenon_H2f2 zenon_H128 zenon_Hd9 zenon_Hfb.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.12  apply (zenon_L508_); trivial.
% 0.93/1.12  apply (zenon_L595_); trivial.
% 0.93/1.12  apply (zenon_L541_); trivial.
% 0.93/1.12  (* end of lemma zenon_L693_ *)
% 0.93/1.12  assert (zenon_L694_ : ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> (~(c1_1 (a212))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (ndr1_0) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H19c zenon_H229 zenon_Hab zenon_H181 zenon_H183 zenon_H102 zenon_H101 zenon_H275 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H162 zenon_H217 zenon_H1ab zenon_H205 zenon_H150 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hf6 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H115 zenon_Heb zenon_Hd9 zenon_Hfb zenon_H128 zenon_H2f2 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hb zenon_Ha zenon_H9 zenon_H7 zenon_H22f zenon_H230 zenon_H231 zenon_H156 zenon_H19f zenon_H19e zenon_H121 zenon_H23e zenon_H2e zenon_H4c zenon_H4f zenon_Hff.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.12  apply (zenon_L658_); trivial.
% 0.93/1.12  apply (zenon_L693_); trivial.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.12  apply (zenon_L658_); trivial.
% 0.93/1.12  apply (zenon_L603_); trivial.
% 0.93/1.12  apply (zenon_L190_); trivial.
% 0.93/1.12  (* end of lemma zenon_L694_ *)
% 0.93/1.12  assert (zenon_L695_ : ((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(c0_1 (a203))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp14)) -> (~(hskp17)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H15f zenon_H28d zenon_H289 zenon_H14e zenon_H18d zenon_H18e zenon_H18f zenon_H261 zenon_H22f zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H2ba zenon_H2bb zenon_H2bc zenon_H275 zenon_H230 zenon_H231 zenon_H60 zenon_H62 zenon_H65 zenon_H28e.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.12  apply (zenon_L642_); trivial.
% 0.93/1.12  apply (zenon_L259_); trivial.
% 0.93/1.12  (* end of lemma zenon_L695_ *)
% 0.93/1.12  assert (zenon_L696_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(c0_1 (a203))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp14)) -> (~(hskp17)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp22)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H162 zenon_H28d zenon_H289 zenon_H14e zenon_H18d zenon_H18e zenon_H18f zenon_H261 zenon_H22f zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H2ba zenon_H2bb zenon_H2bc zenon_H275 zenon_H230 zenon_H231 zenon_H60 zenon_H62 zenon_H65 zenon_H28e zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H74 zenon_H205.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.93/1.12  apply (zenon_L159_); trivial.
% 0.93/1.12  apply (zenon_L695_); trivial.
% 0.93/1.12  (* end of lemma zenon_L696_ *)
% 0.93/1.12  assert (zenon_L697_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> (~(hskp15)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_Hf8 zenon_Hd9 zenon_H128 zenon_H2f2 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hb zenon_Ha zenon_H9 zenon_Heb zenon_H115 zenon_H50 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_Hf6 zenon_H21 zenon_H22 zenon_H23 zenon_Hab.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.12  apply (zenon_L45_); trivial.
% 0.93/1.12  apply (zenon_L594_); trivial.
% 0.93/1.12  (* end of lemma zenon_L697_ *)
% 0.93/1.12  assert (zenon_L698_ : ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp17)) -> (~(hskp14)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c0_1 (a203))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (~(hskp12)) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(hskp15)) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H4f zenon_Hab zenon_H28e zenon_H65 zenon_H62 zenon_H60 zenon_H231 zenon_H230 zenon_H275 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H22f zenon_H261 zenon_H18f zenon_H18e zenon_H18d zenon_H289 zenon_H28d zenon_H162 zenon_H128 zenon_H2f2 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hb zenon_Ha zenon_H9 zenon_H156 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H150 zenon_H14e zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hf6 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H50 zenon_H115 zenon_Heb zenon_Hd9 zenon_Hfb.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.12  apply (zenon_L598_); trivial.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.12  apply (zenon_L696_); trivial.
% 0.93/1.12  apply (zenon_L697_); trivial.
% 0.93/1.12  (* end of lemma zenon_L698_ *)
% 0.93/1.12  assert (zenon_L699_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (c3_1 (a230)) -> (c2_1 (a230)) -> (forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49)))))) -> (ndr1_0) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H275 zenon_H81 zenon_H80 zenon_Hb6 zenon_H3d zenon_H3c zenon_H27e zenon_H7 zenon_H2ba zenon_H2bb zenon_H2bc.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.93/1.12  apply (zenon_L58_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.93/1.12  apply (zenon_L273_); trivial.
% 0.93/1.12  apply (zenon_L342_); trivial.
% 0.93/1.12  (* end of lemma zenon_L699_ *)
% 0.93/1.12  assert (zenon_L700_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a198)) -> (c1_1 (a198)) -> (c0_1 (a198)) -> (ndr1_0) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (c3_1 (a230)) -> (c2_1 (a230)) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> (~(c0_1 (a244))) -> (forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp12)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H289 zenon_H231 zenon_H230 zenon_H22f zenon_H9e zenon_H9d zenon_H9c zenon_H7 zenon_H275 zenon_H81 zenon_H80 zenon_H3d zenon_H3c zenon_H2ba zenon_H2bb zenon_H2bc zenon_H7f zenon_H88 zenon_Heb zenon_H14e.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H289); [ zenon_intro zenon_H22e | zenon_intro zenon_H28c ].
% 0.93/1.12  apply (zenon_L192_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H28c); [ zenon_intro zenon_H27e | zenon_intro zenon_H14f ].
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Heb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hec ].
% 0.93/1.12  apply (zenon_L57_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hec); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H9b ].
% 0.93/1.12  apply (zenon_L699_); trivial.
% 0.93/1.12  apply (zenon_L40_); trivial.
% 0.93/1.12  exact (zenon_H14e zenon_H14f).
% 0.93/1.12  (* end of lemma zenon_L700_ *)
% 0.93/1.12  assert (zenon_L701_ : ((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(hskp12)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c0_1 (a244))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H46 zenon_Hf6 zenon_H14e zenon_Heb zenon_H7f zenon_H2bc zenon_H2bb zenon_H2ba zenon_H80 zenon_H81 zenon_H275 zenon_H9c zenon_H9d zenon_H9e zenon_H22f zenon_H230 zenon_H231 zenon_H289 zenon_Hed zenon_Hee zenon_Hef.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H46). zenon_intro zenon_H7. zenon_intro zenon_H48.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H48). zenon_intro zenon_H3b. zenon_intro zenon_H49.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H49). zenon_intro zenon_H3c. zenon_intro zenon_H3d.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.93/1.12  apply (zenon_L37_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.93/1.12  apply (zenon_L700_); trivial.
% 0.93/1.12  apply (zenon_L60_); trivial.
% 0.93/1.12  (* end of lemma zenon_L701_ *)
% 0.93/1.12  assert (zenon_L702_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(hskp12)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(c1_1 (a233))) -> (~(c2_1 (a233))) -> (~(c3_1 (a233))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_Hf8 zenon_Hd9 zenon_H4c zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_H22f zenon_H230 zenon_H231 zenon_Heb zenon_H2ba zenon_H2bb zenon_H2bc zenon_H275 zenon_H14e zenon_H289 zenon_H2c zenon_H2e zenon_H21 zenon_H22 zenon_H23 zenon_Hab.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.12  apply (zenon_L45_); trivial.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H4c); [ zenon_intro zenon_H2a | zenon_intro zenon_H46 ].
% 0.93/1.12  apply (zenon_L16_); trivial.
% 0.93/1.12  apply (zenon_L701_); trivial.
% 0.93/1.12  (* end of lemma zenon_L702_ *)
% 0.93/1.12  assert (zenon_L703_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp17)) -> (~(hskp14)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (~(c0_1 (a203))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(hskp12)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H4b zenon_Hfb zenon_Hd9 zenon_H4c zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Heb zenon_H2c zenon_H2e zenon_Hab zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H28e zenon_H65 zenon_H62 zenon_H60 zenon_H231 zenon_H230 zenon_H275 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H22f zenon_H261 zenon_H18f zenon_H18e zenon_H18d zenon_H14e zenon_H289 zenon_H28d zenon_H162.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.12  apply (zenon_L696_); trivial.
% 0.93/1.12  apply (zenon_L702_); trivial.
% 0.93/1.12  (* end of lemma zenon_L703_ *)
% 0.93/1.12  assert (zenon_L704_ : ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp12)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> (~(c0_1 (a203))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp14)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(hskp16)) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H101 zenon_Hfb zenon_Hd9 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_Heb zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H14e zenon_H150 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H156 zenon_H9 zenon_Ha zenon_Hb zenon_H1db zenon_H1dc zenon_H1dd zenon_H2f2 zenon_H128 zenon_H162 zenon_H28d zenon_H289 zenon_H18d zenon_H18e zenon_H18f zenon_H261 zenon_H22f zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H2ba zenon_H2bb zenon_H2bc zenon_H275 zenon_H230 zenon_H231 zenon_H60 zenon_H65 zenon_H28e zenon_Hab zenon_H2e zenon_H2c zenon_H4c zenon_H4f.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.12  apply (zenon_L590_); trivial.
% 0.93/1.12  apply (zenon_L703_); trivial.
% 0.93/1.12  apply (zenon_L541_); trivial.
% 0.93/1.12  (* end of lemma zenon_L704_ *)
% 0.93/1.12  assert (zenon_L705_ : ((ndr1_0)/\((~(c0_1 (a213)))/\((~(c1_1 (a213)))/\(~(c2_1 (a213)))))) -> ((~(hskp11))\/((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(c1_1 (a212))) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp17))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> (~(hskp0)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H1be zenon_H19b zenon_H28e zenon_H65 zenon_H261 zenon_H289 zenon_H28d zenon_H270 zenon_H1e4 zenon_H277 zenon_H129 zenon_Hff zenon_H4f zenon_H4c zenon_H2e zenon_H23e zenon_H19e zenon_H19f zenon_H156 zenon_H231 zenon_H230 zenon_H22f zenon_H1db zenon_H1dc zenon_H1dd zenon_H2f2 zenon_H128 zenon_Hfb zenon_Hd9 zenon_Heb zenon_H115 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_Hf6 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H150 zenon_H205 zenon_H1ab zenon_H217 zenon_H162 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H275 zenon_H101 zenon_H102 zenon_H183 zenon_H181 zenon_Hab zenon_H229 zenon_H19c.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.12  apply (zenon_L694_); trivial.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.12  apply (zenon_L698_); trivial.
% 0.93/1.12  apply (zenon_L541_); trivial.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.12  apply (zenon_L704_); trivial.
% 0.93/1.12  apply (zenon_L603_); trivial.
% 0.93/1.12  apply (zenon_L334_); trivial.
% 0.93/1.12  apply (zenon_L190_); trivial.
% 0.93/1.12  (* end of lemma zenon_L705_ *)
% 0.93/1.12  assert (zenon_L706_ : ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp0)) -> ((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/((hskp0)\/(hskp18))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp27)\/(hskp12))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp11)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H19c zenon_H4f zenon_H229 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hab zenon_H181 zenon_H183 zenon_H228 zenon_Hd9 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_H150 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H23e zenon_H121 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H231 zenon_H230 zenon_H22f zenon_Heb zenon_H277 zenon_H100.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.12  apply (zenon_L648_); trivial.
% 0.93/1.12  apply (zenon_L190_); trivial.
% 0.93/1.12  (* end of lemma zenon_L706_ *)
% 0.93/1.12  assert (zenon_L707_ : (forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16)))))) -> (ndr1_0) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H1b0 zenon_H7 zenon_H2f9 zenon_H2fa zenon_H2fb.
% 0.93/1.12  generalize (zenon_H1b0 (a199)). zenon_intro zenon_H2fc.
% 0.93/1.12  apply (zenon_imply_s _ _ zenon_H2fc); [ zenon_intro zenon_H6 | zenon_intro zenon_H2fd ].
% 0.93/1.12  exact (zenon_H6 zenon_H7).
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H2fd); [ zenon_intro zenon_H2ff | zenon_intro zenon_H2fe ].
% 0.93/1.12  exact (zenon_H2f9 zenon_H2ff).
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H2fe); [ zenon_intro zenon_H301 | zenon_intro zenon_H300 ].
% 0.93/1.12  exact (zenon_H2fa zenon_H301).
% 0.93/1.12  exact (zenon_H300 zenon_H2fb).
% 0.93/1.12  (* end of lemma zenon_L707_ *)
% 0.93/1.12  assert (zenon_L708_ : ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp15)\/(hskp1))) -> (c0_1 (a249)) -> (c3_1 (a249)) -> (~(c2_1 (a249))) -> (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (ndr1_0) -> (~(hskp15)) -> (~(hskp1)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H29a zenon_H148 zenon_H140 zenon_H13e zenon_Hb6 zenon_H7 zenon_H50 zenon_H12.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H29a); [ zenon_intro zenon_H147 | zenon_intro zenon_H29b ].
% 0.93/1.12  apply (zenon_L85_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H29b); [ zenon_intro zenon_H51 | zenon_intro zenon_H13 ].
% 0.93/1.12  exact (zenon_H50 zenon_H51).
% 0.93/1.12  exact (zenon_H12 zenon_H13).
% 0.93/1.12  (* end of lemma zenon_L708_ *)
% 0.93/1.12  assert (zenon_L709_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (~(hskp15)) -> (~(hskp1)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp15)\/(hskp1))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (~(hskp4)) -> (~(hskp18)) -> ((hskp24)\/((hskp4)\/(hskp18))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H162 zenon_H1b9 zenon_H50 zenon_H12 zenon_H29a zenon_H33 zenon_H32 zenon_H31 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H13a zenon_H1c zenon_H13c.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.93/1.12  apply (zenon_L83_); trivial.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H1b9); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1ba ].
% 0.93/1.12  apply (zenon_L707_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H1ba); [ zenon_intro zenon_H30 | zenon_intro zenon_Hb6 ].
% 0.93/1.12  apply (zenon_L17_); trivial.
% 0.93/1.12  apply (zenon_L708_); trivial.
% 0.93/1.12  (* end of lemma zenon_L709_ *)
% 0.93/1.12  assert (zenon_L710_ : ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp3)) -> (~(hskp16)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((hskp24)\/((hskp4)\/(hskp18))) -> (~(hskp4)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp15)\/(hskp1))) -> (~(hskp1)) -> (~(hskp15)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H4f zenon_H4c zenon_H47 zenon_H44 zenon_H2c zenon_H2e zenon_H13c zenon_H13a zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H31 zenon_H32 zenon_H33 zenon_H29a zenon_H12 zenon_H50 zenon_H1b9 zenon_H162.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.12  apply (zenon_L709_); trivial.
% 0.93/1.12  apply (zenon_L21_); trivial.
% 0.93/1.12  (* end of lemma zenon_L710_ *)
% 0.93/1.12  assert (zenon_L711_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c0_1 (a244))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> (~(c1_1 (a231))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_Hd1 zenon_H1b9 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_Hf6 zenon_H7f zenon_H81 zenon_H80 zenon_Ha5 zenon_H6c zenon_H6d zenon_H6b zenon_H33 zenon_H32 zenon_H31.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H1b9); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1ba ].
% 0.93/1.12  apply (zenon_L707_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H1ba); [ zenon_intro zenon_H30 | zenon_intro zenon_Hb6 ].
% 0.93/1.12  apply (zenon_L17_); trivial.
% 0.93/1.12  apply (zenon_L354_); trivial.
% 0.93/1.12  (* end of lemma zenon_L711_ *)
% 0.93/1.12  assert (zenon_L712_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c1_1 (a231))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H4b zenon_Hfb zenon_Hd9 zenon_H1b9 zenon_Ha5 zenon_Hf6 zenon_H33 zenon_H32 zenon_H31 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_Hab zenon_H6b zenon_H6c zenon_H6d zenon_H44 zenon_H76.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.12  apply (zenon_L33_); trivial.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.12  apply (zenon_L45_); trivial.
% 0.93/1.12  apply (zenon_L711_); trivial.
% 0.93/1.12  (* end of lemma zenon_L712_ *)
% 0.93/1.12  assert (zenon_L713_ : ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (~(hskp15)) -> (~(hskp1)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp15)\/(hskp1))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (~(hskp4)) -> ((hskp24)\/((hskp4)\/(hskp18))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(hskp3)) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H102 zenon_Hfb zenon_Hd9 zenon_Ha5 zenon_Hf6 zenon_Hab zenon_H76 zenon_H162 zenon_H1b9 zenon_H50 zenon_H12 zenon_H29a zenon_H33 zenon_H32 zenon_H31 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H13a zenon_H13c zenon_H2e zenon_H44 zenon_H47 zenon_H4c zenon_H4f.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.12  apply (zenon_L710_); trivial.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.12  apply (zenon_L709_); trivial.
% 0.93/1.12  apply (zenon_L712_); trivial.
% 0.93/1.12  (* end of lemma zenon_L713_ *)
% 0.93/1.12  assert (zenon_L714_ : ((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (~(hskp19)) -> (~(hskp20)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H15f zenon_H1b9 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H33 zenon_H32 zenon_H31 zenon_H209 zenon_H7a zenon_H207.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H1b9); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1ba ].
% 0.93/1.12  apply (zenon_L707_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H1ba); [ zenon_intro zenon_H30 | zenon_intro zenon_Hb6 ].
% 0.93/1.12  apply (zenon_L17_); trivial.
% 0.93/1.12  apply (zenon_L161_); trivial.
% 0.93/1.12  (* end of lemma zenon_L714_ *)
% 0.93/1.12  assert (zenon_L715_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (~(hskp19)) -> (~(hskp20)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (~(hskp4)) -> (~(hskp18)) -> ((hskp24)\/((hskp4)\/(hskp18))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H162 zenon_H1b9 zenon_H7a zenon_H207 zenon_H209 zenon_H33 zenon_H32 zenon_H31 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H13a zenon_H1c zenon_H13c.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.93/1.12  apply (zenon_L83_); trivial.
% 0.93/1.12  apply (zenon_L714_); trivial.
% 0.93/1.12  (* end of lemma zenon_L715_ *)
% 0.93/1.12  assert (zenon_L716_ : ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y)))))) -> (ndr1_0) -> (~(c2_1 (a238))) -> (c1_1 (a238)) -> (c3_1 (a238)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H1b9 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H1da zenon_H7 zenon_Hb7 zenon_Hb8 zenon_Hb9.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H1b9); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1ba ].
% 0.93/1.12  apply (zenon_L707_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H1ba); [ zenon_intro zenon_H30 | zenon_intro zenon_Hb6 ].
% 0.93/1.12  apply (zenon_L411_); trivial.
% 0.93/1.12  apply (zenon_L47_); trivial.
% 0.93/1.12  (* end of lemma zenon_L716_ *)
% 0.93/1.12  assert (zenon_L717_ : (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (ndr1_0) -> (~(c0_1 (a199))) -> (c2_1 (a199)) -> (c3_1 (a199)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H109 zenon_H7 zenon_H2f9 zenon_H302 zenon_H2fb.
% 0.93/1.12  generalize (zenon_H109 (a199)). zenon_intro zenon_H303.
% 0.93/1.12  apply (zenon_imply_s _ _ zenon_H303); [ zenon_intro zenon_H6 | zenon_intro zenon_H304 ].
% 0.93/1.12  exact (zenon_H6 zenon_H7).
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H304); [ zenon_intro zenon_H2ff | zenon_intro zenon_H305 ].
% 0.93/1.12  exact (zenon_H2f9 zenon_H2ff).
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H305); [ zenon_intro zenon_H306 | zenon_intro zenon_H300 ].
% 0.93/1.12  exact (zenon_H306 zenon_H302).
% 0.93/1.12  exact (zenon_H300 zenon_H2fb).
% 0.93/1.12  (* end of lemma zenon_L717_ *)
% 0.93/1.12  assert (zenon_L718_ : (forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33)))))) -> (ndr1_0) -> (~(c0_1 (a199))) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (c3_1 (a199)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H7e zenon_H7 zenon_H2f9 zenon_H109 zenon_H2fb.
% 0.93/1.12  generalize (zenon_H7e (a199)). zenon_intro zenon_H307.
% 0.93/1.12  apply (zenon_imply_s _ _ zenon_H307); [ zenon_intro zenon_H6 | zenon_intro zenon_H308 ].
% 0.93/1.12  exact (zenon_H6 zenon_H7).
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H308); [ zenon_intro zenon_H2ff | zenon_intro zenon_H309 ].
% 0.93/1.12  exact (zenon_H2f9 zenon_H2ff).
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H309); [ zenon_intro zenon_H302 | zenon_intro zenon_H300 ].
% 0.93/1.12  apply (zenon_L717_); trivial.
% 0.93/1.12  exact (zenon_H300 zenon_H2fb).
% 0.93/1.12  (* end of lemma zenon_L718_ *)
% 0.93/1.12  assert (zenon_L719_ : (forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37)))))) -> (ndr1_0) -> (~(c1_1 (a199))) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (~(c0_1 (a199))) -> (c3_1 (a199)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H88 zenon_H7 zenon_H2fa zenon_H109 zenon_H2f9 zenon_H2fb.
% 0.93/1.12  generalize (zenon_H88 (a199)). zenon_intro zenon_H30a.
% 0.93/1.12  apply (zenon_imply_s _ _ zenon_H30a); [ zenon_intro zenon_H6 | zenon_intro zenon_H30b ].
% 0.93/1.12  exact (zenon_H6 zenon_H7).
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H30b); [ zenon_intro zenon_H301 | zenon_intro zenon_H309 ].
% 0.93/1.12  exact (zenon_H2fa zenon_H301).
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H309); [ zenon_intro zenon_H302 | zenon_intro zenon_H300 ].
% 0.93/1.12  apply (zenon_L717_); trivial.
% 0.93/1.12  exact (zenon_H300 zenon_H2fb).
% 0.93/1.12  (* end of lemma zenon_L719_ *)
% 0.93/1.12  assert (zenon_L720_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (~(c1_1 (a199))) -> (ndr1_0) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_Hf6 zenon_H2fb zenon_H2f9 zenon_H109 zenon_H2fa zenon_H7 zenon_Hed zenon_Hee zenon_Hef.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.93/1.12  apply (zenon_L718_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.93/1.12  apply (zenon_L719_); trivial.
% 0.93/1.12  apply (zenon_L60_); trivial.
% 0.93/1.12  (* end of lemma zenon_L720_ *)
% 0.93/1.12  assert (zenon_L721_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_Hdc zenon_H1e4 zenon_H1b9 zenon_Hf6 zenon_H2fb zenon_H2f9 zenon_H2fa zenon_Hed zenon_Hee zenon_Hef.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.12  apply (zenon_L707_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.12  apply (zenon_L716_); trivial.
% 0.93/1.12  apply (zenon_L720_); trivial.
% 0.93/1.12  (* end of lemma zenon_L721_ *)
% 0.93/1.12  assert (zenon_L722_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_Hf8 zenon_H1b9 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H33 zenon_H32 zenon_H31 zenon_Hf6 zenon_Hed zenon_Hee zenon_Hef.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H1b9); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1ba ].
% 0.93/1.12  apply (zenon_L707_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H1ba); [ zenon_intro zenon_H30 | zenon_intro zenon_Hb6 ].
% 0.93/1.12  apply (zenon_L17_); trivial.
% 0.93/1.12  apply (zenon_L358_); trivial.
% 0.93/1.12  (* end of lemma zenon_L722_ *)
% 0.93/1.12  assert (zenon_L723_ : ((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H103 zenon_Hfb zenon_H1b9 zenon_Hed zenon_Hee zenon_Hef zenon_Hf6 zenon_H33 zenon_H32 zenon_H31 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H44 zenon_H76.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.12  apply (zenon_L33_); trivial.
% 0.93/1.12  apply (zenon_L722_); trivial.
% 0.93/1.12  (* end of lemma zenon_L723_ *)
% 0.93/1.12  assert (zenon_L724_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (~(c1_1 (a199))) -> (c2_1 (a281)) -> (c1_1 (a281)) -> (~(c3_1 (a281))) -> (ndr1_0) -> (~(hskp21)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_Ha9 zenon_H2fb zenon_H2f9 zenon_H109 zenon_H2fa zenon_H59 zenon_H58 zenon_H57 zenon_H7 zenon_Ha7.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Ha9); [ zenon_intro zenon_H88 | zenon_intro zenon_Haa ].
% 0.93/1.12  apply (zenon_L719_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_Haa); [ zenon_intro zenon_H56 | zenon_intro zenon_Ha8 ].
% 0.93/1.12  apply (zenon_L26_); trivial.
% 0.93/1.12  exact (zenon_Ha7 zenon_Ha8).
% 0.93/1.12  (* end of lemma zenon_L724_ *)
% 0.93/1.12  assert (zenon_L725_ : ((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (~(hskp21)) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H64 zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_Ha9 zenon_H2fb zenon_H2f9 zenon_H2fa zenon_Ha7.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H64). zenon_intro zenon_H7. zenon_intro zenon_H66.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H66). zenon_intro zenon_H58. zenon_intro zenon_H67.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_H67). zenon_intro zenon_H59. zenon_intro zenon_H57.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.12  apply (zenon_L707_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.12  apply (zenon_L148_); trivial.
% 0.93/1.12  apply (zenon_L724_); trivial.
% 0.93/1.12  (* end of lemma zenon_L725_ *)
% 0.93/1.12  assert (zenon_L726_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_Hfc zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hf6 zenon_H2fb zenon_H2f9 zenon_H2fa.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.12  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.12  apply (zenon_L707_); trivial.
% 0.93/1.12  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.12  apply (zenon_L148_); trivial.
% 0.93/1.12  apply (zenon_L720_); trivial.
% 0.93/1.12  (* end of lemma zenon_L726_ *)
% 0.93/1.12  assert (zenon_L727_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (~(hskp8)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> False).
% 0.93/1.12  do 0 intro. intros zenon_H189 zenon_Hff zenon_Hf6 zenon_H69 zenon_H1e4 zenon_Ha9 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H18 zenon_H54 zenon_Hcf zenon_Hd2 zenon_Hdd.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H69); [ zenon_intro zenon_H52 | zenon_intro zenon_H64 ].
% 0.93/1.13  apply (zenon_L25_); trivial.
% 0.93/1.13  apply (zenon_L725_); trivial.
% 0.93/1.13  apply (zenon_L76_); trivial.
% 0.93/1.13  apply (zenon_L726_); trivial.
% 0.93/1.13  (* end of lemma zenon_L727_ *)
% 0.93/1.13  assert (zenon_L728_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_Hdc zenon_H1b9 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H33 zenon_H32 zenon_H31.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1b9); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1ba ].
% 0.93/1.13  apply (zenon_L707_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1ba); [ zenon_intro zenon_H30 | zenon_intro zenon_Hb6 ].
% 0.93/1.13  apply (zenon_L17_); trivial.
% 0.93/1.13  apply (zenon_L47_); trivial.
% 0.93/1.13  (* end of lemma zenon_L728_ *)
% 0.93/1.13  assert (zenon_L729_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp3))) -> (~(hskp3)) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (ndr1_0) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H100 zenon_H1b9 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H47 zenon_H44 zenon_H19e zenon_H19f zenon_H165 zenon_H33 zenon_H32 zenon_H31 zenon_H7 zenon_H60 zenon_H1a9 zenon_H176.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.13  apply (zenon_L122_); trivial.
% 0.93/1.13  apply (zenon_L728_); trivial.
% 0.93/1.13  (* end of lemma zenon_L729_ *)
% 0.93/1.13  assert (zenon_L730_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H12a zenon_H1e4 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H1dd zenon_H1dc zenon_H1db.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.13  apply (zenon_L707_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.13  apply (zenon_L148_); trivial.
% 0.93/1.13  apply (zenon_L66_); trivial.
% 0.93/1.13  (* end of lemma zenon_L730_ *)
% 0.93/1.13  assert (zenon_L731_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (ndr1_0) -> (~(c1_1 (a205))) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_Hf6 zenon_H81 zenon_H80 zenon_H7f zenon_H2fb zenon_H2f9 zenon_H2fa zenon_H7 zenon_H1c4 zenon_H109 zenon_H1c5 zenon_H1cc.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.93/1.13  apply (zenon_L37_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.93/1.13  apply (zenon_L719_); trivial.
% 0.93/1.13  apply (zenon_L336_); trivial.
% 0.93/1.13  (* end of lemma zenon_L731_ *)
% 0.93/1.13  assert (zenon_L732_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_Hf8 zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hf6 zenon_H2fb zenon_H2f9 zenon_H2fa zenon_H1c4 zenon_H1c5 zenon_H1cc.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.13  apply (zenon_L707_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.13  apply (zenon_L148_); trivial.
% 0.93/1.13  apply (zenon_L731_); trivial.
% 0.93/1.13  (* end of lemma zenon_L732_ *)
% 0.93/1.13  assert (zenon_L733_ : ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> (~(hskp8)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H129 zenon_He0 zenon_H18 zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H1db zenon_H1dc zenon_H1dd zenon_Hf6 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H1e4 zenon_Hfb.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.13  apply (zenon_L56_); trivial.
% 0.93/1.13  apply (zenon_L732_); trivial.
% 0.93/1.13  apply (zenon_L730_); trivial.
% 0.93/1.13  (* end of lemma zenon_L733_ *)
% 0.93/1.13  assert (zenon_L734_ : ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp19)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(hskp13)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_Hfb zenon_H1e4 zenon_Hf6 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H165 zenon_H7a zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H1a zenon_H296 zenon_H176 zenon_H162.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.13  apply (zenon_L286_); trivial.
% 0.93/1.13  apply (zenon_L732_); trivial.
% 0.93/1.13  (* end of lemma zenon_L734_ *)
% 0.93/1.13  assert (zenon_L735_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> (~(hskp6)) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H100 zenon_H2e3 zenon_H50 zenon_H1 zenon_H162 zenon_H176 zenon_H296 zenon_H1a zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H165 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H1db zenon_H1dc zenon_H1dd zenon_Hf6 zenon_H1e4 zenon_Hfb.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.13  apply (zenon_L734_); trivial.
% 0.93/1.13  apply (zenon_L385_); trivial.
% 0.93/1.13  (* end of lemma zenon_L735_ *)
% 0.93/1.13  assert (zenon_L736_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (~(hskp6)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H189 zenon_H129 zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H1 zenon_H2eb.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.13  apply (zenon_L415_); trivial.
% 0.93/1.13  apply (zenon_L730_); trivial.
% 0.93/1.13  (* end of lemma zenon_L736_ *)
% 0.93/1.13  assert (zenon_L737_ : ((~(hskp8))\/((ndr1_0)/\((c0_1 (a212))/\((c3_1 (a212))/\(~(c1_1 (a212))))))) -> ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp6)) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H30c zenon_H186 zenon_H2eb zenon_H100 zenon_H2e3 zenon_H1 zenon_H162 zenon_H176 zenon_H296 zenon_H165 zenon_H205 zenon_Hff zenon_Hfb zenon_H1e4 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_Hf6 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2fb zenon_H2fa zenon_H2f9 zenon_He0 zenon_H129.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.13  apply (zenon_L733_); trivial.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.13  apply (zenon_L735_); trivial.
% 0.93/1.13  apply (zenon_L726_); trivial.
% 0.93/1.13  apply (zenon_L736_); trivial.
% 0.93/1.13  (* end of lemma zenon_L737_ *)
% 0.93/1.13  assert (zenon_L738_ : (forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33)))))) -> (ndr1_0) -> (~(c0_1 (a218))) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (c3_1 (a218)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H7e zenon_H7 zenon_H12d zenon_H109 zenon_H12f.
% 0.93/1.13  generalize (zenon_H7e (a218)). zenon_intro zenon_H30d.
% 0.93/1.13  apply (zenon_imply_s _ _ zenon_H30d); [ zenon_intro zenon_H6 | zenon_intro zenon_H30e ].
% 0.93/1.13  exact (zenon_H6 zenon_H7).
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H30e); [ zenon_intro zenon_H133 | zenon_intro zenon_H30f ].
% 0.93/1.13  exact (zenon_H12d zenon_H133).
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H30f); [ zenon_intro zenon_H310 | zenon_intro zenon_H134 ].
% 0.93/1.13  generalize (zenon_H109 (a218)). zenon_intro zenon_H311.
% 0.93/1.13  apply (zenon_imply_s _ _ zenon_H311); [ zenon_intro zenon_H6 | zenon_intro zenon_H312 ].
% 0.93/1.13  exact (zenon_H6 zenon_H7).
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H312); [ zenon_intro zenon_H133 | zenon_intro zenon_H313 ].
% 0.93/1.13  exact (zenon_H12d zenon_H133).
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H313); [ zenon_intro zenon_H314 | zenon_intro zenon_H134 ].
% 0.93/1.13  exact (zenon_H314 zenon_H310).
% 0.93/1.13  exact (zenon_H134 zenon_H12f).
% 0.93/1.13  exact (zenon_H134 zenon_H12f).
% 0.93/1.13  (* end of lemma zenon_L738_ *)
% 0.93/1.13  assert (zenon_L739_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c3_1 (a218)) -> (~(c0_1 (a218))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (ndr1_0) -> (~(c1_1 (a205))) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_Hf6 zenon_H12f zenon_H12d zenon_H2fb zenon_H2f9 zenon_H2fa zenon_H7 zenon_H1c4 zenon_H109 zenon_H1c5 zenon_H1cc.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.93/1.13  apply (zenon_L738_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.93/1.13  apply (zenon_L719_); trivial.
% 0.93/1.13  apply (zenon_L336_); trivial.
% 0.93/1.13  (* end of lemma zenon_L739_ *)
% 0.93/1.13  assert (zenon_L740_ : ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (ndr1_0) -> (~(hskp4)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H23c zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H231 zenon_H230 zenon_H22f zenon_H7 zenon_H13a.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H23c); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H23d ].
% 0.93/1.13  apply (zenon_L707_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H23d); [ zenon_intro zenon_H22e | zenon_intro zenon_H13b ].
% 0.93/1.13  apply (zenon_L192_); trivial.
% 0.93/1.13  exact (zenon_H13a zenon_H13b).
% 0.93/1.13  (* end of lemma zenon_L740_ *)
% 0.93/1.13  assert (zenon_L741_ : ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((hskp8)\/((hskp13)\/(hskp18))) -> (~(hskp8)) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp10)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H186 zenon_Hff zenon_Hf6 zenon_H69 zenon_H1e4 zenon_Ha9 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H54 zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H1e zenon_H18 zenon_Hab zenon_H22f zenon_H230 zenon_H231 zenon_H238 zenon_H23a zenon_Hd9 zenon_H4f.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.13  apply (zenon_L196_); trivial.
% 0.93/1.13  apply (zenon_L727_); trivial.
% 0.93/1.13  (* end of lemma zenon_L741_ *)
% 0.93/1.13  assert (zenon_L742_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/(hskp17))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (~(c1_1 (a199))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> (~(c1_1 (a231))) -> (ndr1_0) -> (~(hskp17)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H315 zenon_H2fb zenon_H2f9 zenon_H109 zenon_H2fa zenon_H6d zenon_H6c zenon_H6b zenon_H7 zenon_H62.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H315); [ zenon_intro zenon_H88 | zenon_intro zenon_H316 ].
% 0.93/1.13  apply (zenon_L719_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H316); [ zenon_intro zenon_H6a | zenon_intro zenon_H63 ].
% 0.93/1.13  apply (zenon_L31_); trivial.
% 0.93/1.13  exact (zenon_H62 zenon_H63).
% 0.93/1.13  (* end of lemma zenon_L742_ *)
% 0.93/1.13  assert (zenon_L743_ : ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/(hskp17))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> (~(c1_1 (a231))) -> (ndr1_0) -> (~(hskp17)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H315 zenon_H2fb zenon_H2f9 zenon_H2fa zenon_H6d zenon_H6c zenon_H6b zenon_H7 zenon_H62.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.13  apply (zenon_L707_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.13  apply (zenon_L148_); trivial.
% 0.93/1.13  apply (zenon_L742_); trivial.
% 0.93/1.13  (* end of lemma zenon_L743_ *)
% 0.93/1.13  assert (zenon_L744_ : (forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))) -> (ndr1_0) -> (~(c1_1 (a231))) -> (forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3))))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H93 zenon_H7 zenon_H6b zenon_H18c zenon_H6c zenon_H6d.
% 0.93/1.13  generalize (zenon_H93 (a231)). zenon_intro zenon_H97.
% 0.93/1.13  apply (zenon_imply_s _ _ zenon_H97); [ zenon_intro zenon_H6 | zenon_intro zenon_H98 ].
% 0.93/1.13  exact (zenon_H6 zenon_H7).
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H98); [ zenon_intro zenon_H71 | zenon_intro zenon_H99 ].
% 0.93/1.13  exact (zenon_H6b zenon_H71).
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H99); [ zenon_intro zenon_H9a | zenon_intro zenon_H72 ].
% 0.93/1.13  generalize (zenon_H18c (a231)). zenon_intro zenon_H317.
% 0.93/1.13  apply (zenon_imply_s _ _ zenon_H317); [ zenon_intro zenon_H6 | zenon_intro zenon_H318 ].
% 0.93/1.13  exact (zenon_H6 zenon_H7).
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H318); [ zenon_intro zenon_H96 | zenon_intro zenon_H319 ].
% 0.93/1.13  exact (zenon_H9a zenon_H96).
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H319); [ zenon_intro zenon_H71 | zenon_intro zenon_H73 ].
% 0.93/1.13  exact (zenon_H6b zenon_H71).
% 0.93/1.13  exact (zenon_H6c zenon_H73).
% 0.93/1.13  exact (zenon_H72 zenon_H6d).
% 0.93/1.13  (* end of lemma zenon_L744_ *)
% 0.93/1.13  assert (zenon_L745_ : ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (ndr1_0) -> (~(c1_1 (a231))) -> (forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3))))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hf6 zenon_H81 zenon_H80 zenon_H7f zenon_H2fb zenon_H2f9 zenon_H2fa zenon_H7 zenon_H6b zenon_H18c zenon_H6c zenon_H6d.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.13  apply (zenon_L707_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.13  apply (zenon_L148_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.93/1.13  apply (zenon_L37_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.93/1.13  apply (zenon_L719_); trivial.
% 0.93/1.13  apply (zenon_L744_); trivial.
% 0.93/1.13  (* end of lemma zenon_L745_ *)
% 0.93/1.13  assert (zenon_L746_ : ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(c1_1 (a199))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (c3_1 (a232)) -> (~(c2_1 (a232))) -> (~(c1_1 (a232))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> (~(c1_1 (a231))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (~(c2_1 (a214))) -> (ndr1_0) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H1e4 zenon_H2fa zenon_H1dd zenon_H1dc zenon_H1db zenon_Hf6 zenon_H2fb zenon_H2f9 zenon_H8b zenon_H8a zenon_H89 zenon_Ha5 zenon_H6c zenon_H6d zenon_H6b zenon_H242 zenon_H241 zenon_H1f3 zenon_H240 zenon_H7 zenon_H9c zenon_H9d zenon_H9e.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.13  apply (zenon_L707_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.13  apply (zenon_L148_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.93/1.13  apply (zenon_L718_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.93/1.13  apply (zenon_L38_); trivial.
% 0.93/1.13  apply (zenon_L205_); trivial.
% 0.93/1.13  (* end of lemma zenon_L746_ *)
% 0.93/1.13  assert (zenon_L747_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(c0_1 (a244))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> (~(c1_1 (a231))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (~(c1_1 (a232))) -> (~(c2_1 (a232))) -> (c3_1 (a232)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_Hd1 zenon_H28d zenon_H289 zenon_H14e zenon_H231 zenon_H230 zenon_H22f zenon_H1e4 zenon_H7f zenon_H80 zenon_H81 zenon_H6b zenon_H6c zenon_H6d zenon_Hf6 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H89 zenon_H8a zenon_H8b zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H28e.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.93/1.13  apply (zenon_L745_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.93/1.13  apply (zenon_L746_); trivial.
% 0.93/1.13  exact (zenon_H27c zenon_H27d).
% 0.93/1.13  apply (zenon_L259_); trivial.
% 0.93/1.13  (* end of lemma zenon_L747_ *)
% 0.93/1.13  assert (zenon_L748_ : ((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(c0_1 (a244))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> (~(c1_1 (a231))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (~(c1_1 (a232))) -> (~(c2_1 (a232))) -> (c3_1 (a232)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c2_1 (a214))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(hskp19)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H64 zenon_Hd9 zenon_H28d zenon_H289 zenon_H14e zenon_H231 zenon_H230 zenon_H22f zenon_H1e4 zenon_H7f zenon_H80 zenon_H81 zenon_H6b zenon_H6c zenon_H6d zenon_Hf6 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H89 zenon_H8a zenon_H8b zenon_Ha5 zenon_H242 zenon_H241 zenon_H240 zenon_H28e zenon_H7a zenon_H7c.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H64). zenon_intro zenon_H7. zenon_intro zenon_H66.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H66). zenon_intro zenon_H58. zenon_intro zenon_H67.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H67). zenon_intro zenon_H59. zenon_intro zenon_H57.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.13  apply (zenon_L36_); trivial.
% 0.93/1.13  apply (zenon_L747_); trivial.
% 0.93/1.13  (* end of lemma zenon_L748_ *)
% 0.93/1.13  assert (zenon_L749_ : ((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> (~(hskp14)) -> (~(hskp8)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp15)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c2_1 (a214))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp12)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/(hskp17))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H103 zenon_H101 zenon_H100 zenon_H1b9 zenon_H33 zenon_H32 zenon_H31 zenon_He0 zenon_H60 zenon_H18 zenon_H54 zenon_H50 zenon_H7c zenon_H28e zenon_H240 zenon_H241 zenon_H242 zenon_Ha5 zenon_Hf6 zenon_H22f zenon_H230 zenon_H231 zenon_H14e zenon_H289 zenon_H28d zenon_Hd9 zenon_H69 zenon_Hfb zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H1db zenon_H1dc zenon_H1dd zenon_H315 zenon_H1e4.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.13  apply (zenon_L743_); trivial.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.13  apply (zenon_L56_); trivial.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H69); [ zenon_intro zenon_H52 | zenon_intro zenon_H64 ].
% 0.93/1.13  apply (zenon_L25_); trivial.
% 0.93/1.13  apply (zenon_L748_); trivial.
% 0.93/1.13  apply (zenon_L728_); trivial.
% 0.93/1.13  (* end of lemma zenon_L749_ *)
% 0.93/1.13  assert (zenon_L750_ : ((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c0_1 (a217)) -> (~(c3_1 (a217))) -> (~(c2_1 (a217))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(hskp19)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H64 zenon_Hd9 zenon_H229 zenon_H17a zenon_H179 zenon_H178 zenon_H1dd zenon_H1dc zenon_H1db zenon_H7a zenon_H7c.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H64). zenon_intro zenon_H7. zenon_intro zenon_H66.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H66). zenon_intro zenon_H58. zenon_intro zenon_H67.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H67). zenon_intro zenon_H59. zenon_intro zenon_H57.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.13  apply (zenon_L36_); trivial.
% 0.93/1.13  apply (zenon_L188_); trivial.
% 0.93/1.13  (* end of lemma zenon_L750_ *)
% 0.93/1.13  assert (zenon_L751_ : ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c0_1 (a217)) -> (~(c3_1 (a217))) -> (~(c2_1 (a217))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(hskp19)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp15)) -> (~(hskp8)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H69 zenon_Hd9 zenon_H229 zenon_H17a zenon_H179 zenon_H178 zenon_H1dd zenon_H1dc zenon_H1db zenon_H7a zenon_H7c zenon_H50 zenon_H18 zenon_H54.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H69); [ zenon_intro zenon_H52 | zenon_intro zenon_H64 ].
% 0.93/1.13  apply (zenon_L25_); trivial.
% 0.93/1.13  apply (zenon_L750_); trivial.
% 0.93/1.13  (* end of lemma zenon_L751_ *)
% 0.93/1.13  assert (zenon_L752_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (~(c1_1 (a199))) -> (ndr1_0) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_Hf6 zenon_H81 zenon_H80 zenon_H7f zenon_H2fb zenon_H2f9 zenon_H109 zenon_H2fa zenon_H7 zenon_Hed zenon_Hee zenon_Hef.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.93/1.13  apply (zenon_L37_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.93/1.13  apply (zenon_L719_); trivial.
% 0.93/1.13  apply (zenon_L60_); trivial.
% 0.93/1.13  (* end of lemma zenon_L752_ *)
% 0.93/1.13  assert (zenon_L753_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_Hf8 zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hf6 zenon_H2fb zenon_H2f9 zenon_H2fa zenon_Hed zenon_Hee zenon_Hef.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.13  apply (zenon_L707_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.13  apply (zenon_L148_); trivial.
% 0.93/1.13  apply (zenon_L752_); trivial.
% 0.93/1.13  (* end of lemma zenon_L753_ *)
% 0.93/1.13  assert (zenon_L754_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (~(hskp8)) -> (~(hskp14)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_Hfc zenon_Hfb zenon_H1e4 zenon_Hf6 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H18 zenon_H60 zenon_He0.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.13  apply (zenon_L56_); trivial.
% 0.93/1.13  apply (zenon_L753_); trivial.
% 0.93/1.13  (* end of lemma zenon_L754_ *)
% 0.93/1.13  assert (zenon_L755_ : ((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217)))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(hskp8)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H185 zenon_H129 zenon_H100 zenon_H1b9 zenon_H33 zenon_H32 zenon_H31 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H54 zenon_H18 zenon_H7c zenon_H1db zenon_H1dc zenon_H1dd zenon_H229 zenon_Hd9 zenon_H69 zenon_He0 zenon_Hf6 zenon_H1e4 zenon_Hfb zenon_Hff.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.13  apply (zenon_L751_); trivial.
% 0.93/1.13  apply (zenon_L728_); trivial.
% 0.93/1.13  apply (zenon_L754_); trivial.
% 0.93/1.13  apply (zenon_L730_); trivial.
% 0.93/1.13  (* end of lemma zenon_L755_ *)
% 0.93/1.13  assert (zenon_L756_ : ((~(hskp10))\/((ndr1_0)/\((c1_1 (a214))/\((~(c2_1 (a214)))/\(~(c3_1 (a214))))))) -> ((~(hskp11))\/((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/(hskp17))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(hskp8)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H262 zenon_H19b zenon_H275 zenon_H4c zenon_H23e zenon_H2e zenon_H315 zenon_Hfb zenon_H28d zenon_H289 zenon_Ha5 zenon_H28e zenon_H7c zenon_He0 zenon_H31 zenon_H32 zenon_H33 zenon_H1b9 zenon_H100 zenon_H101 zenon_H102 zenon_H129 zenon_H229 zenon_H19c zenon_H4f zenon_Hd9 zenon_H23a zenon_H231 zenon_H230 zenon_H22f zenon_Hab zenon_H18 zenon_H1e zenon_Hdd zenon_Hd2 zenon_Hcf zenon_H54 zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H1db zenon_H1dc zenon_H1dd zenon_Ha9 zenon_H1e4 zenon_H69 zenon_Hf6 zenon_Hff zenon_H186.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.13  apply (zenon_L741_); trivial.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.13  apply (zenon_L203_); trivial.
% 0.93/1.13  apply (zenon_L749_); trivial.
% 0.93/1.13  apply (zenon_L726_); trivial.
% 0.93/1.13  apply (zenon_L730_); trivial.
% 0.93/1.13  apply (zenon_L727_); trivial.
% 0.93/1.13  apply (zenon_L755_); trivial.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.13  apply (zenon_L12_); trivial.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.13  apply (zenon_L56_); trivial.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H4c); [ zenon_intro zenon_H2a | zenon_intro zenon_H46 ].
% 0.93/1.13  apply (zenon_L16_); trivial.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H46). zenon_intro zenon_H7. zenon_intro zenon_H48.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H48). zenon_intro zenon_H3b. zenon_intro zenon_H49.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H49). zenon_intro zenon_H3c. zenon_intro zenon_H3d.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.93/1.13  apply (zenon_L113_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1b9); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1ba ].
% 0.93/1.13  apply (zenon_L707_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1ba); [ zenon_intro zenon_H30 | zenon_intro zenon_Hb6 ].
% 0.93/1.13  apply (zenon_L204_); trivial.
% 0.93/1.13  apply (zenon_L363_); trivial.
% 0.93/1.13  exact (zenon_H27c zenon_H27d).
% 0.93/1.13  apply (zenon_L259_); trivial.
% 0.93/1.13  apply (zenon_L749_); trivial.
% 0.93/1.13  apply (zenon_L754_); trivial.
% 0.93/1.13  apply (zenon_L730_); trivial.
% 0.93/1.13  apply (zenon_L727_); trivial.
% 0.93/1.13  apply (zenon_L755_); trivial.
% 0.93/1.13  (* end of lemma zenon_L756_ *)
% 0.93/1.13  assert (zenon_L757_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(hskp19)) -> (~(hskp25)) -> (ndr1_0) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp11)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H23e zenon_H231 zenon_H230 zenon_H22f zenon_H7a zenon_H163 zenon_H7 zenon_H19e zenon_H19f zenon_H165 zenon_H121.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H23e); [ zenon_intro zenon_H22e | zenon_intro zenon_H23f ].
% 0.93/1.13  apply (zenon_L192_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H23f); [ zenon_intro zenon_H3a | zenon_intro zenon_H122 ].
% 0.93/1.13  apply (zenon_L118_); trivial.
% 0.93/1.13  exact (zenon_H121 zenon_H122).
% 0.93/1.13  (* end of lemma zenon_L757_ *)
% 0.93/1.13  assert (zenon_L758_ : ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (ndr1_0) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp19)) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H176 zenon_H270 zenon_H60 zenon_H1a9 zenon_H7 zenon_H22f zenon_H230 zenon_H231 zenon_H165 zenon_H7a zenon_H19f zenon_H19e zenon_H121 zenon_H23e.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.93/1.13  apply (zenon_L757_); trivial.
% 0.93/1.13  apply (zenon_L251_); trivial.
% 0.93/1.13  (* end of lemma zenon_L758_ *)
% 0.93/1.13  assert (zenon_L759_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (~(c1_1 (a199))) -> (~(hskp19)) -> (~(hskp25)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H275 zenon_H2fb zenon_H2f9 zenon_H109 zenon_H2fa zenon_H7a zenon_H163 zenon_H1ab zenon_H19e zenon_H19f zenon_H165 zenon_H1f3 zenon_H7 zenon_H241 zenon_H242 zenon_H240.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.93/1.13  apply (zenon_L719_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.93/1.13  apply (zenon_L305_); trivial.
% 0.93/1.13  apply (zenon_L209_); trivial.
% 0.93/1.13  (* end of lemma zenon_L759_ *)
% 0.93/1.13  assert (zenon_L760_ : ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (~(hskp19)) -> (~(hskp25)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H275 zenon_H2fb zenon_H2f9 zenon_H2fa zenon_H7a zenon_H163 zenon_H1ab zenon_H19e zenon_H19f zenon_H165 zenon_H1f3 zenon_H7 zenon_H241 zenon_H242 zenon_H240.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.13  apply (zenon_L707_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.13  apply (zenon_L148_); trivial.
% 0.93/1.13  apply (zenon_L759_); trivial.
% 0.93/1.13  (* end of lemma zenon_L760_ *)
% 0.93/1.13  assert (zenon_L761_ : ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (ndr1_0) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(hskp25)) -> (~(hskp19)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (c3_1 (a199)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(hskp28)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H28e zenon_H18f zenon_H18e zenon_H18d zenon_H240 zenon_H242 zenon_H241 zenon_H7 zenon_H165 zenon_H19f zenon_H19e zenon_H1ab zenon_H163 zenon_H7a zenon_H2fa zenon_H2f9 zenon_H2fb zenon_H275 zenon_H1db zenon_H1dc zenon_H1dd zenon_H1e4 zenon_H27c.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.93/1.13  apply (zenon_L113_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.93/1.13  apply (zenon_L760_); trivial.
% 0.93/1.13  exact (zenon_H27c zenon_H27d).
% 0.93/1.13  (* end of lemma zenon_L761_ *)
% 0.93/1.13  assert (zenon_L762_ : ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> (~(hskp12)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (ndr1_0) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp19)) -> (~(hskp25)) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H28d zenon_H289 zenon_H14e zenon_H231 zenon_H230 zenon_H22f zenon_H7 zenon_H18d zenon_H18e zenon_H18f zenon_H1e4 zenon_H165 zenon_H7a zenon_H163 zenon_H19f zenon_H19e zenon_H1ab zenon_H241 zenon_H242 zenon_H240 zenon_H275 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H28e.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.13  apply (zenon_L761_); trivial.
% 0.93/1.13  apply (zenon_L259_); trivial.
% 0.93/1.13  (* end of lemma zenon_L762_ *)
% 0.93/1.13  assert (zenon_L763_ : ((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c0_1 (a217)) -> (~(c3_1 (a217))) -> (~(c2_1 (a217))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(hskp14)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H288 zenon_H229 zenon_H1dd zenon_H1dc zenon_H1db zenon_H17a zenon_H179 zenon_H178 zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H1a9 zenon_H19f zenon_H19e zenon_H60.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H288). zenon_intro zenon_H7. zenon_intro zenon_H28a.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H28a). zenon_intro zenon_H27f. zenon_intro zenon_H28b.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H28b). zenon_intro zenon_H280. zenon_intro zenon_H281.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H229); [ zenon_intro zenon_H1da | zenon_intro zenon_H22a ].
% 0.93/1.13  apply (zenon_L148_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H22a); [ zenon_intro zenon_H177 | zenon_intro zenon_H9b ].
% 0.93/1.13  apply (zenon_L108_); trivial.
% 0.93/1.13  apply (zenon_L307_); trivial.
% 0.93/1.13  (* end of lemma zenon_L763_ *)
% 0.93/1.13  assert (zenon_L764_ : ((ndr1_0)/\((c0_1 (a212))/\((c3_1 (a212))/\(~(c1_1 (a212)))))) -> ((~(hskp10))\/((ndr1_0)/\((c1_1 (a214))/\((~(c2_1 (a214)))/\(~(c3_1 (a214))))))) -> ((~(hskp11))\/((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216))))))) -> ((~(hskp12))\/((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217))))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H2d5 zenon_H262 zenon_H19b zenon_H19c zenon_H229 zenon_H28d zenon_H289 zenon_H275 zenon_H28e zenon_H23e zenon_H100 zenon_H1b9 zenon_H33 zenon_H32 zenon_H31 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H162 zenon_H176 zenon_H270 zenon_H1a9 zenon_H231 zenon_H230 zenon_H22f zenon_H165 zenon_H205 zenon_H268 zenon_H7c zenon_H23a zenon_Hd9 zenon_Hfb zenon_H1db zenon_H1dc zenon_H1dd zenon_H1e4 zenon_H129.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.13  apply (zenon_L254_); trivial.
% 0.93/1.13  apply (zenon_L728_); trivial.
% 0.93/1.13  apply (zenon_L730_); trivial.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.13  apply (zenon_L758_); trivial.
% 0.93/1.13  apply (zenon_L728_); trivial.
% 0.93/1.13  apply (zenon_L730_); trivial.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.93/1.13  apply (zenon_L762_); trivial.
% 0.93/1.13  apply (zenon_L251_); trivial.
% 0.93/1.13  apply (zenon_L728_); trivial.
% 0.93/1.13  apply (zenon_L730_); trivial.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.13  apply (zenon_L761_); trivial.
% 0.93/1.13  apply (zenon_L763_); trivial.
% 0.93/1.13  apply (zenon_L251_); trivial.
% 0.93/1.13  apply (zenon_L728_); trivial.
% 0.93/1.13  apply (zenon_L730_); trivial.
% 0.93/1.13  (* end of lemma zenon_L764_ *)
% 0.93/1.13  assert (zenon_L765_ : ((ndr1_0)/\((c0_1 (a212))/\((c3_1 (a212))/\(~(c1_1 (a212)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H2d5 zenon_H100 zenon_H1b9 zenon_H33 zenon_H32 zenon_H31 zenon_H162 zenon_H176 zenon_H277 zenon_H22f zenon_H230 zenon_H231 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H270 zenon_H165 zenon_H205 zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H1db zenon_H1dc zenon_H1dd zenon_Hf6 zenon_H1e4 zenon_Hfb.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.13  apply (zenon_L303_); trivial.
% 0.93/1.13  apply (zenon_L732_); trivial.
% 0.93/1.13  apply (zenon_L728_); trivial.
% 0.93/1.13  (* end of lemma zenon_L765_ *)
% 0.93/1.13  assert (zenon_L766_ : ((ndr1_0)/\((c0_1 (a208))/\((c1_1 (a208))/\(~(c2_1 (a208)))))) -> ((~(hskp8))\/((ndr1_0)/\((c0_1 (a212))/\((c3_1 (a212))/\(~(c1_1 (a212))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H1d1 zenon_H30c zenon_H100 zenon_H1b9 zenon_H162 zenon_H176 zenon_H277 zenon_H22f zenon_H230 zenon_H231 zenon_H270 zenon_H165 zenon_H205 zenon_Hfb zenon_H1e4 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_Hf6 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2fb zenon_H2fa zenon_H2f9 zenon_He0 zenon_H129.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.13  apply (zenon_L733_); trivial.
% 0.93/1.13  apply (zenon_L765_); trivial.
% 0.93/1.13  (* end of lemma zenon_L766_ *)
% 0.93/1.13  assert (zenon_L767_ : ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp6)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> (~(hskp8)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> (~(hskp10)) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c0_1 (a203))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H129 zenon_H100 zenon_H2e3 zenon_H1 zenon_He0 zenon_H18 zenon_H268 zenon_H238 zenon_H230 zenon_H231 zenon_H7c zenon_H22f zenon_H23a zenon_Hd9 zenon_Hfb zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H1db zenon_H1dc zenon_H1dd zenon_Hf6 zenon_H1e4 zenon_Hff.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.13  apply (zenon_L232_); trivial.
% 0.93/1.13  apply (zenon_L385_); trivial.
% 0.93/1.13  apply (zenon_L754_); trivial.
% 0.93/1.13  apply (zenon_L730_); trivial.
% 0.93/1.13  (* end of lemma zenon_L767_ *)
% 0.93/1.13  assert (zenon_L768_ : ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> (~(c1_1 (a231))) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (c3_1 (a199)) -> (~(c0_1 (a244))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))) -> (ndr1_0) -> (~(hskp28)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H28e zenon_H6d zenon_H6c zenon_H6b zenon_H2fa zenon_H2f9 zenon_H2fb zenon_H7f zenon_H80 zenon_H81 zenon_Hf6 zenon_H1db zenon_H1dc zenon_H1dd zenon_H1e4 zenon_H240 zenon_H242 zenon_H241 zenon_H24e zenon_H7 zenon_H27c.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.93/1.13  apply (zenon_L745_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.93/1.13  apply (zenon_L209_); trivial.
% 0.93/1.13  exact (zenon_H27c zenon_H27d).
% 0.93/1.13  (* end of lemma zenon_L768_ *)
% 0.93/1.13  assert (zenon_L769_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (c2_1 (a202)) -> (c3_1 (a202)) -> (c1_1 (a202)) -> (forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))) -> (ndr1_0) -> (~(c1_1 (a231))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H172 zenon_H81 zenon_H80 zenon_H7f zenon_H280 zenon_H281 zenon_H27f zenon_H117 zenon_H7 zenon_H6b zenon_H6c zenon_H6d.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H172); [ zenon_intro zenon_H7e | zenon_intro zenon_H175 ].
% 0.93/1.13  apply (zenon_L37_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H175); [ zenon_intro zenon_H167 | zenon_intro zenon_H6a ].
% 0.93/1.13  apply (zenon_L637_); trivial.
% 0.93/1.13  apply (zenon_L31_); trivial.
% 0.93/1.13  (* end of lemma zenon_L769_ *)
% 0.93/1.13  assert (zenon_L770_ : ((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (~(c1_1 (a231))) -> (~(c3_1 (a231))) -> (c2_1 (a231)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H288 zenon_H2f2 zenon_Hb zenon_Ha zenon_H9 zenon_H1dd zenon_H1dc zenon_H1db zenon_H172 zenon_H81 zenon_H80 zenon_H7f zenon_H6b zenon_H6c zenon_H6d.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H288). zenon_intro zenon_H7. zenon_intro zenon_H28a.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H28a). zenon_intro zenon_H27f. zenon_intro zenon_H28b.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H28b). zenon_intro zenon_H280. zenon_intro zenon_H281.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H2f2); [ zenon_intro zenon_H8 | zenon_intro zenon_H2f3 ].
% 0.93/1.13  apply (zenon_L5_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H2f3); [ zenon_intro zenon_H1da | zenon_intro zenon_H117 ].
% 0.93/1.13  apply (zenon_L148_); trivial.
% 0.93/1.13  apply (zenon_L769_); trivial.
% 0.93/1.13  (* end of lemma zenon_L770_ *)
% 0.93/1.13  assert (zenon_L771_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> (~(c1_1 (a231))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_Hf8 zenon_H28d zenon_H2f2 zenon_H172 zenon_H9 zenon_Ha zenon_Hb zenon_H2af zenon_H2b0 zenon_H2b1 zenon_H28e zenon_H240 zenon_H242 zenon_H241 zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H1db zenon_H1dc zenon_H1dd zenon_Hf6 zenon_H6d zenon_H6c zenon_H6b zenon_H1e4 zenon_H2c3.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H2c3); [ zenon_intro zenon_H8 | zenon_intro zenon_H2c4 ].
% 0.93/1.13  apply (zenon_L5_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H2c4); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H24e ].
% 0.93/1.13  apply (zenon_L340_); trivial.
% 0.93/1.13  apply (zenon_L768_); trivial.
% 0.93/1.13  apply (zenon_L770_); trivial.
% 0.93/1.13  (* end of lemma zenon_L771_ *)
% 0.93/1.13  assert (zenon_L772_ : ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp11)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> (~(hskp8)) -> (~(hskp13)) -> ((hskp8)\/((hskp13)\/(hskp18))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H129 zenon_H4f zenon_H4c zenon_H23e zenon_H121 zenon_H231 zenon_H230 zenon_H22f zenon_H2e zenon_H18 zenon_H1a zenon_H1e zenon_He0 zenon_H2c3 zenon_H1e4 zenon_Hf6 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H241 zenon_H242 zenon_H240 zenon_H28e zenon_H2b1 zenon_H2b0 zenon_H2af zenon_Hb zenon_Ha zenon_H9 zenon_H172 zenon_H2f2 zenon_H28d zenon_Hfb zenon_H102.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.13  apply (zenon_L203_); trivial.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.13  apply (zenon_L56_); trivial.
% 0.93/1.13  apply (zenon_L771_); trivial.
% 0.93/1.13  apply (zenon_L730_); trivial.
% 0.93/1.13  (* end of lemma zenon_L772_ *)
% 0.93/1.13  assert (zenon_L773_ : ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (ndr1_0) -> (~(hskp28)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H2c3 zenon_Hb zenon_Ha zenon_H9 zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H28e zenon_H18f zenon_H18e zenon_H18d zenon_H240 zenon_H242 zenon_H241 zenon_H7 zenon_H27c.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H2c3); [ zenon_intro zenon_H8 | zenon_intro zenon_H2c4 ].
% 0.93/1.13  apply (zenon_L5_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H2c4); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H24e ].
% 0.93/1.13  apply (zenon_L340_); trivial.
% 0.93/1.13  apply (zenon_L670_); trivial.
% 0.93/1.13  (* end of lemma zenon_L773_ *)
% 0.93/1.13  assert (zenon_L774_ : ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (~(hskp8)) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp8)\/(hskp14))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (ndr1_0) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H28d zenon_H2f2 zenon_H18 zenon_H60 zenon_H2e1 zenon_H1dd zenon_H1dc zenon_H1db zenon_H7 zenon_H9 zenon_Ha zenon_Hb zenon_H2af zenon_H2b0 zenon_H2b1 zenon_H28e zenon_H240 zenon_H242 zenon_H241 zenon_H18f zenon_H18e zenon_H18d zenon_H2c3.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.13  apply (zenon_L773_); trivial.
% 0.93/1.13  apply (zenon_L673_); trivial.
% 0.93/1.13  (* end of lemma zenon_L774_ *)
% 0.93/1.13  assert (zenon_L775_ : ((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216)))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp8)\/(hskp14))) -> (~(hskp8)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H196 zenon_H129 zenon_H1e4 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H2c3 zenon_H241 zenon_H242 zenon_H240 zenon_H28e zenon_H2b1 zenon_H2b0 zenon_H2af zenon_Hb zenon_Ha zenon_H9 zenon_H1db zenon_H1dc zenon_H1dd zenon_H2e1 zenon_H18 zenon_H2f2 zenon_H28d.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.13  apply (zenon_L774_); trivial.
% 0.93/1.13  apply (zenon_L730_); trivial.
% 0.93/1.13  (* end of lemma zenon_L775_ *)
% 0.93/1.13  assert (zenon_L776_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (~(c1_1 (a199))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (ndr1_0) -> (forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40)))))) -> (~(hskp21)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_Ha9 zenon_H2fb zenon_H2f9 zenon_H109 zenon_H2fa zenon_H231 zenon_H230 zenon_H7 zenon_H255 zenon_Ha7.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Ha9); [ zenon_intro zenon_H88 | zenon_intro zenon_Haa ].
% 0.93/1.13  apply (zenon_L719_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Haa); [ zenon_intro zenon_H56 | zenon_intro zenon_Ha8 ].
% 0.93/1.13  apply (zenon_L228_); trivial.
% 0.93/1.13  exact (zenon_Ha7 zenon_Ha8).
% 0.93/1.13  (* end of lemma zenon_L776_ *)
% 0.93/1.13  assert (zenon_L777_ : ((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238)))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (~(hskp15)) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_Hdc zenon_Hdd zenon_Hd3 zenon_H162 zenon_H277 zenon_H231 zenon_H230 zenon_H22f zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H268 zenon_H238 zenon_Ha9 zenon_H2fb zenon_H2f9 zenon_H2fa zenon_H50 zenon_H115 zenon_H9 zenon_Ha zenon_Hb zenon_H1db zenon_H1dc zenon_H1dd zenon_H2f2 zenon_H128 zenon_Hfb.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.13  apply (zenon_L366_); trivial.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H128); [ zenon_intro zenon_H113 | zenon_intro zenon_H123 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H268); [ zenon_intro zenon_H7e | zenon_intro zenon_H269 ].
% 0.93/1.13  apply (zenon_L37_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H269); [ zenon_intro zenon_H255 | zenon_intro zenon_H239 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H115); [ zenon_intro zenon_H109 | zenon_intro zenon_H116 ].
% 0.93/1.13  apply (zenon_L776_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H116); [ zenon_intro zenon_H114 | zenon_intro zenon_H51 ].
% 0.93/1.13  exact (zenon_H113 zenon_H114).
% 0.93/1.13  exact (zenon_H50 zenon_H51).
% 0.93/1.13  exact (zenon_H238 zenon_H239).
% 0.93/1.13  apply (zenon_L574_); trivial.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hd8). zenon_intro zenon_H7. zenon_intro zenon_Hda.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hda). zenon_intro zenon_Haf. zenon_intro zenon_Hdb.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hdb). zenon_intro zenon_Had. zenon_intro zenon_Hae.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.13  apply (zenon_L366_); trivial.
% 0.93/1.13  apply (zenon_L233_); trivial.
% 0.93/1.13  (* end of lemma zenon_L777_ *)
% 0.93/1.13  assert (zenon_L778_ : ((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H106 zenon_Hfb zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H2af zenon_H2b0 zenon_H2b1 zenon_H22f zenon_H230 zenon_H231 zenon_H277 zenon_H162.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.13  apply (zenon_L366_); trivial.
% 0.93/1.13  apply (zenon_L179_); trivial.
% 0.93/1.13  (* end of lemma zenon_L778_ *)
% 0.93/1.13  assert (zenon_L779_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp14)) -> (~(hskp10)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_Hfc zenon_H101 zenon_Hf6 zenon_H162 zenon_H277 zenon_H231 zenon_H230 zenon_H22f zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H65 zenon_H60 zenon_H238 zenon_H268 zenon_Hfb.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.13  apply (zenon_L366_); trivial.
% 0.93/1.13  apply (zenon_L261_); trivial.
% 0.93/1.13  apply (zenon_L778_); trivial.
% 0.93/1.13  (* end of lemma zenon_L779_ *)
% 0.93/1.13  assert (zenon_L780_ : ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> (~(hskp14)) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp10)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (c3_1 (a199)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_Hff zenon_H101 zenon_Hf6 zenon_H65 zenon_H60 zenon_Hfb zenon_Hd9 zenon_H23a zenon_H7c zenon_H238 zenon_H268 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H2af zenon_H2b0 zenon_H2b1 zenon_H22f zenon_H230 zenon_H231 zenon_H277 zenon_H162 zenon_H128 zenon_H2f2 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hb zenon_Ha zenon_H9 zenon_H115 zenon_H2fa zenon_H2f9 zenon_H2fb zenon_Ha9 zenon_Hd3 zenon_Hdd zenon_H100.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.13  apply (zenon_L367_); trivial.
% 0.93/1.13  apply (zenon_L777_); trivial.
% 0.93/1.13  apply (zenon_L779_); trivial.
% 0.93/1.13  (* end of lemma zenon_L780_ *)
% 0.93/1.13  assert (zenon_L781_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a202)) -> (c3_1 (a202)) -> (c1_1 (a202)) -> (forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))) -> (ndr1_0) -> (c0_1 (a212)) -> (forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))) -> (c3_1 (a212)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H280 zenon_H281 zenon_H27f zenon_H117 zenon_H7 zenon_H19e zenon_H152 zenon_H19f.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H270); [ zenon_intro zenon_H22e | zenon_intro zenon_H271 ].
% 0.93/1.13  apply (zenon_L192_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H271); [ zenon_intro zenon_H167 | zenon_intro zenon_H3a ].
% 0.93/1.13  apply (zenon_L637_); trivial.
% 0.93/1.13  apply (zenon_L117_); trivial.
% 0.93/1.13  (* end of lemma zenon_L781_ *)
% 0.93/1.13  assert (zenon_L782_ : ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a202)) -> (c3_1 (a202)) -> (c1_1 (a202)) -> (forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))) -> (ndr1_0) -> (c0_1 (a212)) -> (c3_1 (a212)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H277 zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H280 zenon_H281 zenon_H27f zenon_H117 zenon_H7 zenon_H19e zenon_H19f.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.93/1.13  apply (zenon_L340_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.93/1.13  apply (zenon_L192_); trivial.
% 0.93/1.13  apply (zenon_L781_); trivial.
% 0.93/1.13  (* end of lemma zenon_L782_ *)
% 0.93/1.13  assert (zenon_L783_ : ((ndr1_0)/\((c1_1 (a214))/\((~(c2_1 (a214)))/\(~(c3_1 (a214)))))) -> ((~(hskp11))\/((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H263 zenon_H19b zenon_H28d zenon_H2f2 zenon_H270 zenon_H1dd zenon_H1dc zenon_H1db zenon_H9 zenon_Ha zenon_Hb zenon_H28e zenon_H2c3 zenon_H2af zenon_H2b0 zenon_H2b1 zenon_H22f zenon_H230 zenon_H231 zenon_H23e zenon_H19f zenon_H19e zenon_H277.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.13  apply (zenon_L369_); trivial.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.13  apply (zenon_L773_); trivial.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H288). zenon_intro zenon_H7. zenon_intro zenon_H28a.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H28a). zenon_intro zenon_H27f. zenon_intro zenon_H28b.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H28b). zenon_intro zenon_H280. zenon_intro zenon_H281.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H2f2); [ zenon_intro zenon_H8 | zenon_intro zenon_H2f3 ].
% 0.93/1.13  apply (zenon_L5_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H2f3); [ zenon_intro zenon_H1da | zenon_intro zenon_H117 ].
% 0.93/1.13  apply (zenon_L148_); trivial.
% 0.93/1.13  apply (zenon_L782_); trivial.
% 0.93/1.13  (* end of lemma zenon_L783_ *)
% 0.93/1.13  assert (zenon_L784_ : ((ndr1_0)/\((~(c0_1 (a213)))/\((~(c1_1 (a213)))/\(~(c2_1 (a213)))))) -> ((~(hskp10))\/((ndr1_0)/\((c1_1 (a214))/\((~(c2_1 (a214)))/\(~(c3_1 (a214))))))) -> ((~(hskp11))\/((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (c3_1 (a199)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H1be zenon_H262 zenon_H19b zenon_H28d zenon_H270 zenon_H28e zenon_H2c3 zenon_H23e zenon_Hff zenon_H101 zenon_Hf6 zenon_H65 zenon_Hfb zenon_Hd9 zenon_H23a zenon_H7c zenon_H268 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H2af zenon_H2b0 zenon_H2b1 zenon_H22f zenon_H230 zenon_H231 zenon_H277 zenon_H162 zenon_H128 zenon_H2f2 zenon_H1dd zenon_H1dc zenon_H1db zenon_H115 zenon_H2fa zenon_H2f9 zenon_H2fb zenon_Ha9 zenon_Hd3 zenon_Hdd zenon_H100 zenon_H1e4 zenon_H129.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.13  apply (zenon_L780_); trivial.
% 0.93/1.13  apply (zenon_L730_); trivial.
% 0.93/1.13  apply (zenon_L783_); trivial.
% 0.93/1.13  (* end of lemma zenon_L784_ *)
% 0.93/1.13  assert (zenon_L785_ : ((~(hskp8))\/((ndr1_0)/\((c0_1 (a212))/\((c3_1 (a212))/\(~(c1_1 (a212))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((hskp6)\/(hskp9)) -> (~(hskp6)) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c0_1 (a203))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((hskp8)\/((hskp13)\/(hskp18))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp8)\/(hskp14))) -> ((~(hskp11))\/((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216))))))) -> ((~(hskp10))\/((ndr1_0)/\((c1_1 (a214))/\((~(c2_1 (a214)))/\(~(c3_1 (a214))))))) -> ((~(hskp9))\/((ndr1_0)/\((~(c0_1 (a213)))/\((~(c1_1 (a213)))/\(~(c2_1 (a213))))))) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H30c zenon_H270 zenon_H101 zenon_H65 zenon_H205 zenon_H277 zenon_H162 zenon_H128 zenon_H115 zenon_Ha9 zenon_Hd3 zenon_Hdd zenon_H5 zenon_H1 zenon_H129 zenon_H100 zenon_H2e3 zenon_He0 zenon_H268 zenon_H230 zenon_H231 zenon_H7c zenon_H22f zenon_H23a zenon_Hd9 zenon_Hfb zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H1db zenon_H1dc zenon_H1dd zenon_Hf6 zenon_H1e4 zenon_Hff zenon_H186 zenon_H2eb zenon_H102 zenon_H28d zenon_H2f2 zenon_H172 zenon_H2af zenon_H2b0 zenon_H2b1 zenon_H28e zenon_H2c3 zenon_H1e zenon_H2e zenon_H23e zenon_H4c zenon_H4f zenon_H2e1 zenon_H19b zenon_H262 zenon_H1c1.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.13  apply (zenon_L3_); trivial.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.13  apply (zenon_L767_); trivial.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.13  apply (zenon_L772_); trivial.
% 0.93/1.13  apply (zenon_L736_); trivial.
% 0.93/1.13  apply (zenon_L775_); trivial.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.13  apply (zenon_L3_); trivial.
% 0.93/1.13  apply (zenon_L784_); trivial.
% 0.93/1.13  (* end of lemma zenon_L785_ *)
% 0.93/1.13  assert (zenon_L786_ : ((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> False).
% 0.93/1.13  do 0 intro. intros zenon_H171 zenon_H277 zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H19e zenon_H19f.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H171). zenon_intro zenon_H7. zenon_intro zenon_H173.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H173). zenon_intro zenon_H169. zenon_intro zenon_H174.
% 0.93/1.13  apply (zenon_and_s _ _ zenon_H174). zenon_intro zenon_H16a. zenon_intro zenon_H168.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.93/1.13  apply (zenon_L340_); trivial.
% 0.93/1.13  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.93/1.13  apply (zenon_L192_); trivial.
% 0.93/1.13  apply (zenon_L300_); trivial.
% 0.93/1.13  (* end of lemma zenon_L786_ *)
% 0.93/1.13  assert (zenon_L787_ : ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp19)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (ndr1_0) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> (~(hskp12)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X49 : zenon_U, ((ndr1_0)->((~(c1_1 X49))\/((~(c2_1 X49))\/(~(c3_1 X49))))))\/(hskp12))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H176 zenon_H277 zenon_H270 zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H28e zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H1db zenon_H1dc zenon_H1dd zenon_H275 zenon_H240 zenon_H242 zenon_H241 zenon_H1ab zenon_H19e zenon_H19f zenon_H7a zenon_H165 zenon_H1e4 zenon_H18f zenon_H18e zenon_H18d zenon_H7 zenon_H22f zenon_H230 zenon_H231 zenon_H14e zenon_H289 zenon_H28d.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.93/1.14  apply (zenon_L762_); trivial.
% 0.93/1.14  apply (zenon_L786_); trivial.
% 0.93/1.14  (* end of lemma zenon_L787_ *)
% 0.93/1.14  assert (zenon_L788_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a202)) -> (c1_1 (a202)) -> (forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))) -> (ndr1_0) -> (c0_1 (a212)) -> (forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))) -> (c3_1 (a212)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H280 zenon_H27f zenon_H9b zenon_H7 zenon_H19e zenon_H152 zenon_H19f.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H270); [ zenon_intro zenon_H22e | zenon_intro zenon_H271 ].
% 0.93/1.14  apply (zenon_L192_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H271); [ zenon_intro zenon_H167 | zenon_intro zenon_H3a ].
% 0.93/1.14  apply (zenon_L292_); trivial.
% 0.93/1.14  apply (zenon_L117_); trivial.
% 0.93/1.14  (* end of lemma zenon_L788_ *)
% 0.93/1.14  assert (zenon_L789_ : ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c0_1 (a217)) -> (~(c3_1 (a217))) -> (~(c2_1 (a217))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a202)) -> (c1_1 (a202)) -> (ndr1_0) -> (c0_1 (a212)) -> (forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))) -> (c3_1 (a212)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H229 zenon_H1dd zenon_H1dc zenon_H1db zenon_H17a zenon_H179 zenon_H178 zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H280 zenon_H27f zenon_H7 zenon_H19e zenon_H152 zenon_H19f.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H229); [ zenon_intro zenon_H1da | zenon_intro zenon_H22a ].
% 0.93/1.14  apply (zenon_L148_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H22a); [ zenon_intro zenon_H177 | zenon_intro zenon_H9b ].
% 0.93/1.14  apply (zenon_L108_); trivial.
% 0.93/1.14  apply (zenon_L788_); trivial.
% 0.93/1.14  (* end of lemma zenon_L789_ *)
% 0.93/1.14  assert (zenon_L790_ : ((ndr1_0)/\((c0_1 (a217))/\((~(c2_1 (a217)))/\(~(c3_1 (a217)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/((forall X31 : zenon_U, ((ndr1_0)->((c2_1 X31)\/((c3_1 X31)\/(~(c0_1 X31))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a201)) -> (~(c1_1 (a201))) -> (~(c0_1 (a201))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H185 zenon_H100 zenon_H1b9 zenon_H33 zenon_H32 zenon_H31 zenon_H28d zenon_H277 zenon_H270 zenon_H229 zenon_H231 zenon_H230 zenon_H22f zenon_H2b1 zenon_H2b0 zenon_H2af zenon_H18d zenon_H18e zenon_H18f zenon_H1e4 zenon_H165 zenon_H19f zenon_H19e zenon_H1ab zenon_H241 zenon_H242 zenon_H240 zenon_H275 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H28e zenon_H176.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.14  apply (zenon_L761_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H288). zenon_intro zenon_H7. zenon_intro zenon_H28a.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H28a). zenon_intro zenon_H27f. zenon_intro zenon_H28b.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H28b). zenon_intro zenon_H280. zenon_intro zenon_H281.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.93/1.14  apply (zenon_L340_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.93/1.14  apply (zenon_L192_); trivial.
% 0.93/1.14  apply (zenon_L789_); trivial.
% 0.93/1.14  apply (zenon_L786_); trivial.
% 0.93/1.14  apply (zenon_L728_); trivial.
% 0.93/1.14  (* end of lemma zenon_L790_ *)
% 0.93/1.14  assert (zenon_L791_ : (forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))) -> (ndr1_0) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H3a zenon_H7 zenon_H109 zenon_H1c5 zenon_H1cc.
% 0.93/1.14  generalize (zenon_H3a (a205)). zenon_intro zenon_H1cd.
% 0.93/1.14  apply (zenon_imply_s _ _ zenon_H1cd); [ zenon_intro zenon_H6 | zenon_intro zenon_H1ce ].
% 0.93/1.14  exact (zenon_H6 zenon_H7).
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1ce); [ zenon_intro zenon_H1c3 | zenon_intro zenon_H1cf ].
% 0.93/1.14  apply (zenon_L335_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1cf); [ zenon_intro zenon_H1ca | zenon_intro zenon_H1d0 ].
% 0.93/1.14  exact (zenon_H1ca zenon_H1c5).
% 0.93/1.14  exact (zenon_H1d0 zenon_H1cc).
% 0.93/1.14  (* end of lemma zenon_L791_ *)
% 0.93/1.14  assert (zenon_L792_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (ndr1_0) -> (~(hskp11)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H23e zenon_H231 zenon_H230 zenon_H22f zenon_H1cc zenon_H1c5 zenon_H109 zenon_H7 zenon_H121.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H23e); [ zenon_intro zenon_H22e | zenon_intro zenon_H23f ].
% 0.93/1.14  apply (zenon_L192_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H23f); [ zenon_intro zenon_H3a | zenon_intro zenon_H122 ].
% 0.93/1.14  apply (zenon_L791_); trivial.
% 0.93/1.14  exact (zenon_H121 zenon_H122).
% 0.93/1.14  (* end of lemma zenon_L792_ *)
% 0.93/1.14  assert (zenon_L793_ : ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (ndr1_0) -> (~(hskp11)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H1e4 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H1dd zenon_H1dc zenon_H1db zenon_H23e zenon_H231 zenon_H230 zenon_H22f zenon_H1cc zenon_H1c5 zenon_H7 zenon_H121.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.14  apply (zenon_L707_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.14  apply (zenon_L148_); trivial.
% 0.93/1.14  apply (zenon_L792_); trivial.
% 0.93/1.14  (* end of lemma zenon_L793_ *)
% 0.93/1.14  assert (zenon_L794_ : ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a202)) -> (c3_1 (a202)) -> (c1_1 (a202)) -> (forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))) -> (ndr1_0) -> (c0_1 (a212)) -> (c3_1 (a212)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H277 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H280 zenon_H281 zenon_H27f zenon_H117 zenon_H7 zenon_H19e zenon_H19f.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.93/1.14  apply (zenon_L638_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.93/1.14  apply (zenon_L192_); trivial.
% 0.93/1.14  apply (zenon_L781_); trivial.
% 0.93/1.14  (* end of lemma zenon_L794_ *)
% 0.93/1.14  assert (zenon_L795_ : ((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H288 zenon_H2f2 zenon_Hb zenon_Ha zenon_H9 zenon_H1dd zenon_H1dc zenon_H1db zenon_H277 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H19e zenon_H19f.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H288). zenon_intro zenon_H7. zenon_intro zenon_H28a.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H28a). zenon_intro zenon_H27f. zenon_intro zenon_H28b.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H28b). zenon_intro zenon_H280. zenon_intro zenon_H281.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H2f2); [ zenon_intro zenon_H8 | zenon_intro zenon_H2f3 ].
% 0.93/1.14  apply (zenon_L5_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H2f3); [ zenon_intro zenon_H1da | zenon_intro zenon_H117 ].
% 0.93/1.14  apply (zenon_L148_); trivial.
% 0.93/1.14  apply (zenon_L794_); trivial.
% 0.93/1.14  (* end of lemma zenon_L795_ *)
% 0.93/1.14  assert (zenon_L796_ : ((ndr1_0)/\((c1_1 (a214))/\((~(c2_1 (a214)))/\(~(c3_1 (a214)))))) -> ((~(hskp11))\/((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H263 zenon_H19b zenon_H28d zenon_H2f2 zenon_H270 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H9 zenon_Ha zenon_Hb zenon_H28e zenon_H2c3 zenon_H2af zenon_H2b0 zenon_H2b1 zenon_H22f zenon_H230 zenon_H231 zenon_H23e zenon_H19f zenon_H19e zenon_H277.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.14  apply (zenon_L369_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.14  apply (zenon_L773_); trivial.
% 0.93/1.14  apply (zenon_L795_); trivial.
% 0.93/1.14  (* end of lemma zenon_L796_ *)
% 0.93/1.14  assert (zenon_L797_ : ((~(hskp8))\/((ndr1_0)/\((c0_1 (a212))/\((c3_1 (a212))/\(~(c1_1 (a212))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp14)\/(hskp17))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18))))))\/((hskp29)\/(hskp15))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28)))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(c1_1 (a205))) -> ((hskp6)\/(hskp9)) -> (~(hskp6)) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c0_1 (a203))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp8)\/(hskp14))) -> (~(c0_1 (a201))) -> (~(c1_1 (a201))) -> (c2_1 (a201)) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp11))\/((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216))))))) -> ((~(hskp10))\/((ndr1_0)/\((c1_1 (a214))/\((~(c2_1 (a214)))/\(~(c3_1 (a214))))))) -> ((~(hskp9))\/((ndr1_0)/\((~(c0_1 (a213)))/\((~(c1_1 (a213)))/\(~(c2_1 (a213))))))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H30c zenon_H101 zenon_H65 zenon_H205 zenon_H277 zenon_H162 zenon_H128 zenon_H115 zenon_Ha9 zenon_Hd3 zenon_Hdd zenon_H270 zenon_H1c4 zenon_H5 zenon_H1 zenon_H129 zenon_H100 zenon_H2e3 zenon_He0 zenon_H268 zenon_H230 zenon_H231 zenon_H7c zenon_H22f zenon_H23a zenon_Hd9 zenon_Hfb zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H1db zenon_H1dc zenon_H1dd zenon_Hf6 zenon_H1e4 zenon_Hff zenon_H1c5 zenon_H1cc zenon_H23e zenon_H28d zenon_H2f2 zenon_H2e1 zenon_H2af zenon_H2b0 zenon_H2b1 zenon_H28e zenon_H2c3 zenon_H19b zenon_H262 zenon_H1c1.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.14  apply (zenon_L3_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.14  apply (zenon_L767_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.14  apply (zenon_L793_); trivial.
% 0.93/1.14  apply (zenon_L775_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.14  apply (zenon_L3_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.14  apply (zenon_L780_); trivial.
% 0.93/1.14  apply (zenon_L334_); trivial.
% 0.93/1.14  apply (zenon_L796_); trivial.
% 0.93/1.14  (* end of lemma zenon_L797_ *)
% 0.93/1.14  assert (zenon_L798_ : ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (~(hskp22)) -> (~(hskp3)) -> (ndr1_0) -> (~(c0_1 (a239))) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp4)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H23c zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H74 zenon_H44 zenon_H7 zenon_H219 zenon_H20b zenon_H20c zenon_H76 zenon_H13a.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H23c); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H23d ].
% 0.93/1.14  apply (zenon_L707_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H23d); [ zenon_intro zenon_H22e | zenon_intro zenon_H13b ].
% 0.93/1.14  apply (zenon_L389_); trivial.
% 0.93/1.14  exact (zenon_H13a zenon_H13b).
% 0.93/1.14  (* end of lemma zenon_L798_ *)
% 0.93/1.14  assert (zenon_L799_ : ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (ndr1_0) -> (~(c0_1 (a219))) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (c2_1 (a219)) -> (~(c0_1 (a244))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(hskp4)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H23c zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H20c zenon_H20b zenon_H219 zenon_H7 zenon_H10a zenon_H1c2 zenon_H10b zenon_H7f zenon_H80 zenon_H81 zenon_H172 zenon_H13a.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H23c); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H23d ].
% 0.93/1.14  apply (zenon_L707_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H23d); [ zenon_intro zenon_H22e | zenon_intro zenon_H13b ].
% 0.93/1.14  apply (zenon_L400_); trivial.
% 0.93/1.14  exact (zenon_H13a zenon_H13b).
% 0.93/1.14  (* end of lemma zenon_L799_ *)
% 0.93/1.14  assert (zenon_L800_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> (~(hskp6)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c2_1 (a219)) -> (~(c0_1 (a219))) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> (~(hskp4)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H228 zenon_Hfb zenon_H2c6 zenon_H2b8 zenon_H1 zenon_H172 zenon_H10b zenon_H10a zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H76 zenon_H44 zenon_H13a zenon_H23c zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.14  apply (zenon_L382_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.14  apply (zenon_L798_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H2c6); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H2c8 ].
% 0.93/1.14  apply (zenon_L799_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H2c8); [ zenon_intro zenon_H2 | zenon_intro zenon_H2b9 ].
% 0.93/1.14  exact (zenon_H1 zenon_H2).
% 0.93/1.14  exact (zenon_H2b8 zenon_H2b9).
% 0.93/1.14  (* end of lemma zenon_L800_ *)
% 0.93/1.14  assert (zenon_L801_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp4)) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(hskp6)) -> (~(hskp7)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H100 zenon_H2e3 zenon_H50 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H23c zenon_H13a zenon_H44 zenon_H76 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H10a zenon_H10b zenon_H172 zenon_H1 zenon_H2b8 zenon_H2c6 zenon_Hfb zenon_H228.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.14  apply (zenon_L800_); trivial.
% 0.93/1.14  apply (zenon_L385_); trivial.
% 0.93/1.14  (* end of lemma zenon_L801_ *)
% 0.93/1.14  assert (zenon_L802_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> (~(hskp6)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> (~(hskp4)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H12a zenon_Hff zenon_H1e4 zenon_Hf6 zenon_H1b9 zenon_H228 zenon_Hfb zenon_H2c6 zenon_H2b8 zenon_H1 zenon_H172 zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H76 zenon_H44 zenon_H13a zenon_H23c zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H2e3 zenon_H100.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.14  apply (zenon_L801_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.14  apply (zenon_L800_); trivial.
% 0.93/1.14  apply (zenon_L721_); trivial.
% 0.93/1.14  (* end of lemma zenon_L802_ *)
% 0.93/1.14  assert (zenon_L803_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> (~(hskp4)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> (~(hskp6)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H189 zenon_H129 zenon_Hff zenon_H1e4 zenon_H1b9 zenon_H7c zenon_Heb zenon_Hf6 zenon_Hd9 zenon_H228 zenon_Hfb zenon_H2c6 zenon_H2b8 zenon_H172 zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H76 zenon_H44 zenon_H13a zenon_H23c zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H2e3 zenon_H100 zenon_H1 zenon_H2eb.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.14  apply (zenon_L415_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.14  apply (zenon_L801_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.14  apply (zenon_L382_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.14  apply (zenon_L798_); trivial.
% 0.93/1.14  apply (zenon_L419_); trivial.
% 0.93/1.14  apply (zenon_L721_); trivial.
% 0.93/1.14  (* end of lemma zenon_L803_ *)
% 0.93/1.14  assert (zenon_L804_ : ((~(hskp8))\/((ndr1_0)/\((c0_1 (a212))/\((c3_1 (a212))/\(~(c1_1 (a212))))))) -> ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((hskp6)\/(hskp7))) -> (~(hskp7)) -> (~(hskp6)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp8)\/(hskp14))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp4)) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H30c zenon_H186 zenon_H7c zenon_Heb zenon_Hd9 zenon_H2eb zenon_H176 zenon_H1a9 zenon_H296 zenon_H165 zenon_Hff zenon_H1e4 zenon_Hf6 zenon_H1b9 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H228 zenon_H2c6 zenon_H2b8 zenon_H1 zenon_H2e1 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H2e3 zenon_H100 zenon_H23c zenon_H13a zenon_H44 zenon_H76 zenon_H172 zenon_Hfb zenon_H129.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.14  apply (zenon_L386_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.14  apply (zenon_L384_); trivial.
% 0.93/1.14  apply (zenon_L721_); trivial.
% 0.93/1.14  apply (zenon_L802_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.14  apply (zenon_L457_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.14  apply (zenon_L444_); trivial.
% 0.93/1.14  apply (zenon_L721_); trivial.
% 0.93/1.14  apply (zenon_L802_); trivial.
% 0.93/1.14  apply (zenon_L803_); trivial.
% 0.93/1.14  (* end of lemma zenon_L804_ *)
% 0.93/1.14  assert (zenon_L805_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c2_1 (a219)) -> (~(c0_1 (a219))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> (~(hskp4)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H228 zenon_Hfb zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H172 zenon_H10b zenon_H10a zenon_Hb zenon_Ha zenon_H9 zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H76 zenon_H44 zenon_H13a zenon_H23c zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.14  apply (zenon_L382_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.14  apply (zenon_L798_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H2c3); [ zenon_intro zenon_H8 | zenon_intro zenon_H2c4 ].
% 0.93/1.14  apply (zenon_L5_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H2c4); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H24e ].
% 0.93/1.14  apply (zenon_L799_); trivial.
% 0.93/1.14  apply (zenon_L342_); trivial.
% 0.93/1.14  (* end of lemma zenon_L805_ *)
% 0.93/1.14  assert (zenon_L806_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> (~(hskp6)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(hskp4)) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H100 zenon_H2e3 zenon_H50 zenon_H1 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H23c zenon_H13a zenon_H44 zenon_H76 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H9 zenon_Ha zenon_Hb zenon_H10a zenon_H10b zenon_H172 zenon_H2ba zenon_H2bb zenon_H2bc zenon_H2c3 zenon_Hfb zenon_H228.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.14  apply (zenon_L805_); trivial.
% 0.93/1.14  apply (zenon_L385_); trivial.
% 0.93/1.14  (* end of lemma zenon_L806_ *)
% 0.93/1.14  assert (zenon_L807_ : ((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219)))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(hskp3)) -> (~(hskp4)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(hskp4))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (~(hskp6)) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H12a zenon_Hff zenon_H1e4 zenon_Hf6 zenon_H1b9 zenon_H228 zenon_Hfb zenon_H2c3 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H172 zenon_Hb zenon_Ha zenon_H9 zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H76 zenon_H44 zenon_H13a zenon_H23c zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H1 zenon_H2e3 zenon_H100.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.14  apply (zenon_L806_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.14  apply (zenon_L805_); trivial.
% 0.93/1.14  apply (zenon_L721_); trivial.
% 0.93/1.14  (* end of lemma zenon_L807_ *)
% 0.93/1.14  assert (zenon_L808_ : (forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54)))))) -> (ndr1_0) -> (~(c1_1 (a199))) -> (forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33)))))) -> (~(c0_1 (a199))) -> (c3_1 (a199)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H272 zenon_H7 zenon_H2fa zenon_H7e zenon_H2f9 zenon_H2fb.
% 0.93/1.14  generalize (zenon_H272 (a199)). zenon_intro zenon_H31a.
% 0.93/1.14  apply (zenon_imply_s _ _ zenon_H31a); [ zenon_intro zenon_H6 | zenon_intro zenon_H31b ].
% 0.93/1.14  exact (zenon_H6 zenon_H7).
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H31b); [ zenon_intro zenon_H301 | zenon_intro zenon_H305 ].
% 0.93/1.14  exact (zenon_H2fa zenon_H301).
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H305); [ zenon_intro zenon_H306 | zenon_intro zenon_H300 ].
% 0.93/1.14  generalize (zenon_H7e (a199)). zenon_intro zenon_H307.
% 0.93/1.14  apply (zenon_imply_s _ _ zenon_H307); [ zenon_intro zenon_H6 | zenon_intro zenon_H308 ].
% 0.93/1.14  exact (zenon_H6 zenon_H7).
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H308); [ zenon_intro zenon_H2ff | zenon_intro zenon_H309 ].
% 0.93/1.14  exact (zenon_H2f9 zenon_H2ff).
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H309); [ zenon_intro zenon_H302 | zenon_intro zenon_H300 ].
% 0.93/1.14  exact (zenon_H306 zenon_H302).
% 0.93/1.14  exact (zenon_H300 zenon_H2fb).
% 0.93/1.14  exact (zenon_H300 zenon_H2fb).
% 0.93/1.14  (* end of lemma zenon_L808_ *)
% 0.93/1.14  assert (zenon_L809_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a249)) -> (~(c2_1 (a249))) -> (forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33)))))) -> (~(c1_1 (a199))) -> (ndr1_0) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H275 zenon_H140 zenon_H13e zenon_Hb6 zenon_H2fb zenon_H2f9 zenon_H7e zenon_H2fa zenon_H7 zenon_H2ba zenon_H2bb zenon_H2bc.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.93/1.14  apply (zenon_L256_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.93/1.14  apply (zenon_L808_); trivial.
% 0.93/1.14  apply (zenon_L342_); trivial.
% 0.93/1.14  (* end of lemma zenon_L809_ *)
% 0.93/1.14  assert (zenon_L810_ : ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> (c3_1 (a249)) -> (~(c2_1 (a249))) -> (forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37)))))) -> (ndr1_0) -> (c0_1 (a198)) -> (c1_1 (a198)) -> (c2_1 (a198)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_Heb zenon_H12f zenon_H12e zenon_H12d zenon_H140 zenon_H13e zenon_H88 zenon_H7 zenon_H9c zenon_H9d zenon_H9e.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Heb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hec ].
% 0.93/1.14  apply (zenon_L75_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hec); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H9b ].
% 0.93/1.14  apply (zenon_L256_); trivial.
% 0.93/1.14  apply (zenon_L40_); trivial.
% 0.93/1.14  (* end of lemma zenon_L810_ *)
% 0.93/1.14  assert (zenon_L811_ : ((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (~(c3_1 (a209))) -> (c0_1 (a209)) -> (c1_1 (a209)) -> (~(c2_1 (a249))) -> (c3_1 (a249)) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_Hd1 zenon_Hf6 zenon_H275 zenon_H2fb zenon_H2f9 zenon_H2fa zenon_H2ba zenon_H2bb zenon_H2bc zenon_H13e zenon_H140 zenon_H12d zenon_H12e zenon_H12f zenon_Heb zenon_Hed zenon_Hee zenon_Hef.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Heb); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hec ].
% 0.93/1.14  apply (zenon_L75_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hec); [ zenon_intro zenon_Hb6 | zenon_intro zenon_H9b ].
% 0.93/1.14  apply (zenon_L809_); trivial.
% 0.93/1.14  apply (zenon_L40_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.93/1.14  apply (zenon_L810_); trivial.
% 0.93/1.14  apply (zenon_L60_); trivial.
% 0.93/1.14  (* end of lemma zenon_L811_ *)
% 0.93/1.14  assert (zenon_L812_ : ((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp19)) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(hskp3)) -> (~(hskp22)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H15f zenon_Hd9 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_H12d zenon_H12e zenon_H12f zenon_H275 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H2fb zenon_H2f9 zenon_H2fa zenon_Heb zenon_H7c zenon_H7a zenon_H20c zenon_H20b zenon_H44 zenon_H74 zenon_H76.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.14  apply (zenon_L180_); trivial.
% 0.93/1.14  apply (zenon_L811_); trivial.
% 0.93/1.14  (* end of lemma zenon_L812_ *)
% 0.93/1.14  assert (zenon_L813_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a228)) -> (c0_1 (a228)) -> (~(c1_1 (a228))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp19)) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp22)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H162 zenon_Hd9 zenon_Hf6 zenon_Hef zenon_Hee zenon_Hed zenon_H12d zenon_H12e zenon_H12f zenon_H275 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H2fb zenon_H2f9 zenon_H2fa zenon_Heb zenon_H7c zenon_H7a zenon_H20c zenon_H20b zenon_H44 zenon_H76 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H74 zenon_H205.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.93/1.14  apply (zenon_L159_); trivial.
% 0.93/1.14  apply (zenon_L812_); trivial.
% 0.93/1.14  (* end of lemma zenon_L813_ *)
% 0.93/1.14  assert (zenon_L814_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a209)) -> (c0_1 (a209)) -> (~(c3_1 (a209))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c0_1 (a219))) -> (c2_1 (a219)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_Hfc zenon_H100 zenon_H1e4 zenon_H1b9 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H162 zenon_Hd9 zenon_Hf6 zenon_H12d zenon_H12e zenon_H12f zenon_H275 zenon_H2bc zenon_H2bb zenon_H2ba zenon_H2fb zenon_H2f9 zenon_H2fa zenon_Heb zenon_H7c zenon_H44 zenon_H76 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H2c3 zenon_H10a zenon_H10b zenon_H172 zenon_Hb zenon_Ha zenon_H9 zenon_Hfb zenon_H228.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.14  apply (zenon_L382_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.14  apply (zenon_L813_); trivial.
% 0.93/1.14  apply (zenon_L487_); trivial.
% 0.93/1.14  apply (zenon_L721_); trivial.
% 0.93/1.14  (* end of lemma zenon_L814_ *)
% 0.93/1.14  assert (zenon_L815_ : ((ndr1_0)/\((c0_1 (a208))/\((c1_1 (a208))/\(~(c2_1 (a208)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp3)) -> ((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/((hskp3)\/(hskp22))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(hskp3))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H1d1 zenon_H100 zenon_H1b9 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hd9 zenon_Ha5 zenon_H7c zenon_H44 zenon_H76 zenon_H1d2 zenon_H172 zenon_Hfb zenon_H228.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.14  apply (zenon_L382_); trivial.
% 0.93/1.14  apply (zenon_L186_); trivial.
% 0.93/1.14  apply (zenon_L728_); trivial.
% 0.93/1.14  (* end of lemma zenon_L815_ *)
% 0.93/1.14  assert (zenon_L816_ : ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(c1_1 (a199))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (~(c0_1 (a239))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (ndr1_0) -> (~(hskp27)) -> (~(hskp19)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H1e4 zenon_H2fa zenon_H1dd zenon_H1dc zenon_H1db zenon_H172 zenon_H2fb zenon_H2f9 zenon_H1c2 zenon_H219 zenon_H7c zenon_H20c zenon_H20b zenon_H7 zenon_H78 zenon_H7a.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.14  apply (zenon_L707_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.14  apply (zenon_L148_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H172); [ zenon_intro zenon_H7e | zenon_intro zenon_H175 ].
% 0.93/1.14  apply (zenon_L718_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H175); [ zenon_intro zenon_H167 | zenon_intro zenon_H6a ].
% 0.93/1.14  apply (zenon_L183_); trivial.
% 0.93/1.14  apply (zenon_L169_); trivial.
% 0.93/1.14  (* end of lemma zenon_L816_ *)
% 0.93/1.14  assert (zenon_L817_ : ((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp19)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> (~(hskp3)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(hskp3))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H220 zenon_Hd9 zenon_Ha5 zenon_H1e4 zenon_H7c zenon_H7a zenon_H172 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H31 zenon_H32 zenon_H33 zenon_H44 zenon_H1d2.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1d2); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H1d5 ].
% 0.93/1.14  apply (zenon_L816_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1d5); [ zenon_intro zenon_H30 | zenon_intro zenon_H45 ].
% 0.93/1.14  apply (zenon_L17_); trivial.
% 0.93/1.14  exact (zenon_H44 zenon_H45).
% 0.93/1.14  apply (zenon_L172_); trivial.
% 0.93/1.14  (* end of lemma zenon_L817_ *)
% 0.93/1.14  assert (zenon_L818_ : ((ndr1_0)/\((c0_1 (a208))/\((c1_1 (a208))/\(~(c2_1 (a208)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(hskp3))) -> (~(hskp3)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H1d1 zenon_H100 zenon_H1b9 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H1d2 zenon_H44 zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H1db zenon_H1dc zenon_H1dd zenon_H172 zenon_H7c zenon_H1e4 zenon_Ha5 zenon_Hd9 zenon_H228.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.14  apply (zenon_L382_); trivial.
% 0.93/1.14  apply (zenon_L817_); trivial.
% 0.93/1.14  apply (zenon_L728_); trivial.
% 0.93/1.14  (* end of lemma zenon_L818_ *)
% 0.93/1.14  assert (zenon_L819_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33)))))) -> (~(c1_1 (a199))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H275 zenon_H109 zenon_H2fb zenon_H2f9 zenon_H7e zenon_H2fa zenon_H1f3 zenon_H7 zenon_H241 zenon_H242 zenon_H240.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.93/1.14  apply (zenon_L719_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.93/1.14  apply (zenon_L808_); trivial.
% 0.93/1.14  apply (zenon_L209_); trivial.
% 0.93/1.14  (* end of lemma zenon_L819_ *)
% 0.93/1.14  assert (zenon_L820_ : ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c0_1 (a244))) -> (~(c2_1 (a244))) -> (c3_1 (a244)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c2_1 (a231)) -> (~(c3_1 (a231))) -> (~(c1_1 (a231))) -> (ndr1_0) -> (~(c0_1 (a239))) -> (forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V)))))) -> (c2_1 (a239)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(hskp28)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H28e zenon_H7f zenon_H80 zenon_H81 zenon_Hf6 zenon_H6d zenon_H6c zenon_H6b zenon_H7 zenon_H219 zenon_H1c2 zenon_H20c zenon_H275 zenon_H2fb zenon_H2f9 zenon_H2fa zenon_H241 zenon_H242 zenon_H240 zenon_H172 zenon_H1db zenon_H1dc zenon_H1dd zenon_H1e4 zenon_H27c.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.93/1.14  apply (zenon_L745_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.14  apply (zenon_L707_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.14  apply (zenon_L148_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H172); [ zenon_intro zenon_H7e | zenon_intro zenon_H175 ].
% 0.93/1.14  apply (zenon_L819_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H175); [ zenon_intro zenon_H167 | zenon_intro zenon_H6a ].
% 0.93/1.14  apply (zenon_L183_); trivial.
% 0.93/1.14  apply (zenon_L31_); trivial.
% 0.93/1.14  exact (zenon_H27c zenon_H27d).
% 0.93/1.14  (* end of lemma zenon_L820_ *)
% 0.93/1.14  assert (zenon_L821_ : ((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> (~(hskp6)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((hskp8)\/((hskp14)\/(hskp22))) -> (~(hskp14)) -> (~(hskp8)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H103 zenon_H100 zenon_H2e3 zenon_H50 zenon_H1 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_He0 zenon_H60 zenon_H18 zenon_H2c3 zenon_H1e4 zenon_Hf6 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H275 zenon_H240 zenon_H242 zenon_H241 zenon_H172 zenon_H28e zenon_Hb zenon_Ha zenon_H9 zenon_H2f2 zenon_H28d zenon_Hfb zenon_H228.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.14  apply (zenon_L382_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.14  apply (zenon_L56_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H2c3); [ zenon_intro zenon_H8 | zenon_intro zenon_H2c4 ].
% 0.93/1.14  apply (zenon_L5_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H2c4); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H24e ].
% 0.93/1.14  apply (zenon_L820_); trivial.
% 0.93/1.14  apply (zenon_L768_); trivial.
% 0.93/1.14  apply (zenon_L770_); trivial.
% 0.93/1.14  apply (zenon_L385_); trivial.
% 0.93/1.14  (* end of lemma zenon_L821_ *)
% 0.93/1.14  assert (zenon_L822_ : ((~(hskp9))\/((ndr1_0)/\((~(c0_1 (a213)))/\((~(c1_1 (a213)))/\(~(c2_1 (a213))))))) -> ((~(hskp10))\/((ndr1_0)/\((c1_1 (a214))/\((~(c2_1 (a214)))/\(~(c3_1 (a214))))))) -> ((~(hskp11))\/((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((hskp8)\/(hskp14))) -> ((~(hskp16))\/((ndr1_0)/\((c2_1 (a231))/\((~(c1_1 (a231)))/\(~(c3_1 (a231))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((hskp8)\/((hskp13)\/(hskp18))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/((hskp30)\/(hskp16))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> ((~(hskp30))\/((ndr1_0)/\((c0_1 (a230))/\((c2_1 (a230))/\(c3_1 (a230)))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(c0_1 (a203))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> (~(hskp8)) -> ((hskp8)\/((hskp14)\/(hskp22))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> (~(hskp6)) -> ((hskp6)\/(hskp9)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H1c1 zenon_H262 zenon_H19b zenon_H270 zenon_H2e1 zenon_H102 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H2c3 zenon_H275 zenon_H172 zenon_H28e zenon_H2f2 zenon_H28d zenon_H228 zenon_H1e zenon_H2e zenon_H23e zenon_H4c zenon_H4f zenon_H2eb zenon_H186 zenon_Hff zenon_H1e4 zenon_Hf6 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2fb zenon_H2fa zenon_H2f9 zenon_Hfb zenon_Hd9 zenon_H23a zenon_H22f zenon_H7c zenon_H231 zenon_H230 zenon_H268 zenon_H18 zenon_He0 zenon_H2e3 zenon_H100 zenon_H129 zenon_H1 zenon_H5.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.14  apply (zenon_L3_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.14  apply (zenon_L767_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.14  apply (zenon_L203_); trivial.
% 0.93/1.14  apply (zenon_L821_); trivial.
% 0.93/1.14  apply (zenon_L754_); trivial.
% 0.93/1.14  apply (zenon_L730_); trivial.
% 0.93/1.14  apply (zenon_L736_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.14  apply (zenon_L12_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.14  apply (zenon_L674_); trivial.
% 0.93/1.14  apply (zenon_L385_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.14  apply (zenon_L382_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.14  apply (zenon_L56_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H2c3); [ zenon_intro zenon_H8 | zenon_intro zenon_H2c4 ].
% 0.93/1.14  apply (zenon_L5_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H2c4); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H24e ].
% 0.93/1.14  apply (zenon_L820_); trivial.
% 0.93/1.14  apply (zenon_L670_); trivial.
% 0.93/1.14  apply (zenon_L770_); trivial.
% 0.93/1.14  apply (zenon_L385_); trivial.
% 0.93/1.14  apply (zenon_L754_); trivial.
% 0.93/1.14  apply (zenon_L730_); trivial.
% 0.93/1.14  apply (zenon_L736_); trivial.
% 0.93/1.14  (* end of lemma zenon_L822_ *)
% 0.93/1.14  assert (zenon_L823_ : ((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp19)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H15f zenon_H176 zenon_H296 zenon_H1a zenon_H1ab zenon_H19e zenon_H19f zenon_H60 zenon_H1a9 zenon_H7a zenon_H165.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.93/1.14  apply (zenon_L97_); trivial.
% 0.93/1.14  apply (zenon_L329_); trivial.
% 0.93/1.14  (* end of lemma zenon_L823_ *)
% 0.93/1.14  assert (zenon_L824_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp19)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp22)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H162 zenon_H176 zenon_H296 zenon_H1a zenon_H60 zenon_H1a9 zenon_H7a zenon_H165 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H74 zenon_H205.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.93/1.14  apply (zenon_L159_); trivial.
% 0.93/1.14  apply (zenon_L823_); trivial.
% 0.93/1.14  (* end of lemma zenon_L824_ *)
% 0.93/1.14  assert (zenon_L825_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> (~(hskp15)) -> (~(hskp6)) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> (~(hskp10)) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c0_1 (a203))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H100 zenon_H2e3 zenon_H50 zenon_H1 zenon_H162 zenon_H176 zenon_H296 zenon_H1a zenon_H60 zenon_H1a9 zenon_H165 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H268 zenon_H238 zenon_H230 zenon_H231 zenon_H7c zenon_H22f zenon_H23a zenon_Hd9 zenon_Hfb.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.14  apply (zenon_L824_); trivial.
% 0.93/1.14  apply (zenon_L231_); trivial.
% 0.93/1.14  apply (zenon_L385_); trivial.
% 0.93/1.14  (* end of lemma zenon_L825_ *)
% 0.93/1.14  assert (zenon_L826_ : ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (~(hskp18)) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_Hfb zenon_H1e4 zenon_Hed zenon_Hee zenon_Hef zenon_Hf6 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H156 zenon_H1c zenon_H9 zenon_Ha zenon_Hb zenon_H1db zenon_H1dc zenon_H1dd zenon_H2f2 zenon_H128 zenon_H162.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.14  apply (zenon_L576_); trivial.
% 0.93/1.14  apply (zenon_L753_); trivial.
% 0.93/1.14  (* end of lemma zenon_L826_ *)
% 0.93/1.14  assert (zenon_L827_ : ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> (~(c0_1 (a203))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(hskp10)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> (~(hskp6)) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H186 zenon_H2eb zenon_Hff zenon_H4f zenon_Hab zenon_H128 zenon_H2f2 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hb zenon_Ha zenon_H9 zenon_H156 zenon_H2f9 zenon_H2fa zenon_H2fb zenon_Hf6 zenon_H1e4 zenon_Hfb zenon_Hd9 zenon_H23a zenon_H22f zenon_H7c zenon_H231 zenon_H230 zenon_H238 zenon_H268 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H165 zenon_H1a9 zenon_H296 zenon_H176 zenon_H162 zenon_H1 zenon_H2e3 zenon_H100 zenon_H129.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.14  apply (zenon_L825_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.14  apply (zenon_L826_); trivial.
% 0.93/1.14  apply (zenon_L195_); trivial.
% 0.93/1.14  apply (zenon_L730_); trivial.
% 0.93/1.14  apply (zenon_L736_); trivial.
% 0.93/1.14  (* end of lemma zenon_L827_ *)
% 0.93/1.14  assert (zenon_L828_ : ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp13)) -> (~(c1_1 (a212))) -> (~(hskp14)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (ndr1_0) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp19)) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(hskp11)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H176 zenon_H296 zenon_H1a zenon_H1ab zenon_H60 zenon_H1a9 zenon_H7 zenon_H22f zenon_H230 zenon_H231 zenon_H165 zenon_H7a zenon_H19f zenon_H19e zenon_H121 zenon_H23e.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.93/1.14  apply (zenon_L757_); trivial.
% 0.93/1.14  apply (zenon_L329_); trivial.
% 0.93/1.14  (* end of lemma zenon_L828_ *)
% 0.93/1.14  assert (zenon_L829_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(c1_1 (a199))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(hskp11)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (c3_1 (a212)) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_Hfc zenon_H1e4 zenon_H2fa zenon_H1dd zenon_H1dc zenon_H1db zenon_Hf6 zenon_H2fb zenon_H2f9 zenon_H121 zenon_H19e zenon_H1ab zenon_H19f zenon_H22f zenon_H230 zenon_H231 zenon_H23e.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.14  apply (zenon_L707_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.14  apply (zenon_L148_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.93/1.14  apply (zenon_L718_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.93/1.14  apply (zenon_L619_); trivial.
% 0.93/1.14  apply (zenon_L60_); trivial.
% 0.93/1.14  (* end of lemma zenon_L829_ *)
% 0.93/1.14  assert (zenon_L830_ : ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp14)) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))) -> (c1_1 (a202)) -> (c3_1 (a202)) -> (c2_1 (a202)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp13)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H296 zenon_H60 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H117 zenon_H27f zenon_H281 zenon_H280 zenon_H1a9 zenon_H1a.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H296); [ zenon_intro zenon_H167 | zenon_intro zenon_H297 ].
% 0.93/1.14  apply (zenon_L637_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H297); [ zenon_intro zenon_H272 | zenon_intro zenon_H1b ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1a9); [ zenon_intro zenon_H167 | zenon_intro zenon_H1aa ].
% 0.93/1.14  apply (zenon_L637_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1aa); [ zenon_intro zenon_H152 | zenon_intro zenon_H61 ].
% 0.93/1.14  apply (zenon_L293_); trivial.
% 0.93/1.14  exact (zenon_H60 zenon_H61).
% 0.93/1.14  exact (zenon_H1a zenon_H1b).
% 0.93/1.14  (* end of lemma zenon_L830_ *)
% 0.93/1.14  assert (zenon_L831_ : ((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> (~(hskp14)) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp13)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H288 zenon_H2f2 zenon_Hb zenon_Ha zenon_H9 zenon_H1dd zenon_H1dc zenon_H1db zenon_H296 zenon_H60 zenon_H1ab zenon_H19e zenon_H19f zenon_H1a9 zenon_H1a.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H288). zenon_intro zenon_H7. zenon_intro zenon_H28a.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H28a). zenon_intro zenon_H27f. zenon_intro zenon_H28b.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H28b). zenon_intro zenon_H280. zenon_intro zenon_H281.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H2f2); [ zenon_intro zenon_H8 | zenon_intro zenon_H2f3 ].
% 0.93/1.14  apply (zenon_L5_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H2f3); [ zenon_intro zenon_H1da | zenon_intro zenon_H117 ].
% 0.93/1.14  apply (zenon_L148_); trivial.
% 0.93/1.14  apply (zenon_L830_); trivial.
% 0.93/1.14  (* end of lemma zenon_L831_ *)
% 0.93/1.14  assert (zenon_L832_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (~(c1_1 (a199))) -> (ndr1_0) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_Hf6 zenon_H240 zenon_H242 zenon_H241 zenon_H1f3 zenon_H275 zenon_H2fb zenon_H2f9 zenon_H109 zenon_H2fa zenon_H7 zenon_Hed zenon_Hee zenon_Hef.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.93/1.14  apply (zenon_L819_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.93/1.14  apply (zenon_L719_); trivial.
% 0.93/1.14  apply (zenon_L60_); trivial.
% 0.93/1.14  (* end of lemma zenon_L832_ *)
% 0.93/1.14  assert (zenon_L833_ : ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (ndr1_0) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hf6 zenon_H240 zenon_H242 zenon_H241 zenon_H1f3 zenon_H275 zenon_H2fb zenon_H2f9 zenon_H2fa zenon_H7 zenon_Hed zenon_Hee zenon_Hef.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.14  apply (zenon_L707_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.14  apply (zenon_L148_); trivial.
% 0.93/1.14  apply (zenon_L832_); trivial.
% 0.93/1.14  (* end of lemma zenon_L833_ *)
% 0.93/1.14  assert (zenon_L834_ : ((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216)))))) -> ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> (~(hskp6)) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H196 zenon_H186 zenon_H2eb zenon_Hff zenon_Hf6 zenon_H176 zenon_H28e zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H1db zenon_H1dc zenon_H1dd zenon_H275 zenon_H240 zenon_H242 zenon_H241 zenon_H1ab zenon_H19e zenon_H19f zenon_H165 zenon_H1e4 zenon_H9 zenon_Ha zenon_Hb zenon_H296 zenon_H1a9 zenon_H2f2 zenon_H28d zenon_H1 zenon_H2e3 zenon_H100 zenon_H129.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.14  apply (zenon_L761_); trivial.
% 0.93/1.14  apply (zenon_L831_); trivial.
% 0.93/1.14  apply (zenon_L329_); trivial.
% 0.93/1.14  apply (zenon_L385_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.93/1.14  apply (zenon_L113_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.93/1.14  apply (zenon_L833_); trivial.
% 0.93/1.14  exact (zenon_H27c zenon_H27d).
% 0.93/1.14  apply (zenon_L831_); trivial.
% 0.93/1.14  apply (zenon_L730_); trivial.
% 0.93/1.14  apply (zenon_L736_); trivial.
% 0.93/1.14  (* end of lemma zenon_L834_ *)
% 0.93/1.14  assert (zenon_L835_ : ((ndr1_0)/\((c0_1 (a212))/\((c3_1 (a212))/\(~(c1_1 (a212)))))) -> ((~(hskp9))\/((ndr1_0)/\((~(c0_1 (a213)))/\((~(c1_1 (a213)))/\(~(c2_1 (a213))))))) -> ((~(hskp10))\/((ndr1_0)/\((c1_1 (a214))/\((~(c2_1 (a214)))/\(~(c3_1 (a214))))))) -> ((~(hskp11))\/((ndr1_0)/\((~(c0_1 (a216)))/\((~(c1_1 (a216)))/\(~(c3_1 (a216))))))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14))))))\/((hskp6)\/(hskp15))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c0_1 (a203))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32))))))\/(hskp10))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((hskp6)\/(hskp14))) -> ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> (~(hskp6)) -> ((hskp6)\/(hskp9)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H2d5 zenon_H1c1 zenon_H262 zenon_H19b zenon_H28e zenon_H275 zenon_H28d zenon_H23e zenon_H129 zenon_H100 zenon_H2e3 zenon_H162 zenon_H176 zenon_H296 zenon_H1a9 zenon_H165 zenon_H205 zenon_H268 zenon_H230 zenon_H231 zenon_H7c zenon_H22f zenon_H23a zenon_Hd9 zenon_Hfb zenon_H1e4 zenon_Hf6 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H156 zenon_H1db zenon_H1dc zenon_H1dd zenon_H2f2 zenon_H128 zenon_Hab zenon_H4f zenon_Hff zenon_H2eb zenon_H186 zenon_H1 zenon_H5.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.14  apply (zenon_L3_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.14  apply (zenon_L827_); trivial.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.14  apply (zenon_L828_); trivial.
% 0.93/1.14  apply (zenon_L385_); trivial.
% 0.93/1.14  apply (zenon_L829_); trivial.
% 0.93/1.14  apply (zenon_L730_); trivial.
% 0.93/1.14  apply (zenon_L736_); trivial.
% 0.93/1.14  apply (zenon_L834_); trivial.
% 0.93/1.14  (* end of lemma zenon_L835_ *)
% 0.93/1.14  assert (zenon_L836_ : ((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H4b zenon_H100 zenon_H1b9 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hab zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9 zenon_H228.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.14  apply (zenon_L489_); trivial.
% 0.93/1.14  apply (zenon_L728_); trivial.
% 0.93/1.14  (* end of lemma zenon_L836_ *)
% 0.93/1.14  assert (zenon_L837_ : ((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (~(hskp19)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H64 zenon_Hd9 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_H20c zenon_H20b zenon_H219 zenon_H7a zenon_H7c.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H64). zenon_intro zenon_H7. zenon_intro zenon_H66.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H66). zenon_intro zenon_H58. zenon_intro zenon_H67.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H67). zenon_intro zenon_H59. zenon_intro zenon_H57.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.14  apply (zenon_L36_); trivial.
% 0.93/1.14  apply (zenon_L172_); trivial.
% 0.93/1.14  (* end of lemma zenon_L837_ *)
% 0.93/1.14  assert (zenon_L838_ : ((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239)))))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (~(hskp19)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp15)) -> (~(hskp8)) -> ((hskp15)\/((hskp8)\/(hskp26))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_H220 zenon_H69 zenon_Hd9 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_H7a zenon_H7c zenon_H50 zenon_H18 zenon_H54.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H69); [ zenon_intro zenon_H52 | zenon_intro zenon_H64 ].
% 0.93/1.14  apply (zenon_L25_); trivial.
% 0.93/1.14  apply (zenon_L837_); trivial.
% 0.93/1.14  (* end of lemma zenon_L838_ *)
% 0.93/1.14  assert (zenon_L839_ : ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c3_1 (a218)) -> (~(c0_1 (a218))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (~(c1_1 (a199))) -> (ndr1_0) -> (~(c1_1 (a228))) -> (c0_1 (a228)) -> (c2_1 (a228)) -> False).
% 0.93/1.14  do 0 intro. intros zenon_Hf6 zenon_H12f zenon_H12d zenon_H2fb zenon_H2f9 zenon_H109 zenon_H2fa zenon_H7 zenon_Hed zenon_Hee zenon_Hef.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hf6); [ zenon_intro zenon_H7e | zenon_intro zenon_Hf7 ].
% 0.93/1.14  apply (zenon_L738_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_Hf7); [ zenon_intro zenon_H88 | zenon_intro zenon_H93 ].
% 0.93/1.14  apply (zenon_L719_); trivial.
% 0.93/1.14  apply (zenon_L60_); trivial.
% 0.93/1.14  (* end of lemma zenon_L839_ *)
% 0.93/1.14  assert (zenon_L840_ : ((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228)))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c3_1 (a218)) -> (~(c0_1 (a218))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> False).
% 0.93/1.14  do 0 intro. intros zenon_Hfc zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_Hf6 zenon_H12f zenon_H12d zenon_H2fb zenon_H2f9 zenon_H2fa.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.14  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.14  apply (zenon_L707_); trivial.
% 0.93/1.14  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.14  apply (zenon_L148_); trivial.
% 0.93/1.14  apply (zenon_L839_); trivial.
% 0.93/1.14  (* end of lemma zenon_L840_ *)
% 0.93/1.14  assert (zenon_L841_ : ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> ((~(hskp15))\/((ndr1_0)/\((c0_1 (a228))/\((c2_1 (a228))/\(~(c1_1 (a228))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((~(hskp26))\/((ndr1_0)/\((c1_1 (a281))/\((c2_1 (a281))/\(~(c3_1 (a281))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((hskp15)\/((hskp8)\/(hskp26))) -> ((hskp8)\/((hskp13)\/(hskp18))) -> (~(hskp8)) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> ((forall X66 : zenon_U, ((ndr1_0)->((c1_1 X66)\/((c2_1 X66)\/(c3_1 X66)))))\/(hskp27)) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((~(hskp18))\/((ndr1_0)/\((~(c1_1 (a233)))/\((~(c2_1 (a233)))/\(~(c3_1 (a233))))))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H186 zenon_Hff zenon_H1e4 zenon_Hf6 zenon_H1dd zenon_H1dc zenon_H1db zenon_H69 zenon_H7c zenon_H54 zenon_H1e zenon_H18 zenon_H228 zenon_Hd9 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_Hab zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H1b9 zenon_H100 zenon_H4f.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L12_); trivial.
% 0.93/1.15  apply (zenon_L836_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.15  apply (zenon_L382_); trivial.
% 0.93/1.15  apply (zenon_L838_); trivial.
% 0.93/1.15  apply (zenon_L728_); trivial.
% 0.93/1.15  apply (zenon_L840_); trivial.
% 0.93/1.15  (* end of lemma zenon_L841_ *)
% 0.93/1.15  assert (zenon_L842_ : ((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp19)) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(hskp10)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_Hf8 zenon_Hd9 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_H20c zenon_H20b zenon_H219 zenon_H7c zenon_H7a zenon_H231 zenon_H230 zenon_H238 zenon_H268.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.15  apply (zenon_L230_); trivial.
% 0.93/1.15  apply (zenon_L172_); trivial.
% 0.93/1.15  (* end of lemma zenon_L842_ *)
% 0.93/1.15  assert (zenon_L843_ : ((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239)))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/(hskp17))) -> (~(hskp17)) -> (~(hskp19)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H220 zenon_Hd9 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H1db zenon_H1dc zenon_H1dd zenon_H315 zenon_H62 zenon_H7a zenon_H7c zenon_H1e4.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.15  apply (zenon_L707_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.15  apply (zenon_L148_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H315); [ zenon_intro zenon_H88 | zenon_intro zenon_H316 ].
% 0.93/1.15  apply (zenon_L719_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H316); [ zenon_intro zenon_H6a | zenon_intro zenon_H63 ].
% 0.93/1.15  apply (zenon_L169_); trivial.
% 0.93/1.15  exact (zenon_H62 zenon_H63).
% 0.93/1.15  apply (zenon_L172_); trivial.
% 0.93/1.15  (* end of lemma zenon_L843_ *)
% 0.93/1.15  assert (zenon_L844_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp17)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/(hskp17))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H100 zenon_H1b9 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H1e4 zenon_H7c zenon_H62 zenon_H315 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9 zenon_H228.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.15  apply (zenon_L382_); trivial.
% 0.93/1.15  apply (zenon_L843_); trivial.
% 0.93/1.15  apply (zenon_L728_); trivial.
% 0.93/1.15  (* end of lemma zenon_L844_ *)
% 0.93/1.15  assert (zenon_L845_ : ((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249)))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c1_1 (a232))) -> (~(c2_1 (a232))) -> (c3_1 (a232)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (c2_1 (a239)) -> (~(hskp21)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(hskp19)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H15f zenon_H176 zenon_H277 zenon_H19e zenon_H19f zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H89 zenon_H8a zenon_H8b zenon_H20b zenon_H219 zenon_H20c zenon_Ha7 zenon_Ha9 zenon_H7a zenon_H165.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.93/1.15  apply (zenon_L97_); trivial.
% 0.93/1.15  apply (zenon_L661_); trivial.
% 0.93/1.15  (* end of lemma zenon_L845_ *)
% 0.93/1.15  assert (zenon_L846_ : ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c1_1 (a232))) -> (~(c2_1 (a232))) -> (c3_1 (a232)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (c2_1 (a239)) -> (~(hskp21)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(hskp19)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (ndr1_0) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(hskp22)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H162 zenon_H176 zenon_H277 zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H89 zenon_H8a zenon_H8b zenon_H20b zenon_H219 zenon_H20c zenon_Ha7 zenon_Ha9 zenon_H7a zenon_H165 zenon_H7 zenon_H1ab zenon_H19e zenon_H19f zenon_H74 zenon_H205.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.93/1.15  apply (zenon_L159_); trivial.
% 0.93/1.15  apply (zenon_L845_); trivial.
% 0.93/1.15  (* end of lemma zenon_L846_ *)
% 0.93/1.15  assert (zenon_L847_ : ((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239)))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c1_1 (a232))) -> (~(c2_1 (a232))) -> (c3_1 (a232)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(hskp19)) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> (~(hskp10)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H220 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_H12f zenon_H12e zenon_H12d zenon_H162 zenon_H176 zenon_H277 zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H89 zenon_H8a zenon_H8b zenon_Ha9 zenon_H7a zenon_H165 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H268 zenon_H238 zenon_H7c zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9 zenon_Hfb.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.15  apply (zenon_L846_); trivial.
% 0.93/1.15  apply (zenon_L842_); trivial.
% 0.93/1.15  apply (zenon_L76_); trivial.
% 0.93/1.15  (* end of lemma zenon_L847_ *)
% 0.93/1.15  assert (zenon_L848_ : ((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232)))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(hskp10)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H106 zenon_H100 zenon_H1b9 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_Hfb zenon_Hd9 zenon_Ha5 zenon_H33 zenon_H32 zenon_H31 zenon_H7c zenon_H238 zenon_H268 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H165 zenon_Ha9 zenon_H22f zenon_H230 zenon_H231 zenon_H270 zenon_H277 zenon_H176 zenon_H162 zenon_H12d zenon_H12e zenon_H12f zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H228.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.15  apply (zenon_L382_); trivial.
% 0.93/1.15  apply (zenon_L847_); trivial.
% 0.93/1.15  apply (zenon_L728_); trivial.
% 0.93/1.15  (* end of lemma zenon_L848_ *)
% 0.93/1.15  assert (zenon_L849_ : ((~(hskp13))\/((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218))))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(c0_1 (a203))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/(hskp17))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X40 : zenon_U, ((ndr1_0)->((c2_1 X40)\/((c3_1 X40)\/(~(c1_1 X40))))))\/(hskp10))) -> (~(hskp10)) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((~(hskp14))\/((ndr1_0)/\((c2_1 (a219))/\((c3_1 (a219))/\(~(c0_1 (a219))))))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H186 zenon_H101 zenon_Ha9 zenon_H22f zenon_H270 zenon_H277 zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H315 zenon_H100 zenon_H1b9 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H162 zenon_H176 zenon_H296 zenon_H1a9 zenon_H165 zenon_H1ab zenon_H19e zenon_H19f zenon_H205 zenon_H268 zenon_H238 zenon_H230 zenon_H231 zenon_H7c zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_Hd9 zenon_Hfb zenon_H228 zenon_H1db zenon_H1dc zenon_H1dd zenon_H1e4 zenon_H129.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.15  apply (zenon_L382_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.15  apply (zenon_L824_); trivial.
% 0.93/1.15  apply (zenon_L842_); trivial.
% 0.93/1.15  apply (zenon_L728_); trivial.
% 0.93/1.15  apply (zenon_L730_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.15  apply (zenon_L844_); trivial.
% 0.93/1.15  apply (zenon_L848_); trivial.
% 0.93/1.15  (* end of lemma zenon_L849_ *)
% 0.93/1.15  assert (zenon_L850_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (~(c1_1 (a199))) -> (c2_1 (a239)) -> (forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))) -> (~(c3_1 (a239))) -> (ndr1_0) -> (~(hskp21)) -> False).
% 0.93/1.15  do 0 intro. intros zenon_Ha9 zenon_H2fb zenon_H2f9 zenon_H109 zenon_H2fa zenon_H20c zenon_H6a zenon_H20b zenon_H7 zenon_Ha7.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Ha9); [ zenon_intro zenon_H88 | zenon_intro zenon_Haa ].
% 0.93/1.15  apply (zenon_L719_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Haa); [ zenon_intro zenon_H56 | zenon_intro zenon_Ha8 ].
% 0.93/1.15  apply (zenon_L168_); trivial.
% 0.93/1.15  exact (zenon_Ha7 zenon_Ha8).
% 0.93/1.15  (* end of lemma zenon_L850_ *)
% 0.93/1.15  assert (zenon_L851_ : ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/(hskp17))) -> (~(hskp21)) -> (ndr1_0) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (c3_1 (a199)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(hskp17)) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H315 zenon_Ha7 zenon_H7 zenon_H20b zenon_H20c zenon_H2fa zenon_H2f9 zenon_H2fb zenon_Ha9 zenon_H62.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.15  apply (zenon_L707_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.15  apply (zenon_L148_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H315); [ zenon_intro zenon_H88 | zenon_intro zenon_H316 ].
% 0.93/1.15  apply (zenon_L719_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H316); [ zenon_intro zenon_H6a | zenon_intro zenon_H63 ].
% 0.93/1.15  apply (zenon_L850_); trivial.
% 0.93/1.15  exact (zenon_H62 zenon_H63).
% 0.93/1.15  (* end of lemma zenon_L851_ *)
% 0.93/1.15  assert (zenon_L852_ : ((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239)))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/(hskp17))) -> (~(hskp17)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H220 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_H12f zenon_H12e zenon_H12d zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H1db zenon_H1dc zenon_H1dd zenon_H315 zenon_H62 zenon_Ha9 zenon_H1e4.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.93/1.15  apply (zenon_L851_); trivial.
% 0.93/1.15  apply (zenon_L76_); trivial.
% 0.93/1.15  (* end of lemma zenon_L852_ *)
% 0.93/1.15  assert (zenon_L853_ : ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (c0_1 (a200)) -> (~(c2_1 (a200))) -> (~(c1_1 (a200))) -> (ndr1_0) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (~(hskp17)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/(hskp17))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (~(c0_1 (a218))) -> (c1_1 (a218)) -> (c3_1 (a218)) -> (~(hskp5)) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H100 zenon_H1b9 zenon_H33 zenon_H32 zenon_H31 zenon_H209 zenon_H2da zenon_H2d9 zenon_H2d8 zenon_H7 zenon_H1e4 zenon_Ha9 zenon_H62 zenon_H315 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H12d zenon_H12e zenon_H12f zenon_Hcf zenon_Hd2 zenon_Hdd zenon_H228.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.15  apply (zenon_L382_); trivial.
% 0.93/1.15  apply (zenon_L852_); trivial.
% 0.93/1.15  apply (zenon_L728_); trivial.
% 0.93/1.15  (* end of lemma zenon_L853_ *)
% 0.93/1.15  assert (zenon_L854_ : ((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239)))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c3_1 (a232)) -> (~(c2_1 (a232))) -> (~(c1_1 (a232))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43))))))\/(hskp11))) -> (~(hskp11)) -> (c3_1 (a212)) -> (c0_1 (a212)) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H220 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_H12f zenon_H12e zenon_H12d zenon_Ha9 zenon_H8b zenon_H8a zenon_H89 zenon_H22f zenon_H230 zenon_H231 zenon_H23e zenon_H121 zenon_H19f zenon_H19e zenon_H277.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.93/1.15  apply (zenon_L586_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.93/1.15  apply (zenon_L192_); trivial.
% 0.93/1.15  apply (zenon_L248_); trivial.
% 0.93/1.15  apply (zenon_L76_); trivial.
% 0.93/1.15  (* end of lemma zenon_L854_ *)
% 0.93/1.15  assert (zenon_L855_ : ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (c1_1 (a208)) -> (c0_1 (a208)) -> (~(c2_1 (a208))) -> (forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34)))))) -> (ndr1_0) -> (c1_1 (a202)) -> (c2_1 (a202)) -> False).
% 0.93/1.15  do 0 intro. intros zenon_Ha5 zenon_H20c zenon_H20b zenon_H219 zenon_H33 zenon_H32 zenon_H31 zenon_H167 zenon_H7 zenon_H27f zenon_H280.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Ha5); [ zenon_intro zenon_H92 | zenon_intro zenon_Ha6 ].
% 0.93/1.15  apply (zenon_L171_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Ha6); [ zenon_intro zenon_H30 | zenon_intro zenon_H9b ].
% 0.93/1.15  apply (zenon_L17_); trivial.
% 0.93/1.15  apply (zenon_L292_); trivial.
% 0.93/1.15  (* end of lemma zenon_L855_ *)
% 0.93/1.15  assert (zenon_L856_ : ((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> (c3_1 (a244)) -> (~(c2_1 (a244))) -> (~(c0_1 (a244))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> (~(c0_1 (a239))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (c2_1 (a239)) -> (~(c3_1 (a239))) -> (~(hskp27)) -> (~(hskp19)) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H288 zenon_H172 zenon_H81 zenon_H80 zenon_H7f zenon_H31 zenon_H32 zenon_H33 zenon_H219 zenon_Ha5 zenon_H7c zenon_H20c zenon_H20b zenon_H78 zenon_H7a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H288). zenon_intro zenon_H7. zenon_intro zenon_H28a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H28a). zenon_intro zenon_H27f. zenon_intro zenon_H28b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H28b). zenon_intro zenon_H280. zenon_intro zenon_H281.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H172); [ zenon_intro zenon_H7e | zenon_intro zenon_H175 ].
% 0.93/1.15  apply (zenon_L37_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H175); [ zenon_intro zenon_H167 | zenon_intro zenon_H6a ].
% 0.93/1.15  apply (zenon_L855_); trivial.
% 0.93/1.15  apply (zenon_L169_); trivial.
% 0.93/1.15  (* end of lemma zenon_L856_ *)
% 0.93/1.15  assert (zenon_L857_ : ((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239)))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (c3_1 (a232)) -> (~(c2_1 (a232))) -> (~(c1_1 (a232))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> (~(hskp19)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp14)) -> (~(hskp13)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H220 zenon_Hfb zenon_H28d zenon_H172 zenon_H7c zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_H18d zenon_H18e zenon_H18f zenon_H275 zenon_H240 zenon_H242 zenon_H241 zenon_H8b zenon_H8a zenon_H89 zenon_H28e zenon_Hd9 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H165 zenon_H7a zenon_H1a9 zenon_H60 zenon_H1a zenon_H296 zenon_H176 zenon_H162.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.15  apply (zenon_L824_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.15  apply (zenon_L324_); trivial.
% 0.93/1.15  apply (zenon_L856_); trivial.
% 0.93/1.15  apply (zenon_L172_); trivial.
% 0.93/1.15  apply (zenon_L329_); trivial.
% 0.93/1.15  (* end of lemma zenon_L857_ *)
% 0.93/1.15  assert (zenon_L858_ : ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35)))))))) -> ((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/((hskp27)\/(hskp19))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (c3_1 (a232)) -> (~(c2_1 (a232))) -> (~(c1_1 (a232))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((~(hskp27))\/((ndr1_0)/\((c0_1 (a198))/\((c1_1 (a198))/\(c2_1 (a198)))))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp25)\/(hskp19))) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/(hskp14))) -> (~(hskp14)) -> (~(hskp13)) -> ((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(hskp13))) -> ((~(hskp25))\/((ndr1_0)/\((c1_1 (a256))/\((c2_1 (a256))/\(~(c0_1 (a256))))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> (ndr1_0) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> (~(hskp19)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H228 zenon_Hfb zenon_H28d zenon_H172 zenon_H7c zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_H18d zenon_H18e zenon_H18f zenon_H275 zenon_H240 zenon_H242 zenon_H241 zenon_H8b zenon_H8a zenon_H89 zenon_H28e zenon_Hd9 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H165 zenon_H1a9 zenon_H60 zenon_H1a zenon_H296 zenon_H176 zenon_H162 zenon_H7 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H7a zenon_H209.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.15  apply (zenon_L382_); trivial.
% 0.93/1.15  apply (zenon_L857_); trivial.
% 0.93/1.15  (* end of lemma zenon_L858_ *)
% 0.93/1.15  assert (zenon_L859_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (~(c1_1 (a199))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))) -> (~(c1_1 (a212))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H275 zenon_H2fb zenon_H2f9 zenon_H109 zenon_H2fa zenon_H19f zenon_H19e zenon_H152 zenon_H1ab zenon_H1f3 zenon_H7 zenon_H241 zenon_H242 zenon_H240.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.93/1.15  apply (zenon_L719_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.93/1.15  apply (zenon_L293_); trivial.
% 0.93/1.15  apply (zenon_L209_); trivial.
% 0.93/1.15  (* end of lemma zenon_L859_ *)
% 0.93/1.15  assert (zenon_L860_ : ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))) -> (~(c1_1 (a212))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H275 zenon_H2fb zenon_H2f9 zenon_H2fa zenon_H19f zenon_H19e zenon_H152 zenon_H1ab zenon_H1f3 zenon_H7 zenon_H241 zenon_H242 zenon_H240.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.15  apply (zenon_L707_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.15  apply (zenon_L148_); trivial.
% 0.93/1.15  apply (zenon_L859_); trivial.
% 0.93/1.15  (* end of lemma zenon_L860_ *)
% 0.93/1.15  assert (zenon_L861_ : ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(hskp21)) -> (~(c3_1 (a239))) -> (~(c0_1 (a239))) -> (c2_1 (a239)) -> (~(c1_1 (a232))) -> (~(c2_1 (a232))) -> (c3_1 (a232)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H277 zenon_Ha7 zenon_H20b zenon_H219 zenon_H20c zenon_H89 zenon_H8a zenon_H8b zenon_Ha9 zenon_H231 zenon_H230 zenon_H22f zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H275 zenon_H2fb zenon_H2f9 zenon_H2fa zenon_H19f zenon_H19e zenon_H1ab zenon_H1f3 zenon_H7 zenon_H241 zenon_H242 zenon_H240.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.93/1.15  apply (zenon_L586_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.93/1.15  apply (zenon_L192_); trivial.
% 0.93/1.15  apply (zenon_L860_); trivial.
% 0.93/1.15  (* end of lemma zenon_L861_ *)
% 0.93/1.15  assert (zenon_L862_ : ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (c2_1 (a202)) -> (c1_1 (a202)) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> (~(c0_1 (a239))) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (ndr1_0) -> (c0_1 (a212)) -> (forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))) -> (c3_1 (a212)) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H280 zenon_H27f zenon_H31 zenon_H32 zenon_H33 zenon_H219 zenon_H20b zenon_H20c zenon_Ha5 zenon_H7 zenon_H19e zenon_H152 zenon_H19f.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H270); [ zenon_intro zenon_H22e | zenon_intro zenon_H271 ].
% 0.93/1.15  apply (zenon_L192_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H271); [ zenon_intro zenon_H167 | zenon_intro zenon_H3a ].
% 0.93/1.15  apply (zenon_L855_); trivial.
% 0.93/1.15  apply (zenon_L117_); trivial.
% 0.93/1.15  (* end of lemma zenon_L862_ *)
% 0.93/1.15  assert (zenon_L863_ : ((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202))))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(hskp21)) -> (~(c1_1 (a232))) -> (~(c2_1 (a232))) -> (c3_1 (a232)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> (~(c0_1 (a239))) -> (~(c3_1 (a239))) -> (c2_1 (a239)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H288 zenon_H277 zenon_Ha7 zenon_H89 zenon_H8a zenon_H8b zenon_Ha9 zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H31 zenon_H32 zenon_H33 zenon_H219 zenon_H20b zenon_H20c zenon_Ha5 zenon_H19e zenon_H19f.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H288). zenon_intro zenon_H7. zenon_intro zenon_H28a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H28a). zenon_intro zenon_H27f. zenon_intro zenon_H28b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H28b). zenon_intro zenon_H280. zenon_intro zenon_H281.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.93/1.15  apply (zenon_L586_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.93/1.15  apply (zenon_L192_); trivial.
% 0.93/1.15  apply (zenon_L862_); trivial.
% 0.93/1.15  (* end of lemma zenon_L863_ *)
% 0.93/1.15  assert (zenon_L864_ : ((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239)))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> (c3_1 (a218)) -> (c1_1 (a218)) -> (~(c0_1 (a218))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> (c3_1 (a232)) -> (~(c2_1 (a232))) -> (~(c1_1 (a232))) -> (~(c0_1 (a203))) -> (~(c3_1 (a203))) -> (c1_1 (a203)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(c1_1 (a212))) -> (c0_1 (a212)) -> (c3_1 (a212)) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H220 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_H12f zenon_H12e zenon_H12d zenon_H28e zenon_Ha9 zenon_H8b zenon_H8a zenon_H89 zenon_H22f zenon_H230 zenon_H231 zenon_H1e4 zenon_H1ab zenon_H19e zenon_H19f zenon_H241 zenon_H242 zenon_H240 zenon_H275 zenon_H1dd zenon_H1dc zenon_H1db zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H277 zenon_H18f zenon_H18e zenon_H18d zenon_H270 zenon_H31 zenon_H32 zenon_H33 zenon_Ha5 zenon_H28d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.93/1.15  apply (zenon_L113_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.93/1.15  apply (zenon_L861_); trivial.
% 0.93/1.15  exact (zenon_H27c zenon_H27d).
% 0.93/1.15  apply (zenon_L863_); trivial.
% 0.93/1.15  apply (zenon_L76_); trivial.
% 0.93/1.15  (* end of lemma zenon_L864_ *)
% 0.93/1.15  assert (zenon_L865_ : ((ndr1_0)/\((c1_1 (a218))/\((c3_1 (a218))/\(~(c0_1 (a218)))))) -> ((~(hskp17))\/((ndr1_0)/\((c3_1 (a232))/\((~(c1_1 (a232)))/\(~(c2_1 (a232))))))) -> ((~(hskp28))\/((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202)))))) -> ((forall X25 : zenon_U, ((ndr1_0)->((c0_1 X25)\/((c3_1 X25)\/(~(c2_1 X25))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X32 : zenon_U, ((ndr1_0)->((~(c0_1 X32))\/((~(c1_1 X32))\/(~(c2_1 X32)))))))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (~(c0_1 (a216))) -> (~(c1_1 (a216))) -> (~(c3_1 (a216))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> ((~(hskp20))\/((ndr1_0)/\((c2_1 (a239))/\((~(c0_1 (a239)))/\(~(c3_1 (a239))))))) -> ((~(hskp21))\/((ndr1_0)/\((c0_1 (a241))/\((~(c1_1 (a241)))/\(~(c3_1 (a241))))))) -> ((forall X59 : zenon_U, ((ndr1_0)->((c0_1 X59)\/((~(c1_1 X59))\/(~(c3_1 X59))))))\/((forall X60 : zenon_U, ((ndr1_0)->((c1_1 X60)\/((c3_1 X60)\/(~(c0_1 X60))))))\/(hskp5))) -> (~(hskp5)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a199)) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X35 : zenon_U, ((ndr1_0)->((c1_1 X35)\/((c3_1 X35)\/(~(c2_1 X35))))))\/(hskp17))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X28 : zenon_U, ((ndr1_0)->((c3_1 X28)\/((~(c1_1 X28))\/(~(c2_1 X28))))))\/(hskp21))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(c1_1 (a200))) -> (~(c2_1 (a200))) -> (c0_1 (a200)) -> ((forall X6 : zenon_U, ((ndr1_0)->((c1_1 X6)\/((c2_1 X6)\/(~(c0_1 X6))))))\/((hskp19)\/(hskp20))) -> (~(c2_1 (a208))) -> (c0_1 (a208)) -> (c1_1 (a208)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall X12 : zenon_U, ((ndr1_0)->((c2_1 X12)\/((~(c0_1 X12))\/(~(c1_1 X12))))))\/(forall X14 : zenon_U, ((ndr1_0)->((c2_1 X14)\/((~(c1_1 X14))\/(~(c3_1 X14)))))))) -> ((~(hskp19))\/((ndr1_0)/\((c1_1 (a238))/\((c3_1 (a238))/\(~(c2_1 (a238))))))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H189 zenon_H101 zenon_H28d zenon_Ha5 zenon_H270 zenon_H18d zenon_H18e zenon_H18f zenon_H277 zenon_H275 zenon_H240 zenon_H242 zenon_H241 zenon_H19f zenon_H19e zenon_H1ab zenon_H231 zenon_H230 zenon_H22f zenon_H28e zenon_H228 zenon_Hdd zenon_Hd2 zenon_Hcf zenon_H2f9 zenon_H2fa zenon_H2fb zenon_H1db zenon_H1dc zenon_H1dd zenon_H315 zenon_Ha9 zenon_H1e4 zenon_H2d8 zenon_H2d9 zenon_H2da zenon_H209 zenon_H31 zenon_H32 zenon_H33 zenon_H1b9 zenon_H100.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.15  apply (zenon_L853_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.15  apply (zenon_L382_); trivial.
% 0.93/1.15  apply (zenon_L864_); trivial.
% 0.93/1.15  apply (zenon_L728_); trivial.
% 0.93/1.15  (* end of lemma zenon_L865_ *)
% 0.93/1.15  assert (zenon_L866_ : ((~(hskp22))\/((ndr1_0)/\((c3_1 (a244))/\((~(c0_1 (a244)))/\(~(c2_1 (a244))))))) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> ((forall X33 : zenon_U, ((ndr1_0)->((c0_1 X33)\/((c2_1 X33)\/(~(c3_1 X33))))))\/((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/(forall X38 : zenon_U, ((ndr1_0)->((c1_1 X38)\/((~(c0_1 X38))\/(~(c2_1 X38)))))))) -> (c3_1 (a199)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> ((forall X86 : zenon_U, ((ndr1_0)->((c1_1 X86)\/((~(c0_1 X86))\/(~(c3_1 X86))))))\/((hskp24)\/(hskp22))) -> (c3_1 (a212)) -> (c0_1 (a212)) -> (~(c1_1 (a212))) -> (ndr1_0) -> ((forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10))))))\/((hskp29)\/(hskp18))) -> (~(hskp18)) -> (~(c0_1 (a213))) -> (~(c1_1 (a213))) -> (~(c2_1 (a213))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> ((~(hskp29))\/((ndr1_0)/\((c0_1 (a227))/\((c1_1 (a227))/\(c3_1 (a227)))))) -> ((~(hskp24))\/((ndr1_0)/\((c0_1 (a249))/\((c3_1 (a249))/\(~(c2_1 (a249))))))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_Hfb zenon_H1e4 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_Hf6 zenon_H2fb zenon_H2fa zenon_H2f9 zenon_H205 zenon_H19f zenon_H19e zenon_H1ab zenon_H7 zenon_H156 zenon_H1c zenon_H9 zenon_Ha zenon_Hb zenon_H1db zenon_H1dc zenon_H1dd zenon_H2f2 zenon_H128 zenon_H162.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.15  apply (zenon_L576_); trivial.
% 0.93/1.15  apply (zenon_L732_); trivial.
% 0.93/1.15  (* end of lemma zenon_L866_ *)
% 0.93/1.15  assert (zenon_L867_ : ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))) -> (~(c1_1 (a199))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H275 zenon_H2fb zenon_H2f9 zenon_H109 zenon_H2fa zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H1f3 zenon_H7 zenon_H241 zenon_H242 zenon_H240.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.93/1.15  apply (zenon_L719_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.93/1.15  apply (zenon_L241_); trivial.
% 0.93/1.15  apply (zenon_L209_); trivial.
% 0.93/1.15  (* end of lemma zenon_L867_ *)
% 0.93/1.15  assert (zenon_L868_ : ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (c3_1 (a199)) -> (~(c0_1 (a199))) -> (~(c1_1 (a199))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> (forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4))))) -> (ndr1_0) -> (~(c3_1 (a214))) -> (c1_1 (a214)) -> (~(c2_1 (a214))) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H1e4 zenon_H1dd zenon_H1dc zenon_H1db zenon_H275 zenon_H2fb zenon_H2f9 zenon_H2fa zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H1f3 zenon_H7 zenon_H241 zenon_H242 zenon_H240.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.15  apply (zenon_L707_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.15  apply (zenon_L148_); trivial.
% 0.93/1.15  apply (zenon_L867_); trivial.
% 0.93/1.15  (* end of lemma zenon_L868_ *)
% 0.93/1.15  assert (zenon_L869_ : ((forall X3 : zenon_U, ((ndr1_0)->((c0_1 X3)\/((c1_1 X3)\/(c3_1 X3)))))\/((forall X4 : zenon_U, ((ndr1_0)->((c0_1 X4)\/((c2_1 X4)\/(c3_1 X4)))))\/(hskp28))) -> (~(c3_1 (a216))) -> (~(c1_1 (a216))) -> (~(c0_1 (a216))) -> (~(c2_1 (a214))) -> (c1_1 (a214)) -> (~(c3_1 (a214))) -> (ndr1_0) -> (~(c1_1 (a205))) -> (c2_1 (a205)) -> (c3_1 (a205)) -> (~(c1_1 (a199))) -> (~(c0_1 (a199))) -> (c3_1 (a199)) -> ((forall X37 : zenon_U, ((ndr1_0)->((c1_1 X37)\/((c2_1 X37)\/(~(c3_1 X37))))))\/((forall X54 : zenon_U, ((ndr1_0)->((c1_1 X54)\/((~(c2_1 X54))\/(~(c3_1 X54))))))\/(forall W : zenon_U, ((ndr1_0)->((c3_1 W)\/((~(c0_1 W))\/(~(c1_1 W)))))))) -> (~(c0_1 (a204))) -> (~(c2_1 (a204))) -> (c1_1 (a204)) -> ((forall X16 : zenon_U, ((ndr1_0)->((c0_1 X16)\/((c1_1 X16)\/(~(c3_1 X16))))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall X18 : zenon_U, ((ndr1_0)->((c0_1 X18)\/((~(c2_1 X18))\/(~(c3_1 X18)))))))) -> (~(hskp28)) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H28e zenon_H18f zenon_H18e zenon_H18d zenon_H240 zenon_H242 zenon_H241 zenon_H7 zenon_H1c4 zenon_H1c5 zenon_H1cc zenon_H2fa zenon_H2f9 zenon_H2fb zenon_H275 zenon_H1db zenon_H1dc zenon_H1dd zenon_H1e4 zenon_H27c.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.93/1.15  apply (zenon_L113_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.93/1.15  apply (zenon_L868_); trivial.
% 0.93/1.15  exact (zenon_H27c zenon_H27d).
% 0.93/1.15  (* end of lemma zenon_L869_ *)
% 0.93/1.15  assert (zenon_L870_ : ((ndr1_0)/\((c1_1 (a202))/\((c2_1 (a202))/\(c3_1 (a202))))) -> ((forall U : zenon_U, ((ndr1_0)->((c0_1 U)\/((c1_1 U)\/(c2_1 U)))))\/((forall Y : zenon_U, ((ndr1_0)->((c0_1 Y)\/((c2_1 Y)\/(~(c1_1 Y))))))\/(forall Z : zenon_U, ((ndr1_0)->((~(c0_1 Z))\/((~(c1_1 Z))\/(~(c3_1 Z)))))))) -> (~(c2_1 (a213))) -> (~(c1_1 (a213))) -> (~(c0_1 (a213))) -> (c1_1 (a204)) -> (~(c2_1 (a204))) -> (~(c0_1 (a204))) -> ((forall V : zenon_U, ((ndr1_0)->((c0_1 V)\/((c1_1 V)\/(~(c2_1 V))))))\/((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/(forall X10 : zenon_U, ((ndr1_0)->((c2_1 X10)\/((~(c0_1 X10))\/(~(c3_1 X10)))))))) -> (c3_1 (a205)) -> (c2_1 (a205)) -> (~(c1_1 (a205))) -> ((forall X9 : zenon_U, ((ndr1_0)->((c0_1 X9)\/((c3_1 X9)\/(~(c1_1 X9))))))\/((forall X34 : zenon_U, ((ndr1_0)->((c0_1 X34)\/((~(c1_1 X34))\/(~(c2_1 X34))))))\/(forall X43 : zenon_U, ((ndr1_0)->((~(c0_1 X43))\/((~(c2_1 X43))\/(~(c3_1 X43)))))))) -> (c1_1 (a203)) -> (~(c3_1 (a203))) -> (~(c0_1 (a203))) -> (~(c2_1 (a249))) -> (c0_1 (a249)) -> (c3_1 (a249)) -> False).
% 0.93/1.15  do 0 intro. intros zenon_H288 zenon_H2f2 zenon_Hb zenon_Ha zenon_H9 zenon_H1dd zenon_H1dc zenon_H1db zenon_H277 zenon_H1cc zenon_H1c5 zenon_H1c4 zenon_H270 zenon_H231 zenon_H230 zenon_H22f zenon_H13e zenon_H148 zenon_H140.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H288). zenon_intro zenon_H7. zenon_intro zenon_H28a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H28a). zenon_intro zenon_H27f. zenon_intro zenon_H28b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H28b). zenon_intro zenon_H280. zenon_intro zenon_H281.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H2f2); [ zenon_intro zenon_H8 | zenon_intro zenon_H2f3 ].
% 0.93/1.15  apply (zenon_L5_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H2f3); [ zenon_intro zenon_H1da | zenon_intro zenon_H117 ].
% 0.93/1.15  apply (zenon_L148_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H277); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H278 ].
% 0.93/1.15  apply (zenon_L638_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H278); [ zenon_intro zenon_H22e | zenon_intro zenon_H152 ].
% 0.93/1.15  apply (zenon_L192_); trivial.
% 0.93/1.15  apply (zenon_L89_); trivial.
% 0.93/1.15  (* end of lemma zenon_L870_ *)
% 0.93/1.15  apply NNPP. intro zenon_G.
% 0.93/1.15  apply zenon_G. zenon_intro zenon_H31c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H31c). zenon_intro zenon_H31e. zenon_intro zenon_H31d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H31d). zenon_intro zenon_H320. zenon_intro zenon_H31f.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H31f). zenon_intro zenon_H322. zenon_intro zenon_H321.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H321). zenon_intro zenon_H324. zenon_intro zenon_H323.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H323). zenon_intro zenon_H326. zenon_intro zenon_H325.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H325). zenon_intro zenon_H328. zenon_intro zenon_H327.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H327). zenon_intro zenon_H1d6. zenon_intro zenon_H329.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H329). zenon_intro zenon_H2c5. zenon_intro zenon_H32a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H32a). zenon_intro zenon_H30c. zenon_intro zenon_H32b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H32b). zenon_intro zenon_H1c1. zenon_intro zenon_H32c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H32c). zenon_intro zenon_H262. zenon_intro zenon_H32d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H32d). zenon_intro zenon_H19b. zenon_intro zenon_H32e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H32e). zenon_intro zenon_H19c. zenon_intro zenon_H32f.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H32f). zenon_intro zenon_H186. zenon_intro zenon_H330.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H330). zenon_intro zenon_H129. zenon_intro zenon_H331.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H331). zenon_intro zenon_Hff. zenon_intro zenon_H332.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H332). zenon_intro zenon_H102. zenon_intro zenon_H333.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H333). zenon_intro zenon_H101. zenon_intro zenon_H334.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H334). zenon_intro zenon_H4f. zenon_intro zenon_H335.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H335). zenon_intro zenon_H100. zenon_intro zenon_H336.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H336). zenon_intro zenon_H228. zenon_intro zenon_H337.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H337). zenon_intro zenon_Hdd. zenon_intro zenon_H338.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H338). zenon_intro zenon_Hfb. zenon_intro zenon_H339.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H339). zenon_intro zenon_H202. zenon_intro zenon_H33a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H33a). zenon_intro zenon_H162. zenon_intro zenon_H33b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H33b). zenon_intro zenon_H176. zenon_intro zenon_H33c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H33c). zenon_intro zenon_H69. zenon_intro zenon_H33d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H33d). zenon_intro zenon_Hd9. zenon_intro zenon_H33e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H33e). zenon_intro zenon_H28d. zenon_intro zenon_H33f.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H33f). zenon_intro zenon_H128. zenon_intro zenon_H340.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H340). zenon_intro zenon_H4c. zenon_intro zenon_H341.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H341). zenon_intro zenon_H2c3. zenon_intro zenon_H342.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H342). zenon_intro zenon_H2f2. zenon_intro zenon_H343.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H343). zenon_intro zenon_H345. zenon_intro zenon_H344.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H344). zenon_intro zenon_H16. zenon_intro zenon_H346.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H346). zenon_intro zenon_H28e. zenon_intro zenon_H347.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H347). zenon_intro zenon_H2f4. zenon_intro zenon_H348.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H348). zenon_intro zenon_H197. zenon_intro zenon_H349.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H349). zenon_intro zenon_H277. zenon_intro zenon_H34a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H34a). zenon_intro zenon_H1d2. zenon_intro zenon_H34b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H34b). zenon_intro zenon_H2d3. zenon_intro zenon_H34c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H34c). zenon_intro zenon_H2c6. zenon_intro zenon_H34d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H34d). zenon_intro zenon_H1e4. zenon_intro zenon_H34e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H34e). zenon_intro zenon_H23c. zenon_intro zenon_H34f.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H34f). zenon_intro zenon_H1b9. zenon_intro zenon_H350.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H350). zenon_intro zenon_H253. zenon_intro zenon_H351.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H351). zenon_intro zenon_H251. zenon_intro zenon_H352.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H352). zenon_intro zenon_H1fe. zenon_intro zenon_H353.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H353). zenon_intro zenon_H229. zenon_intro zenon_H354.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H354). zenon_intro zenon_H172. zenon_intro zenon_H355.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H355). zenon_intro zenon_Hf6. zenon_intro zenon_H356.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H356). zenon_intro zenon_H268. zenon_intro zenon_H357.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H357). zenon_intro zenon_H270. zenon_intro zenon_H358.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H358). zenon_intro zenon_H23a. zenon_intro zenon_H359.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H359). zenon_intro zenon_H23e. zenon_intro zenon_H35a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H35a). zenon_intro zenon_H289. zenon_intro zenon_H35b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H35b). zenon_intro zenon_Ha5. zenon_intro zenon_H35c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H35c). zenon_intro zenon_H296. zenon_intro zenon_H35d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H35d). zenon_intro zenon_H1a9. zenon_intro zenon_H35e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H35e). zenon_intro zenon_H360. zenon_intro zenon_H35f.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H35f). zenon_intro zenon_H2e1. zenon_intro zenon_H361.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H361). zenon_intro zenon_Hd2. zenon_intro zenon_H362.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H362). zenon_intro zenon_Heb. zenon_intro zenon_H363.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H363). zenon_intro zenon_H2eb. zenon_intro zenon_H364.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H364). zenon_intro zenon_H115. zenon_intro zenon_H365.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H365). zenon_intro zenon_Hab. zenon_intro zenon_H366.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H366). zenon_intro zenon_H2e. zenon_intro zenon_H367.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H367). zenon_intro zenon_H369. zenon_intro zenon_H368.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H368). zenon_intro zenon_H150. zenon_intro zenon_H36a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H36a). zenon_intro zenon_H29a. zenon_intro zenon_H36b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H36b). zenon_intro zenon_H209. zenon_intro zenon_H36c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H36c). zenon_intro zenon_H315. zenon_intro zenon_H36d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H36d). zenon_intro zenon_H275. zenon_intro zenon_H36e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H36e). zenon_intro zenon_Ha9. zenon_intro zenon_H36f.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H36f). zenon_intro zenon_Hd3. zenon_intro zenon_H370.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H370). zenon_intro zenon_H217. zenon_intro zenon_H371.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H371). zenon_intro zenon_H76. zenon_intro zenon_H372.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H372). zenon_intro zenon_H136. zenon_intro zenon_H373.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H373). zenon_intro zenon_H1e8. zenon_intro zenon_H374.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H374). zenon_intro zenon_H205. zenon_intro zenon_H375.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H375). zenon_intro zenon_H183. zenon_intro zenon_H376.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H376). zenon_intro zenon_H261. zenon_intro zenon_H377.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H377). zenon_intro zenon_H47. zenon_intro zenon_H378.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H378). zenon_intro zenon_H156. zenon_intro zenon_H379.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H379). zenon_intro zenon_H165. zenon_intro zenon_H37a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H37a). zenon_intro zenon_H2e3. zenon_intro zenon_H37b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H37b). zenon_intro zenon_H14d. zenon_intro zenon_H37c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H37c). zenon_intro zenon_H7c. zenon_intro zenon_H37d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H37d). zenon_intro zenon_H65. zenon_intro zenon_H37e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H37e). zenon_intro zenon_H380. zenon_intro zenon_H37f.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H37f). zenon_intro zenon_H124. zenon_intro zenon_H381.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H381). zenon_intro zenon_H383. zenon_intro zenon_H382.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H382). zenon_intro zenon_H385. zenon_intro zenon_H384.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H384). zenon_intro zenon_H2ed. zenon_intro zenon_H386.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H386). zenon_intro zenon_H5. zenon_intro zenon_H387.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H387). zenon_intro zenon_H54. zenon_intro zenon_H388.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H388). zenon_intro zenon_H1e. zenon_intro zenon_H389.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H389). zenon_intro zenon_He0. zenon_intro zenon_H13c.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H31e); [ zenon_intro zenon_H181 | zenon_intro zenon_H38a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H320); [ zenon_intro zenon_H12 | zenon_intro zenon_H38b ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H322); [ zenon_intro zenon_H14 | zenon_intro zenon_H38c ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H324); [ zenon_intro zenon_H44 | zenon_intro zenon_H38d ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H326); [ zenon_intro zenon_H13a | zenon_intro zenon_H38e ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H328); [ zenon_intro zenon_Hcf | zenon_intro zenon_H22b ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.15  apply (zenon_L3_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.15  apply (zenon_L8_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_L115_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L127_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.93/1.15  apply (zenon_L83_); trivial.
% 0.93/1.15  apply (zenon_L131_); trivial.
% 0.93/1.15  apply (zenon_L21_); trivial.
% 0.93/1.15  apply (zenon_L134_); trivial.
% 0.93/1.15  apply (zenon_L139_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22b). zenon_intro zenon_H7. zenon_intro zenon_H22c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22c). zenon_intro zenon_H1c5. zenon_intro zenon_H22d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22d). zenon_intro zenon_H1cc. zenon_intro zenon_H1c4.
% 0.93/1.15  apply (zenon_L145_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H38e). zenon_intro zenon_H7. zenon_intro zenon_H38f.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H38f). zenon_intro zenon_H1dd. zenon_intro zenon_H390.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H390). zenon_intro zenon_H1db. zenon_intro zenon_H1dc.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H328); [ zenon_intro zenon_Hcf | zenon_intro zenon_H22b ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.15  apply (zenon_L141_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_L157_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L127_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.15  apply (zenon_L124_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H128); [ zenon_intro zenon_H113 | zenon_intro zenon_H123 ].
% 0.93/1.15  apply (zenon_L68_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H123). zenon_intro zenon_H7. zenon_intro zenon_H125.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H125). zenon_intro zenon_H118. zenon_intro zenon_H126.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H126). zenon_intro zenon_H119. zenon_intro zenon_H11a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.15  apply (zenon_L130_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.15  apply (zenon_L148_); trivial.
% 0.93/1.15  apply (zenon_L66_); trivial.
% 0.93/1.15  apply (zenon_L187_); trivial.
% 0.93/1.15  apply (zenon_L190_); trivial.
% 0.93/1.15  apply (zenon_L191_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H38d). zenon_intro zenon_H7. zenon_intro zenon_H391.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H391). zenon_intro zenon_H231. zenon_intro zenon_H392.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H392). zenon_intro zenon_H22f. zenon_intro zenon_H230.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H326); [ zenon_intro zenon_H13a | zenon_intro zenon_H38e ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H328); [ zenon_intro zenon_Hcf | zenon_intro zenon_H22b ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_L221_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_L225_); trivial.
% 0.93/1.15  apply (zenon_L227_); trivial.
% 0.93/1.15  apply (zenon_L114_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22b). zenon_intro zenon_H7. zenon_intro zenon_H22c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22c). zenon_intro zenon_H1c5. zenon_intro zenon_H22d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22d). zenon_intro zenon_H1cc. zenon_intro zenon_H1c4.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L235_); trivial.
% 0.93/1.15  apply (zenon_L240_); trivial.
% 0.93/1.15  apply (zenon_L246_); trivial.
% 0.93/1.15  apply (zenon_L140_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_L249_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L268_); trivial.
% 0.93/1.15  apply (zenon_L271_); trivial.
% 0.93/1.15  apply (zenon_L272_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_L249_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.15  apply (zenon_L281_); trivial.
% 0.93/1.15  apply (zenon_L283_); trivial.
% 0.93/1.15  apply (zenon_L271_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L110_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.15  apply (zenon_L286_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.15  apply (zenon_L45_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.93/1.15  apply (zenon_L113_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.93/1.15  apply (zenon_L290_); trivial.
% 0.93/1.15  exact (zenon_H27c zenon_H27d).
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H288). zenon_intro zenon_H7. zenon_intro zenon_H28a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H28a). zenon_intro zenon_H27f. zenon_intro zenon_H28b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H28b). zenon_intro zenon_H280. zenon_intro zenon_H281.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H251); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H252 ].
% 0.93/1.15  apply (zenon_L290_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H252); [ zenon_intro zenon_H56 | zenon_intro zenon_H182 ].
% 0.93/1.15  apply (zenon_L296_); trivial.
% 0.93/1.15  exact (zenon_H181 zenon_H182).
% 0.93/1.15  apply (zenon_L298_); trivial.
% 0.93/1.15  apply (zenon_L79_); trivial.
% 0.93/1.15  apply (zenon_L271_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L110_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.15  apply (zenon_L303_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H202); [ zenon_intro zenon_H1e6 | zenon_intro zenon_H1fd ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H176); [ zenon_intro zenon_H163 | zenon_intro zenon_H171 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.15  apply (zenon_L45_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.93/1.15  apply (zenon_L113_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.93/1.15  apply (zenon_L304_); trivial.
% 0.93/1.15  exact (zenon_H27c zenon_H27d).
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H288). zenon_intro zenon_H7. zenon_intro zenon_H28a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H28a). zenon_intro zenon_H27f. zenon_intro zenon_H28b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H28b). zenon_intro zenon_H280. zenon_intro zenon_H281.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H275); [ zenon_intro zenon_H88 | zenon_intro zenon_H276 ].
% 0.93/1.15  apply (zenon_L103_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H276); [ zenon_intro zenon_H272 | zenon_intro zenon_H24e ].
% 0.93/1.15  apply (zenon_L305_); trivial.
% 0.93/1.15  apply (zenon_L309_); trivial.
% 0.93/1.15  apply (zenon_L311_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1fd). zenon_intro zenon_H7. zenon_intro zenon_H1ff.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1ff). zenon_intro zenon_H1f4. zenon_intro zenon_H200.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H200). zenon_intro zenon_H1f5. zenon_intro zenon_H1f6.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.15  apply (zenon_L276_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H288). zenon_intro zenon_H7. zenon_intro zenon_H28a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H28a). zenon_intro zenon_H27f. zenon_intro zenon_H28b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H28b). zenon_intro zenon_H280. zenon_intro zenon_H281.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H251); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H252 ].
% 0.93/1.15  apply (zenon_L154_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H252); [ zenon_intro zenon_H56 | zenon_intro zenon_H182 ].
% 0.93/1.15  apply (zenon_L308_); trivial.
% 0.93/1.15  exact (zenon_H181 zenon_H182).
% 0.93/1.15  apply (zenon_L313_); trivial.
% 0.93/1.15  apply (zenon_L79_); trivial.
% 0.93/1.15  apply (zenon_L271_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H38e). zenon_intro zenon_H7. zenon_intro zenon_H38f.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H38f). zenon_intro zenon_H1dd. zenon_intro zenon_H390.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H390). zenon_intro zenon_H1db. zenon_intro zenon_H1dc.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H328); [ zenon_intro zenon_Hcf | zenon_intro zenon_H22b ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_L315_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_L317_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.15  apply (zenon_L30_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L12_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hdd); [ zenon_intro zenon_Ha7 | zenon_intro zenon_Hd8 ].
% 0.93/1.15  apply (zenon_L44_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hd8). zenon_intro zenon_H7. zenon_intro zenon_Hda.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hda). zenon_intro zenon_Haf. zenon_intro zenon_Hdb.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hdb). zenon_intro zenon_Had. zenon_intro zenon_Hae.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.15  apply (zenon_L56_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4c); [ zenon_intro zenon_H2a | zenon_intro zenon_H46 ].
% 0.93/1.15  apply (zenon_L16_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H46). zenon_intro zenon_H7. zenon_intro zenon_H48.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H48). zenon_intro zenon_H3b. zenon_intro zenon_H49.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H49). zenon_intro zenon_H3c. zenon_intro zenon_H3d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H28e); [ zenon_intro zenon_H18c | zenon_intro zenon_H28f ].
% 0.93/1.15  apply (zenon_L113_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H28f); [ zenon_intro zenon_H1f3 | zenon_intro zenon_H27d ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H289); [ zenon_intro zenon_H22e | zenon_intro zenon_H28c ].
% 0.93/1.15  apply (zenon_L192_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H28c); [ zenon_intro zenon_H27e | zenon_intro zenon_H14f ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hd2); [ zenon_intro zenon_Hc0 | zenon_intro zenon_Hd6 ].
% 0.93/1.15  apply (zenon_L318_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hd6); [ zenon_intro zenon_Hac | zenon_intro zenon_Hd0 ].
% 0.93/1.15  apply (zenon_L46_); trivial.
% 0.93/1.15  exact (zenon_Hcf zenon_Hd0).
% 0.93/1.15  exact (zenon_H14e zenon_H14f).
% 0.93/1.15  exact (zenon_H27c zenon_H27d).
% 0.93/1.15  apply (zenon_L259_); trivial.
% 0.93/1.15  apply (zenon_L320_); trivial.
% 0.93/1.15  apply (zenon_L64_); trivial.
% 0.93/1.15  apply (zenon_L314_); trivial.
% 0.93/1.15  apply (zenon_L316_); trivial.
% 0.93/1.15  apply (zenon_L190_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_L321_); trivial.
% 0.93/1.15  apply (zenon_L322_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_L321_); trivial.
% 0.93/1.15  apply (zenon_L332_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22b). zenon_intro zenon_H7. zenon_intro zenon_H22c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22c). zenon_intro zenon_H1c5. zenon_intro zenon_H22d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22d). zenon_intro zenon_H1cc. zenon_intro zenon_H1c4.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_L315_); trivial.
% 0.93/1.15  apply (zenon_L333_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_L249_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L268_); trivial.
% 0.93/1.15  apply (zenon_L334_); trivial.
% 0.93/1.15  apply (zenon_L272_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_L249_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.15  apply (zenon_L339_); trivial.
% 0.93/1.15  apply (zenon_L283_); trivial.
% 0.93/1.15  apply (zenon_L314_); trivial.
% 0.93/1.15  apply (zenon_L190_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H38c). zenon_intro zenon_H7. zenon_intro zenon_H393.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H393). zenon_intro zenon_H2b1. zenon_intro zenon_H394.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H394). zenon_intro zenon_H2af. zenon_intro zenon_H2b0.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H324); [ zenon_intro zenon_H44 | zenon_intro zenon_H38d ].
% 0.93/1.15  apply (zenon_L346_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H38d). zenon_intro zenon_H7. zenon_intro zenon_H391.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H391). zenon_intro zenon_H231. zenon_intro zenon_H392.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H392). zenon_intro zenon_H22f. zenon_intro zenon_H230.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H326); [ zenon_intro zenon_H13a | zenon_intro zenon_H38e ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.15  apply (zenon_L344_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L348_); trivial.
% 0.93/1.15  apply (zenon_L350_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H38e). zenon_intro zenon_H7. zenon_intro zenon_H38f.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H38f). zenon_intro zenon_H1dd. zenon_intro zenon_H390.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H390). zenon_intro zenon_H1db. zenon_intro zenon_H1dc.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H328); [ zenon_intro zenon_Hcf | zenon_intro zenon_H22b ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.15  apply (zenon_L344_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_L353_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_L362_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L12_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.15  apply (zenon_L56_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hf8). zenon_intro zenon_H7. zenon_intro zenon_Hf9.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hf9). zenon_intro zenon_H81. zenon_intro zenon_Hfa.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfa). zenon_intro zenon_H7f. zenon_intro zenon_H80.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.15  apply (zenon_L365_); trivial.
% 0.93/1.15  apply (zenon_L259_); trivial.
% 0.93/1.15  apply (zenon_L357_); trivial.
% 0.93/1.15  apply (zenon_L64_); trivial.
% 0.93/1.15  apply (zenon_L314_); trivial.
% 0.93/1.15  apply (zenon_L361_); trivial.
% 0.93/1.15  apply (zenon_L190_); trivial.
% 0.93/1.15  apply (zenon_L374_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22b). zenon_intro zenon_H7. zenon_intro zenon_H22c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22c). zenon_intro zenon_H1c5. zenon_intro zenon_H22d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22d). zenon_intro zenon_H1cc. zenon_intro zenon_H1c4.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_L353_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L378_); trivial.
% 0.93/1.15  apply (zenon_L314_); trivial.
% 0.93/1.15  apply (zenon_L190_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L379_); trivial.
% 0.93/1.15  apply (zenon_L314_); trivial.
% 0.93/1.15  apply (zenon_L190_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_L368_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_L369_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_L380_); trivial.
% 0.93/1.15  apply (zenon_L190_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H38b). zenon_intro zenon_H7. zenon_intro zenon_H395.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H395). zenon_intro zenon_H2da. zenon_intro zenon_H396.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H396). zenon_intro zenon_H2d8. zenon_intro zenon_H2d9.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H324); [ zenon_intro zenon_H44 | zenon_intro zenon_H38d ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H326); [ zenon_intro zenon_H13a | zenon_intro zenon_H38e ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H328); [ zenon_intro zenon_Hcf | zenon_intro zenon_H22b ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H2c5); [ zenon_intro zenon_H2b8 | zenon_intro zenon_H2c7 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L387_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L407_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L12_); trivial.
% 0.93/1.15  apply (zenon_L414_); trivial.
% 0.93/1.15  apply (zenon_L421_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L387_); trivial.
% 0.93/1.15  apply (zenon_L424_); trivial.
% 0.93/1.15  apply (zenon_L426_); trivial.
% 0.93/1.15  apply (zenon_L441_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L448_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L407_); trivial.
% 0.93/1.15  apply (zenon_L456_); trivial.
% 0.93/1.15  apply (zenon_L421_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L457_); trivial.
% 0.93/1.15  apply (zenon_L458_); trivial.
% 0.93/1.15  apply (zenon_L424_); trivial.
% 0.93/1.15  apply (zenon_L426_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L436_); trivial.
% 0.93/1.15  apply (zenon_L447_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L110_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L431_); trivial.
% 0.93/1.15  apply (zenon_L138_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2c7). zenon_intro zenon_H7. zenon_intro zenon_H2c9.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2c9). zenon_intro zenon_H2bb. zenon_intro zenon_H2ca.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2ca). zenon_intro zenon_H2bc. zenon_intro zenon_H2ba.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.15  apply (zenon_L3_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L462_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L12_); trivial.
% 0.93/1.15  apply (zenon_L463_); trivial.
% 0.93/1.15  apply (zenon_L465_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L415_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L417_); trivial.
% 0.93/1.15  apply (zenon_L463_); trivial.
% 0.93/1.15  apply (zenon_L465_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L462_); trivial.
% 0.93/1.15  apply (zenon_L466_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L415_); trivial.
% 0.93/1.15  apply (zenon_L466_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L462_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L12_); trivial.
% 0.93/1.15  apply (zenon_L470_); trivial.
% 0.93/1.15  apply (zenon_L472_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L462_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L110_); trivial.
% 0.93/1.15  apply (zenon_L470_); trivial.
% 0.93/1.15  apply (zenon_L474_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.15  apply (zenon_L3_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L477_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L398_); trivial.
% 0.93/1.15  apply (zenon_L479_); trivial.
% 0.93/1.15  apply (zenon_L456_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L415_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L417_); trivial.
% 0.93/1.15  apply (zenon_L484_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L417_); trivial.
% 0.93/1.15  apply (zenon_L455_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L485_); trivial.
% 0.93/1.15  apply (zenon_L458_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L110_); trivial.
% 0.93/1.15  apply (zenon_L479_); trivial.
% 0.93/1.15  apply (zenon_L423_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L415_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L110_); trivial.
% 0.93/1.15  apply (zenon_L484_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L110_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.15  apply (zenon_L425_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.15  apply (zenon_L391_); trivial.
% 0.93/1.15  apply (zenon_L487_); trivial.
% 0.93/1.15  apply (zenon_L138_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L471_); trivial.
% 0.93/1.15  apply (zenon_L447_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L110_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L469_); trivial.
% 0.93/1.15  apply (zenon_L138_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L490_); trivial.
% 0.93/1.15  apply (zenon_L492_); trivial.
% 0.93/1.15  apply (zenon_L495_); trivial.
% 0.93/1.15  apply (zenon_L498_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_L499_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L110_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L489_); trivial.
% 0.93/1.15  apply (zenon_L138_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22b). zenon_intro zenon_H7. zenon_intro zenon_H22c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22c). zenon_intro zenon_H1c5. zenon_intro zenon_H22d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22d). zenon_intro zenon_H1cc. zenon_intro zenon_H1c4.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H2c5); [ zenon_intro zenon_H2b8 | zenon_intro zenon_H2c7 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L387_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L407_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L12_); trivial.
% 0.93/1.15  apply (zenon_L505_); trivial.
% 0.93/1.15  apply (zenon_L406_); trivial.
% 0.93/1.15  apply (zenon_L421_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L387_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L422_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_L506_); trivial.
% 0.93/1.15  apply (zenon_L406_); trivial.
% 0.93/1.15  apply (zenon_L426_); trivial.
% 0.93/1.15  apply (zenon_L441_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.15  apply (zenon_L3_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L457_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L444_); trivial.
% 0.93/1.15  apply (zenon_L453_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L407_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L454_); trivial.
% 0.93/1.15  apply (zenon_L505_); trivial.
% 0.93/1.15  apply (zenon_L511_); trivial.
% 0.93/1.15  apply (zenon_L421_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L457_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L110_); trivial.
% 0.93/1.15  apply (zenon_L512_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L422_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_L506_); trivial.
% 0.93/1.15  apply (zenon_L515_); trivial.
% 0.93/1.15  apply (zenon_L426_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L457_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L444_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.15  apply (zenon_L521_); trivial.
% 0.93/1.15  apply (zenon_L451_); trivial.
% 0.93/1.15  apply (zenon_L524_); trivial.
% 0.93/1.15  apply (zenon_L511_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L436_); trivial.
% 0.93/1.15  apply (zenon_L525_); trivial.
% 0.93/1.15  apply (zenon_L437_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L528_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_L529_); trivial.
% 0.93/1.15  apply (zenon_L515_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_L529_); trivial.
% 0.93/1.15  apply (zenon_L406_); trivial.
% 0.93/1.15  apply (zenon_L440_); trivial.
% 0.93/1.15  apply (zenon_L530_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2c7). zenon_intro zenon_H7. zenon_intro zenon_H2c9.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2c9). zenon_intro zenon_H2bb. zenon_intro zenon_H2ca.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2ca). zenon_intro zenon_H2bc. zenon_intro zenon_H2ba.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.15  apply (zenon_L3_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_L532_); trivial.
% 0.93/1.15  apply (zenon_L542_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_L532_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L415_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L543_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L110_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L540_); trivial.
% 0.93/1.15  apply (zenon_L545_); trivial.
% 0.93/1.15  apply (zenon_L541_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_L548_); trivial.
% 0.93/1.15  apply (zenon_L542_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_L548_); trivial.
% 0.93/1.15  apply (zenon_L474_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.15  apply (zenon_L3_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_L552_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_L532_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L110_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L555_); trivial.
% 0.93/1.15  apply (zenon_L313_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L476_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hdc). zenon_intro zenon_H7. zenon_intro zenon_Hde.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hde). zenon_intro zenon_Hb8. zenon_intro zenon_Hdf.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hdf). zenon_intro zenon_Hb9. zenon_intro zenon_Hb7.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hd9); [ zenon_intro zenon_H78 | zenon_intro zenon_Hd1 ].
% 0.93/1.15  apply (zenon_L392_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hd1). zenon_intro zenon_H7. zenon_intro zenon_Hd4.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hd4). zenon_intro zenon_H9c. zenon_intro zenon_Hd5.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hd5). zenon_intro zenon_H9d. zenon_intro zenon_H9e.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H2c3); [ zenon_intro zenon_H8 | zenon_intro zenon_H2c4 ].
% 0.93/1.15  apply (zenon_L5_); trivial.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H2c4); [ zenon_intro zenon_H1c2 | zenon_intro zenon_H24e ].
% 0.93/1.15  apply (zenon_L519_); trivial.
% 0.93/1.15  apply (zenon_L342_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L471_); trivial.
% 0.93/1.15  apply (zenon_L525_); trivial.
% 0.93/1.15  apply (zenon_L551_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L557_); trivial.
% 0.93/1.15  apply (zenon_L560_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L415_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L561_); trivial.
% 0.93/1.15  apply (zenon_L560_); trivial.
% 0.93/1.15  apply (zenon_L530_); trivial.
% 0.93/1.15  apply (zenon_L144_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H38e). zenon_intro zenon_H7. zenon_intro zenon_H38f.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H38f). zenon_intro zenon_H1dd. zenon_intro zenon_H390.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H390). zenon_intro zenon_H1db. zenon_intro zenon_H1dc.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H328); [ zenon_intro zenon_Hcf | zenon_intro zenon_H22b ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H2c5); [ zenon_intro zenon_H2b8 | zenon_intro zenon_H2c7 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L387_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L562_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_L570_); trivial.
% 0.93/1.15  apply (zenon_L406_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L415_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L562_); trivial.
% 0.93/1.15  apply (zenon_L420_); trivial.
% 0.93/1.15  apply (zenon_L190_); trivial.
% 0.93/1.15  apply (zenon_L573_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.15  apply (zenon_L3_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L448_); trivial.
% 0.93/1.15  apply (zenon_L581_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L415_); trivial.
% 0.93/1.15  apply (zenon_L581_); trivial.
% 0.93/1.15  apply (zenon_L190_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2c7). zenon_intro zenon_H7. zenon_intro zenon_H2c9.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2c9). zenon_intro zenon_H2bb. zenon_intro zenon_H2ca.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2ca). zenon_intro zenon_H2bc. zenon_intro zenon_H2ba.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.15  apply (zenon_L3_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L462_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L562_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_L570_); trivial.
% 0.93/1.15  apply (zenon_L465_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L415_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L562_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.15  apply (zenon_L382_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H220). zenon_intro zenon_H7. zenon_intro zenon_H221.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H221). zenon_intro zenon_H20c. zenon_intro zenon_H222.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H222). zenon_intro zenon_H219. zenon_intro zenon_H20b.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.15  apply (zenon_L418_); trivial.
% 0.93/1.15  apply (zenon_L487_); trivial.
% 0.93/1.15  apply (zenon_L568_); trivial.
% 0.93/1.15  apply (zenon_L190_); trivial.
% 0.93/1.15  apply (zenon_L584_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.15  apply (zenon_L3_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L477_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_L580_); trivial.
% 0.93/1.15  apply (zenon_L465_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L415_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_L580_); trivial.
% 0.93/1.15  apply (zenon_L589_); trivial.
% 0.93/1.15  apply (zenon_L591_); trivial.
% 0.93/1.15  apply (zenon_L190_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L490_); trivial.
% 0.93/1.15  apply (zenon_L592_); trivial.
% 0.93/1.15  apply (zenon_L495_); trivial.
% 0.93/1.15  apply (zenon_L190_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_L499_); trivial.
% 0.93/1.15  apply (zenon_L190_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22b). zenon_intro zenon_H7. zenon_intro zenon_H22c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22c). zenon_intro zenon_H1c5. zenon_intro zenon_H22d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22d). zenon_intro zenon_H1cc. zenon_intro zenon_H1c4.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H2c5); [ zenon_intro zenon_H2b8 | zenon_intro zenon_H2c7 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.15  apply (zenon_L3_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L387_); trivial.
% 0.93/1.15  apply (zenon_L597_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L415_); trivial.
% 0.93/1.15  apply (zenon_L597_); trivial.
% 0.93/1.15  apply (zenon_L190_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.15  apply (zenon_L3_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L457_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L590_); trivial.
% 0.93/1.15  apply (zenon_L512_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L599_); trivial.
% 0.93/1.15  apply (zenon_L591_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L415_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L599_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L590_); trivial.
% 0.93/1.15  apply (zenon_L600_); trivial.
% 0.93/1.15  apply (zenon_L406_); trivial.
% 0.93/1.15  apply (zenon_L190_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L528_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L590_); trivial.
% 0.93/1.15  apply (zenon_L524_); trivial.
% 0.93/1.15  apply (zenon_L511_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L598_); trivial.
% 0.93/1.15  apply (zenon_L602_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L590_); trivial.
% 0.93/1.15  apply (zenon_L602_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L598_); trivial.
% 0.93/1.15  apply (zenon_L439_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L590_); trivial.
% 0.93/1.15  apply (zenon_L439_); trivial.
% 0.93/1.15  apply (zenon_L190_); trivial.
% 0.93/1.15  apply (zenon_L530_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2c7). zenon_intro zenon_H7. zenon_intro zenon_H2c9.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2c9). zenon_intro zenon_H2bb. zenon_intro zenon_H2ca.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2ca). zenon_intro zenon_H2bc. zenon_intro zenon_H2ba.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.15  apply (zenon_L3_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_L532_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L415_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L540_); trivial.
% 0.93/1.15  apply (zenon_L568_); trivial.
% 0.93/1.15  apply (zenon_L541_); trivial.
% 0.93/1.15  apply (zenon_L190_); trivial.
% 0.93/1.15  apply (zenon_L584_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.15  apply (zenon_L3_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_L552_); trivial.
% 0.93/1.15  apply (zenon_L190_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L528_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L590_); trivial.
% 0.93/1.15  apply (zenon_L558_); trivial.
% 0.93/1.15  apply (zenon_L603_); trivial.
% 0.93/1.15  apply (zenon_L582_); trivial.
% 0.93/1.15  apply (zenon_L551_); trivial.
% 0.93/1.15  apply (zenon_L190_); trivial.
% 0.93/1.15  apply (zenon_L530_); trivial.
% 0.93/1.15  apply (zenon_L144_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H38d). zenon_intro zenon_H7. zenon_intro zenon_H391.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H391). zenon_intro zenon_H231. zenon_intro zenon_H392.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H392). zenon_intro zenon_H22f. zenon_intro zenon_H230.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H326); [ zenon_intro zenon_H13a | zenon_intro zenon_H38e ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H328); [ zenon_intro zenon_Hcf | zenon_intro zenon_H22b ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H2c5); [ zenon_intro zenon_H2b8 | zenon_intro zenon_H2c7 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_L605_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_L607_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L110_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L431_); trivial.
% 0.93/1.15  apply (zenon_L219_); trivial.
% 0.93/1.15  apply (zenon_L114_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2c7). zenon_intro zenon_H7. zenon_intro zenon_H2c9.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2c9). zenon_intro zenon_H2bb. zenon_intro zenon_H2ca.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2ca). zenon_intro zenon_H2bc. zenon_intro zenon_H2ba.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_L605_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L471_); trivial.
% 0.93/1.15  apply (zenon_L606_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L110_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L469_); trivial.
% 0.93/1.15  apply (zenon_L219_); trivial.
% 0.93/1.15  apply (zenon_L114_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_L605_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_L608_); trivial.
% 0.93/1.15  apply (zenon_L610_); trivial.
% 0.93/1.15  apply (zenon_L114_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22b). zenon_intro zenon_H7. zenon_intro zenon_H22c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22c). zenon_intro zenon_H1c5. zenon_intro zenon_H22d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H22d). zenon_intro zenon_H1cc. zenon_intro zenon_H1c4.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H2c5); [ zenon_intro zenon_H2b8 | zenon_intro zenon_H2c7 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_L605_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_L611_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_L613_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L432_); trivial.
% 0.93/1.15  apply (zenon_L496_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L432_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L12_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L431_); trivial.
% 0.93/1.15  apply (zenon_L617_); trivial.
% 0.93/1.15  apply (zenon_L440_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.15  apply (zenon_L3_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_L605_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_L624_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_L613_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L110_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L431_); trivial.
% 0.93/1.15  apply (zenon_L298_); trivial.
% 0.93/1.15  apply (zenon_L271_); trivial.
% 0.93/1.15  apply (zenon_L623_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2c7). zenon_intro zenon_H7. zenon_intro zenon_H2c9.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2c9). zenon_intro zenon_H2bb. zenon_intro zenon_H2ca.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2ca). zenon_intro zenon_H2bc. zenon_intro zenon_H2ba.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.15  apply (zenon_L3_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_L605_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_L626_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L415_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L543_); trivial.
% 0.93/1.15  apply (zenon_L628_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_L629_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L415_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.15  apply (zenon_L630_); trivial.
% 0.93/1.15  apply (zenon_L633_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_L613_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_L629_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_L415_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L110_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L540_); trivial.
% 0.93/1.15  apply (zenon_L640_); trivial.
% 0.93/1.15  apply (zenon_L541_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.15  apply (zenon_L3_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_L605_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_L624_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_L613_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L485_); trivial.
% 0.93/1.15  apply (zenon_L646_); trivial.
% 0.93/1.15  apply (zenon_L271_); trivial.
% 0.93/1.15  apply (zenon_L623_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_L605_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_L649_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_L650_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.15  apply (zenon_L651_); trivial.
% 0.93/1.15  apply (zenon_L496_); trivial.
% 0.93/1.15  apply (zenon_L652_); trivial.
% 0.93/1.15  apply (zenon_L654_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.15  apply (zenon_L605_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.15  apply (zenon_L649_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.15  apply (zenon_L650_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H185). zenon_intro zenon_H7. zenon_intro zenon_H187.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H187). zenon_intro zenon_H17a. zenon_intro zenon_H188.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H188). zenon_intro zenon_H178. zenon_intro zenon_H179.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.15  apply (zenon_L110_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.15  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.15  apply (zenon_L489_); trivial.
% 0.93/1.15  apply (zenon_L298_); trivial.
% 0.93/1.15  apply (zenon_L271_); trivial.
% 0.93/1.15  apply (zenon_L654_); trivial.
% 0.93/1.15  apply (zenon_and_s _ _ zenon_H38e). zenon_intro zenon_H7. zenon_intro zenon_H38f.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H38f). zenon_intro zenon_H1dd. zenon_intro zenon_H390.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H390). zenon_intro zenon_H1db. zenon_intro zenon_H1dc.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H328); [ zenon_intro zenon_Hcf | zenon_intro zenon_H22b ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H2c5); [ zenon_intro zenon_H2b8 | zenon_intro zenon_H2c7 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.16  apply (zenon_L655_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.16  apply (zenon_L607_); trivial.
% 0.93/1.16  apply (zenon_L190_); trivial.
% 0.93/1.16  apply (zenon_L656_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2c7). zenon_intro zenon_H7. zenon_intro zenon_H2c9.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2c9). zenon_intro zenon_H2bb. zenon_intro zenon_H2ca.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2ca). zenon_intro zenon_H2bc. zenon_intro zenon_H2ba.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.16  apply (zenon_L655_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.16  apply (zenon_L626_); trivial.
% 0.93/1.16  apply (zenon_L583_); trivial.
% 0.93/1.16  apply (zenon_L190_); trivial.
% 0.93/1.16  apply (zenon_L656_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.16  apply (zenon_L3_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.16  apply (zenon_L655_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.16  apply (zenon_L528_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.16  apply (zenon_L658_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.16  apply (zenon_L509_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.16  apply (zenon_L660_); trivial.
% 0.93/1.16  apply (zenon_L606_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.16  apply (zenon_L658_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.16  apply (zenon_L585_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.16  apply (zenon_L657_); trivial.
% 0.93/1.16  apply (zenon_L663_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.16  apply (zenon_L415_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.16  apply (zenon_L658_); trivial.
% 0.93/1.16  apply (zenon_L589_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.16  apply (zenon_L658_); trivial.
% 0.93/1.16  apply (zenon_L667_); trivial.
% 0.93/1.16  apply (zenon_L190_); trivial.
% 0.93/1.16  apply (zenon_L656_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.16  apply (zenon_L655_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.16  apply (zenon_L608_); trivial.
% 0.93/1.16  apply (zenon_L190_); trivial.
% 0.93/1.16  apply (zenon_L668_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H22b). zenon_intro zenon_H7. zenon_intro zenon_H22c.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H22c). zenon_intro zenon_H1c5. zenon_intro zenon_H22d.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H22d). zenon_intro zenon_H1cc. zenon_intro zenon_H1c4.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H2c5); [ zenon_intro zenon_H2b8 | zenon_intro zenon_H2c7 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.16  apply (zenon_L3_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.16  apply (zenon_L655_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.16  apply (zenon_L611_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.16  apply (zenon_L386_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.16  apply (zenon_L12_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.16  apply (zenon_L674_); trivial.
% 0.93/1.16  apply (zenon_L280_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.16  apply (zenon_L384_); trivial.
% 0.93/1.16  apply (zenon_L679_); trivial.
% 0.93/1.16  apply (zenon_L680_); trivial.
% 0.93/1.16  apply (zenon_L681_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.16  apply (zenon_L415_); trivial.
% 0.93/1.16  apply (zenon_L681_); trivial.
% 0.93/1.16  apply (zenon_L190_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.16  apply (zenon_L3_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.16  apply (zenon_L682_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.16  apply (zenon_L622_); trivial.
% 0.93/1.16  apply (zenon_L334_); trivial.
% 0.93/1.16  apply (zenon_L683_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.16  apply (zenon_L444_); trivial.
% 0.93/1.16  apply (zenon_L280_); trivial.
% 0.93/1.16  apply (zenon_L334_); trivial.
% 0.93/1.16  apply (zenon_L683_); trivial.
% 0.93/1.16  apply (zenon_L190_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2c7). zenon_intro zenon_H7. zenon_intro zenon_H2c9.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2c9). zenon_intro zenon_H2bb. zenon_intro zenon_H2ca.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2ca). zenon_intro zenon_H2bc. zenon_intro zenon_H2ba.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.16  apply (zenon_L3_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.16  apply (zenon_L687_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.16  apply (zenon_L12_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H4b). zenon_intro zenon_H7. zenon_intro zenon_H4d.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H4d). zenon_intro zenon_H21. zenon_intro zenon_H4e.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H4e). zenon_intro zenon_H22. zenon_intro zenon_H23.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.16  apply (zenon_L460_); trivial.
% 0.93/1.16  apply (zenon_L688_); trivial.
% 0.93/1.16  apply (zenon_L686_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.16  apply (zenon_L415_); trivial.
% 0.93/1.16  apply (zenon_L686_); trivial.
% 0.93/1.16  apply (zenon_L190_); trivial.
% 0.93/1.16  apply (zenon_L692_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.16  apply (zenon_L3_); trivial.
% 0.93/1.16  apply (zenon_L705_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.16  apply (zenon_L655_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.16  apply (zenon_L706_); trivial.
% 0.93/1.16  apply (zenon_L668_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H38a). zenon_intro zenon_H7. zenon_intro zenon_H397.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H397). zenon_intro zenon_H2fb. zenon_intro zenon_H398.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H398). zenon_intro zenon_H2f9. zenon_intro zenon_H2fa.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H320); [ zenon_intro zenon_H12 | zenon_intro zenon_H38b ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H322); [ zenon_intro zenon_H14 | zenon_intro zenon_H38c ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H324); [ zenon_intro zenon_H44 | zenon_intro zenon_H38d ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H326); [ zenon_intro zenon_H13a | zenon_intro zenon_H38e ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.16  apply (zenon_L141_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.16  apply (zenon_L713_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.16  apply (zenon_L715_); trivial.
% 0.93/1.16  apply (zenon_L186_); trivial.
% 0.93/1.16  apply (zenon_L721_); trivial.
% 0.93/1.16  apply (zenon_L21_); trivial.
% 0.93/1.16  apply (zenon_L723_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H38e). zenon_intro zenon_H7. zenon_intro zenon_H38f.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H38f). zenon_intro zenon_H1dd. zenon_intro zenon_H390.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H390). zenon_intro zenon_H1db. zenon_intro zenon_H1dc.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H328); [ zenon_intro zenon_Hcf | zenon_intro zenon_H22b ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.16  apply (zenon_L141_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H102); [ zenon_intro zenon_H2c | zenon_intro zenon_H103 ].
% 0.93/1.16  apply (zenon_L22_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H103). zenon_intro zenon_H7. zenon_intro zenon_H104.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H104). zenon_intro zenon_H6d. zenon_intro zenon_H105.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H105). zenon_intro zenon_H6b. zenon_intro zenon_H6c.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.16  apply (zenon_L12_); trivial.
% 0.93/1.16  apply (zenon_L712_); trivial.
% 0.93/1.16  apply (zenon_L727_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.16  apply (zenon_L729_); trivial.
% 0.93/1.16  apply (zenon_L730_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H22b). zenon_intro zenon_H7. zenon_intro zenon_H22c.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H22c). zenon_intro zenon_H1c5. zenon_intro zenon_H22d.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H22d). zenon_intro zenon_H1cc. zenon_intro zenon_H1c4.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.16  apply (zenon_L737_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.16  apply (zenon_L733_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.16  apply (zenon_L734_); trivial.
% 0.93/1.16  apply (zenon_L728_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1e4); [ zenon_intro zenon_H1b0 | zenon_intro zenon_H1e5 ].
% 0.93/1.16  apply (zenon_L707_); trivial.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1e5); [ zenon_intro zenon_H1da | zenon_intro zenon_H109 ].
% 0.93/1.16  apply (zenon_L148_); trivial.
% 0.93/1.16  apply (zenon_L739_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H38d). zenon_intro zenon_H7. zenon_intro zenon_H391.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H391). zenon_intro zenon_H231. zenon_intro zenon_H392.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H392). zenon_intro zenon_H22f. zenon_intro zenon_H230.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H326); [ zenon_intro zenon_H13a | zenon_intro zenon_H38e ].
% 0.93/1.16  apply (zenon_L740_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H38e). zenon_intro zenon_H7. zenon_intro zenon_H38f.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H38f). zenon_intro zenon_H1dd. zenon_intro zenon_H390.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H390). zenon_intro zenon_H1db. zenon_intro zenon_H1dc.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H328); [ zenon_intro zenon_Hcf | zenon_intro zenon_H22b ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.16  apply (zenon_L141_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.16  apply (zenon_L756_); trivial.
% 0.93/1.16  apply (zenon_L764_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H22b). zenon_intro zenon_H7. zenon_intro zenon_H22c.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H22c). zenon_intro zenon_H1c5. zenon_intro zenon_H22d.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H22d). zenon_intro zenon_H1cc. zenon_intro zenon_H1c4.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.16  apply (zenon_L737_); trivial.
% 0.93/1.16  apply (zenon_L766_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H38c). zenon_intro zenon_H7. zenon_intro zenon_H393.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H393). zenon_intro zenon_H2b1. zenon_intro zenon_H394.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H394). zenon_intro zenon_H2af. zenon_intro zenon_H2b0.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H324); [ zenon_intro zenon_H44 | zenon_intro zenon_H38d ].
% 0.93/1.16  apply (zenon_L346_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H38d). zenon_intro zenon_H7. zenon_intro zenon_H391.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H391). zenon_intro zenon_H231. zenon_intro zenon_H392.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H392). zenon_intro zenon_H22f. zenon_intro zenon_H230.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H326); [ zenon_intro zenon_H13a | zenon_intro zenon_H38e ].
% 0.93/1.16  apply (zenon_L740_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H38e). zenon_intro zenon_H7. zenon_intro zenon_H38f.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H38f). zenon_intro zenon_H1dd. zenon_intro zenon_H390.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H390). zenon_intro zenon_H1db. zenon_intro zenon_H1dc.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H328); [ zenon_intro zenon_Hcf | zenon_intro zenon_H22b ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.16  apply (zenon_L785_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.16  apply (zenon_L756_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.16  apply (zenon_L367_); trivial.
% 0.93/1.16  apply (zenon_L728_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.16  apply (zenon_L369_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H19c); [ zenon_intro zenon_H14e | zenon_intro zenon_H185 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.16  apply (zenon_L787_); trivial.
% 0.93/1.16  apply (zenon_L728_); trivial.
% 0.93/1.16  apply (zenon_L790_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H22b). zenon_intro zenon_H7. zenon_intro zenon_H22c.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H22c). zenon_intro zenon_H1c5. zenon_intro zenon_H22d.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H22d). zenon_intro zenon_H1cc. zenon_intro zenon_H1c4.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.16  apply (zenon_L797_); trivial.
% 0.93/1.16  apply (zenon_L766_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H38b). zenon_intro zenon_H7. zenon_intro zenon_H395.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H395). zenon_intro zenon_H2da. zenon_intro zenon_H396.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H396). zenon_intro zenon_H2d8. zenon_intro zenon_H2d9.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H324); [ zenon_intro zenon_H44 | zenon_intro zenon_H38d ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H326); [ zenon_intro zenon_H13a | zenon_intro zenon_H38e ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H2c5); [ zenon_intro zenon_H2b8 | zenon_intro zenon_H2c7 ].
% 0.93/1.16  apply (zenon_L804_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2c7). zenon_intro zenon_H7. zenon_intro zenon_H2c9.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2c9). zenon_intro zenon_H2bb. zenon_intro zenon_H2ca.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2ca). zenon_intro zenon_H2bc. zenon_intro zenon_H2ba.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.16  apply (zenon_L3_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.16  apply (zenon_L461_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.16  apply (zenon_L460_); trivial.
% 0.93/1.16  apply (zenon_L721_); trivial.
% 0.93/1.16  apply (zenon_L807_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.16  apply (zenon_L3_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.16  apply (zenon_L485_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_Hfc). zenon_intro zenon_H7. zenon_intro zenon_Hfd.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_Hfd). zenon_intro zenon_Hee. zenon_intro zenon_Hfe.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_Hfe). zenon_intro zenon_Hef. zenon_intro zenon_Hed.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.16  apply (zenon_L476_); trivial.
% 0.93/1.16  apply (zenon_L721_); trivial.
% 0.93/1.16  apply (zenon_L807_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.16  apply (zenon_L415_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H12a). zenon_intro zenon_H7. zenon_intro zenon_H12b.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H12b). zenon_intro zenon_H10b. zenon_intro zenon_H12c.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H12c). zenon_intro zenon_H10c. zenon_intro zenon_H10a.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.16  apply (zenon_L806_); trivial.
% 0.93/1.16  apply (zenon_L814_); trivial.
% 0.93/1.16  apply (zenon_L815_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H38e). zenon_intro zenon_H7. zenon_intro zenon_H38f.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H38f). zenon_intro zenon_H1dd. zenon_intro zenon_H390.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H390). zenon_intro zenon_H1db. zenon_intro zenon_H1dc.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H2c5); [ zenon_intro zenon_H2b8 | zenon_intro zenon_H2c7 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.16  apply (zenon_L386_); trivial.
% 0.93/1.16  apply (zenon_L754_); trivial.
% 0.93/1.16  apply (zenon_L730_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.16  apply (zenon_L457_); trivial.
% 0.93/1.16  apply (zenon_L726_); trivial.
% 0.93/1.16  apply (zenon_L730_); trivial.
% 0.93/1.16  apply (zenon_L736_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2c7). zenon_intro zenon_H7. zenon_intro zenon_H2c9.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2c9). zenon_intro zenon_H2bb. zenon_intro zenon_H2ca.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2ca). zenon_intro zenon_H2bc. zenon_intro zenon_H2ba.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.16  apply (zenon_L3_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.16  apply (zenon_L461_); trivial.
% 0.93/1.16  apply (zenon_L726_); trivial.
% 0.93/1.16  apply (zenon_L730_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.16  apply (zenon_L3_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_Hff); [ zenon_intro zenon_H50 | zenon_intro zenon_Hfc ].
% 0.93/1.16  apply (zenon_L485_); trivial.
% 0.93/1.16  apply (zenon_L726_); trivial.
% 0.93/1.16  apply (zenon_L730_); trivial.
% 0.93/1.16  apply (zenon_L736_); trivial.
% 0.93/1.16  apply (zenon_L818_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H38d). zenon_intro zenon_H7. zenon_intro zenon_H391.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H391). zenon_intro zenon_H231. zenon_intro zenon_H392.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H392). zenon_intro zenon_H22f. zenon_intro zenon_H230.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H326); [ zenon_intro zenon_H13a | zenon_intro zenon_H38e ].
% 0.93/1.16  apply (zenon_L740_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H38e). zenon_intro zenon_H7. zenon_intro zenon_H38f.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H38f). zenon_intro zenon_H1dd. zenon_intro zenon_H390.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H390). zenon_intro zenon_H1db. zenon_intro zenon_H1dc.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H328); [ zenon_intro zenon_Hcf | zenon_intro zenon_H22b ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.16  apply (zenon_L822_); trivial.
% 0.93/1.16  apply (zenon_L835_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.16  apply (zenon_L841_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.16  apply (zenon_L849_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.16  apply (zenon_L828_); trivial.
% 0.93/1.16  apply (zenon_L728_); trivial.
% 0.93/1.16  apply (zenon_L730_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H189). zenon_intro zenon_H7. zenon_intro zenon_H18a.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H18a). zenon_intro zenon_H12e. zenon_intro zenon_H18b.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H18b). zenon_intro zenon_H12f. zenon_intro zenon_H12d.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.16  apply (zenon_L853_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H228); [ zenon_intro zenon_H207 | zenon_intro zenon_H220 ].
% 0.93/1.16  apply (zenon_L382_); trivial.
% 0.93/1.16  apply (zenon_L854_); trivial.
% 0.93/1.16  apply (zenon_L728_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H186); [ zenon_intro zenon_H1a | zenon_intro zenon_H189 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H129); [ zenon_intro zenon_H60 | zenon_intro zenon_H12a ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H101); [ zenon_intro zenon_H62 | zenon_intro zenon_H106 ].
% 0.93/1.16  apply (zenon_L844_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H106). zenon_intro zenon_H7. zenon_intro zenon_H107.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H107). zenon_intro zenon_H8b. zenon_intro zenon_H108.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H108). zenon_intro zenon_H89. zenon_intro zenon_H8a.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H100); [ zenon_intro zenon_H7a | zenon_intro zenon_Hdc ].
% 0.93/1.16  apply (zenon_L858_); trivial.
% 0.93/1.16  apply (zenon_L728_); trivial.
% 0.93/1.16  apply (zenon_L730_); trivial.
% 0.93/1.16  apply (zenon_L865_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H22b). zenon_intro zenon_H7. zenon_intro zenon_H22c.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H22c). zenon_intro zenon_H1c5. zenon_intro zenon_H22d.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H22d). zenon_intro zenon_H1cc. zenon_intro zenon_H1c4.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1d6); [ zenon_intro zenon_H1 | zenon_intro zenon_H1d1 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.16  apply (zenon_L733_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d5). zenon_intro zenon_H7. zenon_intro zenon_H2d6.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d6). zenon_intro zenon_H19e. zenon_intro zenon_H2d7.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H2d7). zenon_intro zenon_H19f. zenon_intro zenon_H1ab.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H1c1); [ zenon_intro zenon_H3 | zenon_intro zenon_H1be ].
% 0.93/1.16  apply (zenon_L3_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1be). zenon_intro zenon_H7. zenon_intro zenon_H1bf.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1bf). zenon_intro zenon_H9. zenon_intro zenon_H1c0.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1c0). zenon_intro zenon_Ha. zenon_intro zenon_Hb.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H262); [ zenon_intro zenon_H238 | zenon_intro zenon_H263 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H4f); [ zenon_intro zenon_H1c | zenon_intro zenon_H4b ].
% 0.93/1.16  apply (zenon_L866_); trivial.
% 0.93/1.16  apply (zenon_L195_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H263). zenon_intro zenon_H7. zenon_intro zenon_H264.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H264). zenon_intro zenon_H242. zenon_intro zenon_H265.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H265). zenon_intro zenon_H240. zenon_intro zenon_H241.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H19b); [ zenon_intro zenon_H121 | zenon_intro zenon_H196 ].
% 0.93/1.16  apply (zenon_L793_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H196). zenon_intro zenon_H7. zenon_intro zenon_H198.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H198). zenon_intro zenon_H18d. zenon_intro zenon_H199.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H199). zenon_intro zenon_H18e. zenon_intro zenon_H18f.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_Hfb); [ zenon_intro zenon_H74 | zenon_intro zenon_Hf8 ].
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H162); [ zenon_intro zenon_H138 | zenon_intro zenon_H15f ].
% 0.93/1.16  apply (zenon_L159_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H15f). zenon_intro zenon_H7. zenon_intro zenon_H160.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H160). zenon_intro zenon_H148. zenon_intro zenon_H161.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H161). zenon_intro zenon_H140. zenon_intro zenon_H13e.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H28d); [ zenon_intro zenon_H27c | zenon_intro zenon_H288 ].
% 0.93/1.16  apply (zenon_L869_); trivial.
% 0.93/1.16  apply (zenon_L870_); trivial.
% 0.93/1.16  apply (zenon_L732_); trivial.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d1). zenon_intro zenon_H7. zenon_intro zenon_H1d3.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d3). zenon_intro zenon_H32. zenon_intro zenon_H1d4.
% 0.93/1.16  apply (zenon_and_s _ _ zenon_H1d4). zenon_intro zenon_H33. zenon_intro zenon_H31.
% 0.93/1.16  apply (zenon_or_s _ _ zenon_H30c); [ zenon_intro zenon_H18 | zenon_intro zenon_H2d5 ].
% 0.93/1.16  apply (zenon_L841_); trivial.
% 0.93/1.16  apply (zenon_L765_); trivial.
% 0.93/1.16  Qed.
% 0.93/1.16  % SZS output end Proof
% 0.93/1.16  (* END-PROOF *)
% 0.93/1.16  nodes searched: 41192
% 0.93/1.16  max branch formulas: 466
% 0.93/1.16  proof nodes created: 6544
% 0.93/1.16  formulas created: 45209
% 0.93/1.16  
%------------------------------------------------------------------------------