TSTP Solution File: SYN360^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SYN360^5 : TPTP v6.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n100.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:38:16 EDT 2014

% Result   : Theorem 0.49s
% Output   : Proof 0.49s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SYN360^5 : TPTP v6.1.0. Released v4.0.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n100.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 09:26:26 CDT 2014
% % CPUTime: 0.49 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x25d20e0>, <kernel.DependentProduct object at 0x2578cf8>) of role type named cQ
% Using role type
% Declaring cQ:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x25cb830>, <kernel.DependentProduct object at 0x2578e60>) of role type named c_less_
% Using role type
% Declaring c_less_:(fofType->(fofType->Prop))
% FOF formula (((and (forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))) (forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy)))))->(forall (Xy:fofType) (Xx:fofType), ((cQ Xx) Xy))) of role conjecture named cX2111A_pme
% Conjecture to prove = (((and (forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))) (forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy)))))->(forall (Xy:fofType) (Xx:fofType), ((cQ Xx) Xy))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(((and (forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))) (forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy)))))->(forall (Xy:fofType) (Xx:fofType), ((cQ Xx) Xy)))']
% Parameter fofType:Type.
% Parameter cQ:(fofType->(fofType->Prop)).
% Parameter c_less_:(fofType->(fofType->Prop)).
% Trying to prove (((and (forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))) (forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy)))))->(forall (Xy:fofType) (Xx:fofType), ((cQ Xx) Xy)))
% Found x10:=(x1 Xx):((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx) Xy0)))
% Found (x1 Xx) as proof of ((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx) Xy0)))
% Found (x1 Xx) as proof of ((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx) Xy0)))
% Found (x000 (x1 Xx)) as proof of ((cQ Xx) Xy)
% Found ((fun (x2:((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx) Xy0))))=> ((x00 x2) Xy)) (x1 Xx)) as proof of ((cQ Xx) Xy)
% Found ((fun (x2:((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx) Xy0))))=> (((x0 Xx) x2) Xy)) (x1 Xx)) as proof of ((cQ Xx) Xy)
% Found (fun (x1:(forall (Xz:fofType), ((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xz) Xy0)))))=> ((fun (x2:((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx) Xy0))))=> (((x0 Xx) x2) Xy)) (x1 Xx))) as proof of ((cQ Xx) Xy)
% Found (fun (x0:(forall (Xx0:fofType), (((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx0) Xy0)))->(forall (Xy0:fofType), ((cQ Xx0) Xy0))))) (x1:(forall (Xz:fofType), ((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xz) Xy0)))))=> ((fun (x2:((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx) Xy0))))=> (((x0 Xx) x2) Xy)) (x1 Xx))) as proof of ((forall (Xz:fofType), ((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xz) Xy0))))->((cQ Xx) Xy))
% Found (fun (x0:(forall (Xx0:fofType), (((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx0) Xy0)))->(forall (Xy0:fofType), ((cQ Xx0) Xy0))))) (x1:(forall (Xz:fofType), ((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xz) Xy0)))))=> ((fun (x2:((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx) Xy0))))=> (((x0 Xx) x2) Xy)) (x1 Xx))) as proof of ((forall (Xx0:fofType), (((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx0) Xy0)))->(forall (Xy0:fofType), ((cQ Xx0) Xy0))))->((forall (Xz:fofType), ((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xz) Xy0))))->((cQ Xx) Xy)))
% Found (and_rect00 (fun (x0:(forall (Xx0:fofType), (((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx0) Xy0)))->(forall (Xy0:fofType), ((cQ Xx0) Xy0))))) (x1:(forall (Xz:fofType), ((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xz) Xy0)))))=> ((fun (x2:((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx) Xy0))))=> (((x0 Xx) x2) Xy)) (x1 Xx)))) as proof of ((cQ Xx) Xy)
% Found ((and_rect0 ((cQ Xx) Xy)) (fun (x0:(forall (Xx0:fofType), (((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx0) Xy0)))->(forall (Xy0:fofType), ((cQ Xx0) Xy0))))) (x1:(forall (Xz:fofType), ((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xz) Xy0)))))=> ((fun (x2:((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx) Xy0))))=> (((x0 Xx) x2) Xy)) (x1 Xx)))) as proof of ((cQ Xx) Xy)
% Found (((fun (P:Type) (x0:((forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))->((forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy))))->P)))=> (((((and_rect (forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))) (forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy))))) P) x0) x)) ((cQ Xx) Xy)) (fun (x0:(forall (Xx0:fofType), (((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx0) Xy0)))->(forall (Xy0:fofType), ((cQ Xx0) Xy0))))) (x1:(forall (Xz:fofType), ((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xz) Xy0)))))=> ((fun (x2:((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx) Xy0))))=> (((x0 Xx) x2) Xy)) (x1 Xx)))) as proof of ((cQ Xx) Xy)
% Found (fun (Xx:fofType)=> (((fun (P:Type) (x0:((forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))->((forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy))))->P)))=> (((((and_rect (forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))) (forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy))))) P) x0) x)) ((cQ Xx) Xy)) (fun (x0:(forall (Xx0:fofType), (((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx0) Xy0)))->(forall (Xy0:fofType), ((cQ Xx0) Xy0))))) (x1:(forall (Xz:fofType), ((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xz) Xy0)))))=> ((fun (x2:((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx) Xy0))))=> (((x0 Xx) x2) Xy)) (x1 Xx))))) as proof of ((cQ Xx) Xy)
% Found (fun (Xy:fofType) (Xx:fofType)=> (((fun (P:Type) (x0:((forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))->((forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy))))->P)))=> (((((and_rect (forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))) (forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy))))) P) x0) x)) ((cQ Xx) Xy)) (fun (x0:(forall (Xx0:fofType), (((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx0) Xy0)))->(forall (Xy0:fofType), ((cQ Xx0) Xy0))))) (x1:(forall (Xz:fofType), ((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xz) Xy0)))))=> ((fun (x2:((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx) Xy0))))=> (((x0 Xx) x2) Xy)) (x1 Xx))))) as proof of (forall (Xx:fofType), ((cQ Xx) Xy))
% Found (fun (x:((and (forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))) (forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy)))))) (Xy:fofType) (Xx:fofType)=> (((fun (P:Type) (x0:((forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))->((forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy))))->P)))=> (((((and_rect (forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))) (forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy))))) P) x0) x)) ((cQ Xx) Xy)) (fun (x0:(forall (Xx0:fofType), (((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx0) Xy0)))->(forall (Xy0:fofType), ((cQ Xx0) Xy0))))) (x1:(forall (Xz:fofType), ((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xz) Xy0)))))=> ((fun (x2:((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx) Xy0))))=> (((x0 Xx) x2) Xy)) (x1 Xx))))) as proof of (forall (Xy:fofType) (Xx:fofType), ((cQ Xx) Xy))
% Found (fun (x:((and (forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))) (forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy)))))) (Xy:fofType) (Xx:fofType)=> (((fun (P:Type) (x0:((forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))->((forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy))))->P)))=> (((((and_rect (forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))) (forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy))))) P) x0) x)) ((cQ Xx) Xy)) (fun (x0:(forall (Xx0:fofType), (((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx0) Xy0)))->(forall (Xy0:fofType), ((cQ Xx0) Xy0))))) (x1:(forall (Xz:fofType), ((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xz) Xy0)))))=> ((fun (x2:((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx) Xy0))))=> (((x0 Xx) x2) Xy)) (x1 Xx))))) as proof of (((and (forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))) (forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy)))))->(forall (Xy:fofType) (Xx:fofType), ((cQ Xx) Xy)))
% Got proof (fun (x:((and (forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))) (forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy)))))) (Xy:fofType) (Xx:fofType)=> (((fun (P:Type) (x0:((forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))->((forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy))))->P)))=> (((((and_rect (forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))) (forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy))))) P) x0) x)) ((cQ Xx) Xy)) (fun (x0:(forall (Xx0:fofType), (((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx0) Xy0)))->(forall (Xy0:fofType), ((cQ Xx0) Xy0))))) (x1:(forall (Xz:fofType), ((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xz) Xy0)))))=> ((fun (x2:((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx) Xy0))))=> (((x0 Xx) x2) Xy)) (x1 Xx)))))
% Time elapsed = 0.170357s
% node=16 cost=169.000000 depth=14
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:((and (forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))) (forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy)))))) (Xy:fofType) (Xx:fofType)=> (((fun (P:Type) (x0:((forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))->((forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy))))->P)))=> (((((and_rect (forall (Xx:fofType), (((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xx) Xy)))->(forall (Xy:fofType), ((cQ Xx) Xy))))) (forall (Xz:fofType), ((ex fofType) (fun (Xy:fofType)=> ((c_less_ Xz) Xy))))) P) x0) x)) ((cQ Xx) Xy)) (fun (x0:(forall (Xx0:fofType), (((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx0) Xy0)))->(forall (Xy0:fofType), ((cQ Xx0) Xy0))))) (x1:(forall (Xz:fofType), ((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xz) Xy0)))))=> ((fun (x2:((ex fofType) (fun (Xy0:fofType)=> ((c_less_ Xx) Xy0))))=> (((x0 Xx) x2) Xy)) (x1 Xx)))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------