TSTP Solution File: SYN049+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : SYN049+1 : TPTP v8.1.2. Released v2.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n028.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Fri Sep  1 03:32:52 EDT 2023

% Result   : Theorem 0.13s 0.37s
% Output   : Proof 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : SYN049+1 : TPTP v8.1.2. Released v2.0.0.
% 0.11/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n028.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Sat Aug 26 21:33:53 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 0.13/0.37  Command-line arguments: --lhs-weight 1 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 0.13/0.37  
% 0.13/0.37  % SZS status Theorem
% 0.20/0.37  
% 0.20/0.37  % SZS output start Proof
% 0.20/0.37  Take the following subset of the input axioms:
% 0.20/0.38    fof(pel19, conjecture, ?[X]: ![Y, Z]: ((big_p(Y) => big_q(Z)) => (big_p(X) => big_q(X)))).
% 0.20/0.38  
% 0.20/0.38  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.20/0.38  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.20/0.38  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.20/0.38    fresh(y, y, x1...xn) = u
% 0.20/0.38    C => fresh(s, t, x1...xn) = v
% 0.20/0.38  where fresh is a fresh function symbol and x1..xn are the free
% 0.20/0.38  variables of u and v.
% 0.20/0.38  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.20/0.38  input problem has no model of domain size 1).
% 0.20/0.38  
% 0.20/0.38  The encoding turns the above axioms into the following unit equations and goals:
% 0.20/0.38  
% 0.20/0.38  Axiom 1 (pel19): big_p(X) = true2.
% 0.20/0.38  Axiom 2 (pel19_1): fresh(X, X) = true2.
% 0.20/0.38  Axiom 3 (pel19_1): fresh(big_p(y), true2) = big_q(z).
% 0.20/0.38  
% 0.20/0.38  Goal 1 (pel19_2): big_q(X) = true2.
% 0.20/0.38  The goal is true when:
% 0.20/0.38    X = z
% 0.20/0.38  
% 0.20/0.38  Proof:
% 0.20/0.38    big_q(z)
% 0.20/0.38  = { by axiom 3 (pel19_1) R->L }
% 0.20/0.38    fresh(big_p(y), true2)
% 0.20/0.38  = { by axiom 1 (pel19) }
% 0.20/0.38    fresh(true2, true2)
% 0.20/0.38  = { by axiom 2 (pel19_1) }
% 0.20/0.38    true2
% 0.20/0.38  % SZS output end Proof
% 0.20/0.38  
% 0.20/0.38  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------