TSTP Solution File: SYN417+1 by ePrincess---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ePrincess---1.0
% Problem  : SYN417+1 : TPTP v8.1.0. Released v2.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : ePrincess-casc -timeout=%d %s

% Computer : n024.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Thu Jul 21 05:02:15 EDT 2022

% Result   : Theorem 2.00s 1.20s
% Output   : Proof 2.81s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : SYN417+1 : TPTP v8.1.0. Released v2.0.0.
% 0.03/0.13  % Command  : ePrincess-casc -timeout=%d %s
% 0.12/0.34  % Computer : n024.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 600
% 0.12/0.34  % DateTime : Tue Jul 12 02:44:28 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.54/0.58          ____       _                          
% 0.54/0.58    ___  / __ \_____(_)___  ________  __________
% 0.54/0.58   / _ \/ /_/ / ___/ / __ \/ ___/ _ \/ ___/ ___/
% 0.54/0.58  /  __/ ____/ /  / / / / / /__/  __(__  |__  ) 
% 0.54/0.58  \___/_/   /_/  /_/_/ /_/\___/\___/____/____/  
% 0.54/0.58  
% 0.54/0.58  A Theorem Prover for First-Order Logic
% 0.54/0.59  (ePrincess v.1.0)
% 0.54/0.59  
% 0.54/0.59  (c) Philipp Rümmer, 2009-2015
% 0.54/0.59  (c) Peter Backeman, 2014-2015
% 0.54/0.59  (contributions by Angelo Brillout, Peter Baumgartner)
% 0.54/0.59  Free software under GNU Lesser General Public License (LGPL).
% 0.54/0.59  Bug reports to peter@backeman.se
% 0.54/0.59  
% 0.54/0.59  For more information, visit http://user.uu.se/~petba168/breu/
% 0.54/0.59  
% 0.54/0.59  Loading /export/starexec/sandbox2/benchmark/theBenchmark.p ...
% 0.70/0.64  Prover 0: Options:  -triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 1.17/0.87  Prover 0: Preprocessing ...
% 1.32/0.96  Prover 0: Warning: ignoring some quantifiers
% 1.39/0.98  Prover 0: Constructing countermodel ...
% 1.69/1.08  Prover 0: gave up
% 1.69/1.08  Prover 1: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple +reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -resolutionMethod=normal +ignoreQuantifiers -generateTriggers=all
% 1.69/1.10  Prover 1: Preprocessing ...
% 1.69/1.14  Prover 1: Constructing countermodel ...
% 2.00/1.19  Prover 1: proved (112ms)
% 2.00/1.20  
% 2.00/1.20  No countermodel exists, formula is valid
% 2.00/1.20  % SZS status Theorem for theBenchmark
% 2.00/1.20  
% 2.00/1.20  Generating proof ... found it (size 49)
% 2.48/1.41  
% 2.48/1.41  % SZS output start Proof for theBenchmark
% 2.48/1.41  Assumed formulas after preprocessing and simplification: 
% 2.48/1.41  | (0)  ? [v0] :  ? [v1] :  ? [v2] : ( ! [v3] :  ! [v4] :  ! [v5] : (v4 = v3 |  ~ (g(v5) = v4) |  ~ (g(v5) = v3)) &  ! [v3] :  ! [v4] :  ! [v5] : (v4 = v3 |  ~ (f(v5) = v4) |  ~ (f(v5) = v3)) & ((v2 = v0 & g(v1) = v0 & f(v0) = v1 &  ! [v3] :  ! [v4] : (v3 = v0 |  ~ (f(v3) = v4) |  ? [v5] : ( ~ (v5 = v3) & g(v4) = v5)) &  ! [v3] :  ! [v4] : ( ~ (g(v3) = v4) |  ? [v5] :  ? [v6] :  ? [v7] : ((v7 = v5 &  ~ (v5 = v3) & g(v5) = v6 & f(v6) = v5) | ( ~ (v5 = v3) & f(v4) = v5)))) | (v2 = v0 & g(v0) = v1 & f(v1) = v0 &  ! [v3] :  ! [v4] : (v3 = v0 |  ~ (g(v3) = v4) |  ? [v5] : ( ~ (v5 = v3) & f(v4) = v5)) &  ! [v3] :  ! [v4] : ( ~ (f(v3) = v4) |  ? [v5] :  ? [v6] :  ? [v7] : ((v7 = v5 &  ~ (v5 = v3) & g(v6) = v5 & f(v5) = v6) | ( ~ (v5 = v3) & g(v4) = v5))))))
% 2.48/1.43  | Instantiating (0) with all_0_0_0, all_0_1_1, all_0_2_2 yields:
% 2.48/1.43  | (1)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (g(v2) = v1) |  ~ (g(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (f(v2) = v1) |  ~ (f(v2) = v0)) & ((all_0_0_0 = all_0_2_2 & g(all_0_1_1) = all_0_2_2 & f(all_0_2_2) = all_0_1_1 &  ! [v0] :  ! [v1] : (v0 = all_0_2_2 |  ~ (f(v0) = v1) |  ? [v2] : ( ~ (v2 = v0) & g(v1) = v2)) &  ! [v0] :  ! [v1] : ( ~ (g(v0) = v1) |  ? [v2] :  ? [v3] :  ? [v4] : ((v4 = v2 &  ~ (v2 = v0) & g(v2) = v3 & f(v3) = v2) | ( ~ (v2 = v0) & f(v1) = v2)))) | (all_0_0_0 = all_0_2_2 & g(all_0_2_2) = all_0_1_1 & f(all_0_1_1) = all_0_2_2 &  ! [v0] :  ! [v1] : (v0 = all_0_2_2 |  ~ (g(v0) = v1) |  ? [v2] : ( ~ (v2 = v0) & f(v1) = v2)) &  ! [v0] :  ! [v1] : ( ~ (f(v0) = v1) |  ? [v2] :  ? [v3] :  ? [v4] : ((v4 = v2 &  ~ (v2 = v0) & g(v3) = v2 & f(v2) = v3) | ( ~ (v2 = v0) & g(v1) = v2)))))
% 2.48/1.44  |
% 2.48/1.44  | Applying alpha-rule on (1) yields:
% 2.48/1.44  | (2)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (g(v2) = v1) |  ~ (g(v2) = v0))
% 2.48/1.44  | (3)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (f(v2) = v1) |  ~ (f(v2) = v0))
% 2.48/1.44  | (4) (all_0_0_0 = all_0_2_2 & g(all_0_1_1) = all_0_2_2 & f(all_0_2_2) = all_0_1_1 &  ! [v0] :  ! [v1] : (v0 = all_0_2_2 |  ~ (f(v0) = v1) |  ? [v2] : ( ~ (v2 = v0) & g(v1) = v2)) &  ! [v0] :  ! [v1] : ( ~ (g(v0) = v1) |  ? [v2] :  ? [v3] :  ? [v4] : ((v4 = v2 &  ~ (v2 = v0) & g(v2) = v3 & f(v3) = v2) | ( ~ (v2 = v0) & f(v1) = v2)))) | (all_0_0_0 = all_0_2_2 & g(all_0_2_2) = all_0_1_1 & f(all_0_1_1) = all_0_2_2 &  ! [v0] :  ! [v1] : (v0 = all_0_2_2 |  ~ (g(v0) = v1) |  ? [v2] : ( ~ (v2 = v0) & f(v1) = v2)) &  ! [v0] :  ! [v1] : ( ~ (f(v0) = v1) |  ? [v2] :  ? [v3] :  ? [v4] : ((v4 = v2 &  ~ (v2 = v0) & g(v3) = v2 & f(v2) = v3) | ( ~ (v2 = v0) & g(v1) = v2))))
% 2.48/1.44  |
% 2.48/1.44  +-Applying beta-rule and splitting (4), into two cases.
% 2.48/1.44  |-Branch one:
% 2.48/1.44  | (5) all_0_0_0 = all_0_2_2 & g(all_0_1_1) = all_0_2_2 & f(all_0_2_2) = all_0_1_1 &  ! [v0] :  ! [v1] : (v0 = all_0_2_2 |  ~ (f(v0) = v1) |  ? [v2] : ( ~ (v2 = v0) & g(v1) = v2)) &  ! [v0] :  ! [v1] : ( ~ (g(v0) = v1) |  ? [v2] :  ? [v3] :  ? [v4] : ((v4 = v2 &  ~ (v2 = v0) & g(v2) = v3 & f(v3) = v2) | ( ~ (v2 = v0) & f(v1) = v2)))
% 2.81/1.45  |
% 2.81/1.45  	| Applying alpha-rule on (5) yields:
% 2.81/1.45  	| (6) f(all_0_2_2) = all_0_1_1
% 2.81/1.45  	| (7)  ! [v0] :  ! [v1] : ( ~ (g(v0) = v1) |  ? [v2] :  ? [v3] :  ? [v4] : ((v4 = v2 &  ~ (v2 = v0) & g(v2) = v3 & f(v3) = v2) | ( ~ (v2 = v0) & f(v1) = v2)))
% 2.81/1.45  	| (8) g(all_0_1_1) = all_0_2_2
% 2.81/1.45  	| (9) all_0_0_0 = all_0_2_2
% 2.81/1.45  	| (10)  ! [v0] :  ! [v1] : (v0 = all_0_2_2 |  ~ (f(v0) = v1) |  ? [v2] : ( ~ (v2 = v0) & g(v1) = v2))
% 2.81/1.45  	|
% 2.81/1.45  	| Instantiating formula (7) with all_0_2_2, all_0_1_1 and discharging atoms g(all_0_1_1) = all_0_2_2, yields:
% 2.81/1.45  	| (11)  ? [v0] :  ? [v1] :  ? [v2] : ((v2 = v0 &  ~ (v0 = all_0_1_1) & g(v0) = v1 & f(v1) = v0) | ( ~ (v0 = all_0_1_1) & f(all_0_2_2) = v0))
% 2.81/1.45  	|
% 2.81/1.45  	| Instantiating (11) with all_12_0_3, all_12_1_4, all_12_2_5 yields:
% 2.81/1.45  	| (12) (all_12_0_3 = all_12_2_5 &  ~ (all_12_2_5 = all_0_1_1) & g(all_12_2_5) = all_12_1_4 & f(all_12_1_4) = all_12_2_5) | ( ~ (all_12_2_5 = all_0_1_1) & f(all_0_2_2) = all_12_2_5)
% 2.81/1.45  	|
% 2.81/1.45  	+-Applying beta-rule and splitting (12), into two cases.
% 2.81/1.45  	|-Branch one:
% 2.81/1.45  	| (13) all_12_0_3 = all_12_2_5 &  ~ (all_12_2_5 = all_0_1_1) & g(all_12_2_5) = all_12_1_4 & f(all_12_1_4) = all_12_2_5
% 2.81/1.45  	|
% 2.81/1.45  		| Applying alpha-rule on (13) yields:
% 2.81/1.45  		| (14) all_12_0_3 = all_12_2_5
% 2.81/1.45  		| (15)  ~ (all_12_2_5 = all_0_1_1)
% 2.81/1.45  		| (16) g(all_12_2_5) = all_12_1_4
% 2.81/1.45  		| (17) f(all_12_1_4) = all_12_2_5
% 2.81/1.45  		|
% 2.81/1.45  		| Instantiating formula (3) with all_0_2_2, all_12_2_5, all_0_1_1 and discharging atoms f(all_0_2_2) = all_0_1_1, yields:
% 2.81/1.45  		| (18) all_12_2_5 = all_0_1_1 |  ~ (f(all_0_2_2) = all_12_2_5)
% 2.81/1.45  		|
% 2.81/1.45  		| Instantiating formula (10) with all_12_2_5, all_12_1_4 and discharging atoms f(all_12_1_4) = all_12_2_5, yields:
% 2.81/1.45  		| (19) all_12_1_4 = all_0_2_2 |  ? [v0] : ( ~ (v0 = all_12_1_4) & g(all_12_2_5) = v0)
% 2.81/1.45  		|
% 2.81/1.45  		+-Applying beta-rule and splitting (18), into two cases.
% 2.81/1.45  		|-Branch one:
% 2.81/1.45  		| (20)  ~ (f(all_0_2_2) = all_12_2_5)
% 2.81/1.45  		|
% 2.81/1.45  			+-Applying beta-rule and splitting (19), into two cases.
% 2.81/1.45  			|-Branch one:
% 2.81/1.45  			| (21) all_12_1_4 = all_0_2_2
% 2.81/1.45  			|
% 2.81/1.45  				| From (21) and (17) follows:
% 2.81/1.45  				| (22) f(all_0_2_2) = all_12_2_5
% 2.81/1.45  				|
% 2.81/1.45  				| Using (22) and (20) yields:
% 2.81/1.45  				| (23) $false
% 2.81/1.45  				|
% 2.81/1.45  				|-The branch is then unsatisfiable
% 2.81/1.45  			|-Branch two:
% 2.81/1.45  			| (24)  ~ (all_12_1_4 = all_0_2_2)
% 2.81/1.45  			| (25)  ? [v0] : ( ~ (v0 = all_12_1_4) & g(all_12_2_5) = v0)
% 2.81/1.46  			|
% 2.81/1.46  				| Instantiating (25) with all_27_0_9 yields:
% 2.81/1.46  				| (26)  ~ (all_27_0_9 = all_12_1_4) & g(all_12_2_5) = all_27_0_9
% 2.81/1.46  				|
% 2.81/1.46  				| Applying alpha-rule on (26) yields:
% 2.81/1.46  				| (27)  ~ (all_27_0_9 = all_12_1_4)
% 2.81/1.46  				| (28) g(all_12_2_5) = all_27_0_9
% 2.81/1.46  				|
% 2.81/1.46  				| Instantiating formula (2) with all_12_2_5, all_27_0_9, all_12_1_4 and discharging atoms g(all_12_2_5) = all_27_0_9, g(all_12_2_5) = all_12_1_4, yields:
% 2.81/1.46  				| (29) all_27_0_9 = all_12_1_4
% 2.81/1.46  				|
% 2.81/1.46  				| Equations (29) can reduce 27 to:
% 2.81/1.46  				| (30) $false
% 2.81/1.46  				|
% 2.81/1.46  				|-The branch is then unsatisfiable
% 2.81/1.46  		|-Branch two:
% 2.81/1.46  		| (22) f(all_0_2_2) = all_12_2_5
% 2.81/1.46  		| (32) all_12_2_5 = all_0_1_1
% 2.81/1.46  		|
% 2.81/1.46  			| Equations (32) can reduce 15 to:
% 2.81/1.46  			| (30) $false
% 2.81/1.46  			|
% 2.81/1.46  			|-The branch is then unsatisfiable
% 2.81/1.46  	|-Branch two:
% 2.81/1.46  	| (34)  ~ (all_12_2_5 = all_0_1_1) & f(all_0_2_2) = all_12_2_5
% 2.81/1.46  	|
% 2.81/1.46  		| Applying alpha-rule on (34) yields:
% 2.81/1.46  		| (15)  ~ (all_12_2_5 = all_0_1_1)
% 2.81/1.46  		| (22) f(all_0_2_2) = all_12_2_5
% 2.81/1.46  		|
% 2.81/1.46  		| Instantiating formula (3) with all_0_2_2, all_12_2_5, all_0_1_1 and discharging atoms f(all_0_2_2) = all_12_2_5, f(all_0_2_2) = all_0_1_1, yields:
% 2.81/1.46  		| (32) all_12_2_5 = all_0_1_1
% 2.81/1.46  		|
% 2.81/1.46  		| Equations (32) can reduce 15 to:
% 2.81/1.46  		| (30) $false
% 2.81/1.46  		|
% 2.81/1.46  		|-The branch is then unsatisfiable
% 2.81/1.46  |-Branch two:
% 2.81/1.46  | (39) all_0_0_0 = all_0_2_2 & g(all_0_2_2) = all_0_1_1 & f(all_0_1_1) = all_0_2_2 &  ! [v0] :  ! [v1] : (v0 = all_0_2_2 |  ~ (g(v0) = v1) |  ? [v2] : ( ~ (v2 = v0) & f(v1) = v2)) &  ! [v0] :  ! [v1] : ( ~ (f(v0) = v1) |  ? [v2] :  ? [v3] :  ? [v4] : ((v4 = v2 &  ~ (v2 = v0) & g(v3) = v2 & f(v2) = v3) | ( ~ (v2 = v0) & g(v1) = v2)))
% 2.81/1.46  |
% 2.81/1.46  	| Applying alpha-rule on (39) yields:
% 2.81/1.46  	| (40)  ! [v0] :  ! [v1] : ( ~ (f(v0) = v1) |  ? [v2] :  ? [v3] :  ? [v4] : ((v4 = v2 &  ~ (v2 = v0) & g(v3) = v2 & f(v2) = v3) | ( ~ (v2 = v0) & g(v1) = v2)))
% 2.81/1.46  	| (9) all_0_0_0 = all_0_2_2
% 2.81/1.46  	| (42) g(all_0_2_2) = all_0_1_1
% 2.81/1.46  	| (43)  ! [v0] :  ! [v1] : (v0 = all_0_2_2 |  ~ (g(v0) = v1) |  ? [v2] : ( ~ (v2 = v0) & f(v1) = v2))
% 2.81/1.46  	| (44) f(all_0_1_1) = all_0_2_2
% 2.81/1.46  	|
% 2.81/1.46  	| Instantiating formula (40) with all_0_2_2, all_0_1_1 and discharging atoms f(all_0_1_1) = all_0_2_2, yields:
% 2.81/1.46  	| (45)  ? [v0] :  ? [v1] :  ? [v2] : ((v2 = v0 &  ~ (v0 = all_0_1_1) & g(v1) = v0 & f(v0) = v1) | ( ~ (v0 = all_0_1_1) & g(all_0_2_2) = v0))
% 2.81/1.46  	|
% 2.81/1.46  	| Instantiating (45) with all_12_0_10, all_12_1_11, all_12_2_12 yields:
% 2.81/1.46  	| (46) (all_12_0_10 = all_12_2_12 &  ~ (all_12_2_12 = all_0_1_1) & g(all_12_1_11) = all_12_2_12 & f(all_12_2_12) = all_12_1_11) | ( ~ (all_12_2_12 = all_0_1_1) & g(all_0_2_2) = all_12_2_12)
% 2.81/1.46  	|
% 2.81/1.46  	+-Applying beta-rule and splitting (46), into two cases.
% 2.81/1.46  	|-Branch one:
% 2.81/1.46  	| (47) all_12_0_10 = all_12_2_12 &  ~ (all_12_2_12 = all_0_1_1) & g(all_12_1_11) = all_12_2_12 & f(all_12_2_12) = all_12_1_11
% 2.81/1.46  	|
% 2.81/1.46  		| Applying alpha-rule on (47) yields:
% 2.81/1.46  		| (48) all_12_0_10 = all_12_2_12
% 2.81/1.46  		| (49)  ~ (all_12_2_12 = all_0_1_1)
% 2.81/1.46  		| (50) g(all_12_1_11) = all_12_2_12
% 2.81/1.46  		| (51) f(all_12_2_12) = all_12_1_11
% 2.81/1.46  		|
% 2.81/1.46  		| Instantiating formula (2) with all_0_2_2, all_12_2_12, all_0_1_1 and discharging atoms g(all_0_2_2) = all_0_1_1, yields:
% 2.81/1.46  		| (52) all_12_2_12 = all_0_1_1 |  ~ (g(all_0_2_2) = all_12_2_12)
% 2.81/1.46  		|
% 2.81/1.46  		| Instantiating formula (43) with all_12_2_12, all_12_1_11 and discharging atoms g(all_12_1_11) = all_12_2_12, yields:
% 2.81/1.46  		| (53) all_12_1_11 = all_0_2_2 |  ? [v0] : ( ~ (v0 = all_12_1_11) & f(all_12_2_12) = v0)
% 2.81/1.46  		|
% 2.81/1.46  		+-Applying beta-rule and splitting (52), into two cases.
% 2.81/1.46  		|-Branch one:
% 2.81/1.46  		| (54)  ~ (g(all_0_2_2) = all_12_2_12)
% 2.81/1.46  		|
% 2.81/1.46  			+-Applying beta-rule and splitting (53), into two cases.
% 2.81/1.46  			|-Branch one:
% 2.81/1.46  			| (55) all_12_1_11 = all_0_2_2
% 2.81/1.47  			|
% 2.81/1.47  				| From (55) and (50) follows:
% 2.81/1.47  				| (56) g(all_0_2_2) = all_12_2_12
% 2.81/1.47  				|
% 2.81/1.47  				| Using (56) and (54) yields:
% 2.81/1.47  				| (23) $false
% 2.81/1.47  				|
% 2.81/1.47  				|-The branch is then unsatisfiable
% 2.81/1.47  			|-Branch two:
% 2.81/1.47  			| (58)  ~ (all_12_1_11 = all_0_2_2)
% 2.81/1.47  			| (59)  ? [v0] : ( ~ (v0 = all_12_1_11) & f(all_12_2_12) = v0)
% 2.81/1.47  			|
% 2.81/1.47  				| Instantiating (59) with all_27_0_16 yields:
% 2.81/1.47  				| (60)  ~ (all_27_0_16 = all_12_1_11) & f(all_12_2_12) = all_27_0_16
% 2.81/1.47  				|
% 2.81/1.47  				| Applying alpha-rule on (60) yields:
% 2.81/1.47  				| (61)  ~ (all_27_0_16 = all_12_1_11)
% 2.81/1.47  				| (62) f(all_12_2_12) = all_27_0_16
% 2.81/1.47  				|
% 2.81/1.47  				| Instantiating formula (3) with all_12_2_12, all_27_0_16, all_12_1_11 and discharging atoms f(all_12_2_12) = all_27_0_16, f(all_12_2_12) = all_12_1_11, yields:
% 2.81/1.47  				| (63) all_27_0_16 = all_12_1_11
% 2.81/1.47  				|
% 2.81/1.47  				| Equations (63) can reduce 61 to:
% 2.81/1.47  				| (30) $false
% 2.81/1.47  				|
% 2.81/1.47  				|-The branch is then unsatisfiable
% 2.81/1.47  		|-Branch two:
% 2.81/1.47  		| (56) g(all_0_2_2) = all_12_2_12
% 2.81/1.47  		| (66) all_12_2_12 = all_0_1_1
% 2.81/1.47  		|
% 2.81/1.47  			| Equations (66) can reduce 49 to:
% 2.81/1.47  			| (30) $false
% 2.81/1.47  			|
% 2.81/1.47  			|-The branch is then unsatisfiable
% 2.81/1.47  	|-Branch two:
% 2.81/1.47  	| (68)  ~ (all_12_2_12 = all_0_1_1) & g(all_0_2_2) = all_12_2_12
% 2.81/1.47  	|
% 2.81/1.47  		| Applying alpha-rule on (68) yields:
% 2.81/1.47  		| (49)  ~ (all_12_2_12 = all_0_1_1)
% 2.81/1.47  		| (56) g(all_0_2_2) = all_12_2_12
% 2.81/1.47  		|
% 2.81/1.47  		| Instantiating formula (2) with all_0_2_2, all_12_2_12, all_0_1_1 and discharging atoms g(all_0_2_2) = all_12_2_12, g(all_0_2_2) = all_0_1_1, yields:
% 2.81/1.47  		| (66) all_12_2_12 = all_0_1_1
% 2.81/1.47  		|
% 2.81/1.47  		| Equations (66) can reduce 49 to:
% 2.81/1.47  		| (30) $false
% 2.81/1.47  		|
% 2.81/1.47  		|-The branch is then unsatisfiable
% 2.81/1.47  % SZS output end Proof for theBenchmark
% 2.81/1.47  
% 2.81/1.47  873ms
%------------------------------------------------------------------------------