TSTP Solution File: SYN085-1.010 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : SYN085-1.010 : TPTP v8.1.2. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Fri Sep  1 03:33:06 EDT 2023

% Result   : Unsatisfiable 0.21s 0.40s
% Output   : Proof 0.21s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.14  % Problem  : SYN085-1.010 : TPTP v8.1.2. Released v1.0.0.
% 0.00/0.15  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.14/0.36  % Computer : n020.cluster.edu
% 0.14/0.36  % Model    : x86_64 x86_64
% 0.14/0.36  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.36  % Memory   : 8042.1875MB
% 0.14/0.36  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.36  % CPULimit : 300
% 0.14/0.36  % WCLimit  : 300
% 0.14/0.36  % DateTime : Sat Aug 26 20:33:00 EDT 2023
% 0.14/0.36  % CPUTime  : 
% 0.21/0.40  Command-line arguments: --lhs-weight 1 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 0.21/0.40  
% 0.21/0.40  % SZS status Unsatisfiable
% 0.21/0.40  
% 0.21/0.40  % SZS output start Proof
% 0.21/0.40  Take the following subset of the input axioms:
% 0.21/0.40    fof(s1_1, axiom, p_0 | (~p_1 | (~p_2 | (~p_3 | (~p_4 | (~p_5 | (~p_6 | (~p_7 | (~p_8 | (~p_9 | ~p_10)))))))))).
% 0.21/0.40    fof(s1_10, axiom, p_9).
% 0.21/0.40    fof(s1_11, axiom, p_10).
% 0.21/0.40    fof(s1_2, axiom, p_1).
% 0.21/0.40    fof(s1_3, axiom, p_2).
% 0.21/0.40    fof(s1_4, axiom, p_3).
% 0.21/0.40    fof(s1_5, axiom, p_4).
% 0.21/0.40    fof(s1_6, axiom, p_5).
% 0.21/0.40    fof(s1_7, axiom, p_6).
% 0.21/0.40    fof(s1_8, axiom, p_7).
% 0.21/0.40    fof(s1_9, axiom, p_8).
% 0.21/0.40    fof(s1_goal_1, negated_conjecture, ~p_0).
% 0.21/0.40  
% 0.21/0.40  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.21/0.40  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.21/0.40  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.21/0.40    fresh(y, y, x1...xn) = u
% 0.21/0.40    C => fresh(s, t, x1...xn) = v
% 0.21/0.40  where fresh is a fresh function symbol and x1..xn are the free
% 0.21/0.40  variables of u and v.
% 0.21/0.40  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.21/0.40  input problem has no model of domain size 1).
% 0.21/0.40  
% 0.21/0.40  The encoding turns the above axioms into the following unit equations and goals:
% 0.21/0.40  
% 0.21/0.40  Axiom 1 (s1_2): p_1 = true.
% 0.21/0.40  Axiom 2 (s1_3): p_2 = true.
% 0.21/0.40  Axiom 3 (s1_4): p_3 = true.
% 0.21/0.40  Axiom 4 (s1_5): p_4 = true.
% 0.21/0.40  Axiom 5 (s1_6): p_5 = true.
% 0.21/0.40  Axiom 6 (s1_7): p_6 = true.
% 0.21/0.40  Axiom 7 (s1_8): p_7 = true.
% 0.21/0.40  Axiom 8 (s1_9): p_8 = true.
% 0.21/0.40  Axiom 9 (s1_10): p_9 = true.
% 0.21/0.40  Axiom 10 (s1_11): p_10 = true.
% 0.21/0.40  Axiom 11 (s1_1): fresh10(X, X) = true.
% 0.21/0.40  Axiom 12 (s1_1): fresh9(X, X) = fresh10(p_1, true).
% 0.21/0.40  Axiom 13 (s1_1): fresh8(X, X) = p_0.
% 0.21/0.40  Axiom 14 (s1_1): fresh7(X, X) = fresh8(p_2, true).
% 0.21/0.40  Axiom 15 (s1_1): fresh6(X, X) = fresh9(p_3, true).
% 0.21/0.40  Axiom 16 (s1_1): fresh5(X, X) = fresh7(p_4, true).
% 0.21/0.40  Axiom 17 (s1_1): fresh4(X, X) = fresh6(p_5, true).
% 0.21/0.40  Axiom 18 (s1_1): fresh3(X, X) = fresh5(p_6, true).
% 0.21/0.40  Axiom 19 (s1_1): fresh(X, X) = fresh3(p_8, true).
% 0.21/0.40  Axiom 20 (s1_1): fresh2(X, X) = fresh4(p_7, true).
% 0.21/0.40  Axiom 21 (s1_1): fresh(p_10, true) = fresh2(p_9, true).
% 0.21/0.40  
% 0.21/0.40  Goal 1 (s1_goal_1): p_0 = true.
% 0.21/0.40  Proof:
% 0.21/0.40    p_0
% 0.21/0.40  = { by axiom 13 (s1_1) R->L }
% 0.21/0.40    fresh8(true, true)
% 0.21/0.41  = { by axiom 2 (s1_3) R->L }
% 0.21/0.41    fresh8(p_2, true)
% 0.21/0.41  = { by axiom 14 (s1_1) R->L }
% 0.21/0.41    fresh7(true, true)
% 0.21/0.41  = { by axiom 4 (s1_5) R->L }
% 0.21/0.41    fresh7(p_4, true)
% 0.21/0.41  = { by axiom 16 (s1_1) R->L }
% 0.21/0.41    fresh5(true, true)
% 0.21/0.41  = { by axiom 6 (s1_7) R->L }
% 0.21/0.41    fresh5(p_6, true)
% 0.21/0.41  = { by axiom 18 (s1_1) R->L }
% 0.21/0.41    fresh3(true, true)
% 0.21/0.41  = { by axiom 8 (s1_9) R->L }
% 0.21/0.41    fresh3(p_8, true)
% 0.21/0.41  = { by axiom 19 (s1_1) R->L }
% 0.21/0.41    fresh(true, true)
% 0.21/0.41  = { by axiom 10 (s1_11) R->L }
% 0.21/0.41    fresh(p_10, true)
% 0.21/0.41  = { by axiom 21 (s1_1) }
% 0.21/0.41    fresh2(p_9, true)
% 0.21/0.41  = { by axiom 9 (s1_10) }
% 0.21/0.41    fresh2(true, true)
% 0.21/0.41  = { by axiom 20 (s1_1) }
% 0.21/0.41    fresh4(p_7, true)
% 0.21/0.41  = { by axiom 7 (s1_8) }
% 0.21/0.41    fresh4(true, true)
% 0.21/0.41  = { by axiom 17 (s1_1) }
% 0.21/0.41    fresh6(p_5, true)
% 0.21/0.41  = { by axiom 5 (s1_6) }
% 0.21/0.41    fresh6(true, true)
% 0.21/0.41  = { by axiom 15 (s1_1) }
% 0.21/0.41    fresh9(p_3, true)
% 0.21/0.41  = { by axiom 3 (s1_4) }
% 0.21/0.41    fresh9(true, true)
% 0.21/0.41  = { by axiom 12 (s1_1) }
% 0.21/0.41    fresh10(p_1, true)
% 0.21/0.41  = { by axiom 1 (s1_2) }
% 0.21/0.41    fresh10(true, true)
% 0.21/0.41  = { by axiom 11 (s1_1) }
% 0.21/0.41    true
% 0.21/0.41  % SZS output end Proof
% 0.21/0.41  
% 0.21/0.41  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------