TSTP Solution File: SWV488+3 by Princess---230619

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Princess---230619
% Problem  : SWV488+3 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp
% Command  : princess -inputFormat=tptp +threads -portfolio=casc +printProof -timeoutSec=%d %s

% Computer : n006.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 22:56:42 EDT 2023

% Result   : Theorem 6.44s 1.72s
% Output   : Proof 9.60s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.11  % Problem  : SWV488+3 : TPTP v8.1.2. Released v4.0.0.
% 0.07/0.12  % Command  : princess -inputFormat=tptp +threads -portfolio=casc +printProof -timeoutSec=%d %s
% 0.12/0.33  % Computer : n006.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Tue Aug 29 09:33:06 EDT 2023
% 0.19/0.33  % CPUTime  : 
% 0.61/0.63  ________       _____
% 0.61/0.63  ___  __ \_________(_)________________________________
% 0.61/0.63  __  /_/ /_  ___/_  /__  __ \  ___/  _ \_  ___/_  ___/
% 0.61/0.63  _  ____/_  /   _  / _  / / / /__ /  __/(__  )_(__  )
% 0.61/0.63  /_/     /_/    /_/  /_/ /_/\___/ \___//____/ /____/
% 0.61/0.63  
% 0.61/0.63  A Theorem Prover for First-Order Logic modulo Linear Integer Arithmetic
% 0.61/0.63  (2023-06-19)
% 0.61/0.63  
% 0.61/0.63  (c) Philipp Rümmer, 2009-2023
% 0.61/0.63  Contributors: Peter Backeman, Peter Baumgartner, Angelo Brillout, Zafer Esen,
% 0.61/0.63                Amanda Stjerna.
% 0.61/0.63  Free software under BSD-3-Clause.
% 0.61/0.63  
% 0.61/0.63  For more information, visit http://www.philipp.ruemmer.org/princess.shtml
% 0.61/0.63  
% 0.61/0.64  Loading /export/starexec/sandbox2/benchmark/theBenchmark.p ...
% 0.61/0.65  Running up to 7 provers in parallel.
% 0.61/0.67  Prover 0: Options:  +triggersInConjecture +genTotalityAxioms +tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=allUni -realRatSaturationRounds=0 -ignoreQuantifiers -constructProofs=never -generateTriggers=all -randomSeed=1042961893
% 0.61/0.67  Prover 1: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=none -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=0 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=-1571432423
% 0.61/0.67  Prover 3: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=none -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=1 +ignoreQuantifiers -constructProofs=never -generateTriggers=all -randomSeed=1922548996
% 0.61/0.67  Prover 2: Options:  +triggersInConjecture +genTotalityAxioms -tightFunctionScopes -clausifier=simple +reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMinimalAndEmpty -realRatSaturationRounds=1 -ignoreQuantifiers -constructProofs=never -generateTriggers=all -randomSeed=-1065072994
% 0.61/0.67  Prover 4: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=allUni -realRatSaturationRounds=0 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=1868514696
% 0.61/0.67  Prover 5: Options:  +triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=none +reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -realRatSaturationRounds=1 -ignoreQuantifiers -constructProofs=never -generateTriggers=complete -randomSeed=1259561288
% 0.61/0.67  Prover 6: Options:  -triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=none +reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximalOutermost -realRatSaturationRounds=0 -ignoreQuantifiers -constructProofs=never -generateTriggers=all -randomSeed=-1399714365
% 2.60/1.11  Prover 4: Preprocessing ...
% 2.60/1.11  Prover 1: Preprocessing ...
% 2.60/1.16  Prover 6: Preprocessing ...
% 2.60/1.16  Prover 5: Preprocessing ...
% 2.60/1.16  Prover 0: Preprocessing ...
% 2.60/1.16  Prover 3: Preprocessing ...
% 2.60/1.16  Prover 2: Preprocessing ...
% 5.20/1.53  Prover 1: Constructing countermodel ...
% 5.20/1.54  Prover 3: Constructing countermodel ...
% 5.64/1.54  Prover 6: Proving ...
% 5.64/1.55  Prover 5: Proving ...
% 5.75/1.57  Prover 2: Proving ...
% 6.44/1.72  Prover 3: proved (1051ms)
% 6.44/1.72  
% 6.44/1.72  % SZS status Theorem for /export/starexec/sandbox2/benchmark/theBenchmark.p
% 6.44/1.72  
% 6.44/1.72  Prover 7: Options:  +triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=simple +reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allUni -realRatSaturationRounds=1 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=-236303470
% 6.44/1.73  Prover 5: stopped
% 6.44/1.73  Prover 8: Options:  +triggersInConjecture +genTotalityAxioms -tightFunctionScopes -clausifier=none -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=0 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=-200781089
% 6.44/1.74  Prover 2: stopped
% 6.44/1.74  Prover 10: Options:  +triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=1 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=919308125
% 7.09/1.74  Prover 6: stopped
% 7.09/1.75  Prover 7: Preprocessing ...
% 7.09/1.75  Prover 11: Options:  +triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=allUni -realRatSaturationRounds=1 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=-1509710984
% 7.09/1.76  Prover 8: Preprocessing ...
% 7.09/1.77  Prover 10: Preprocessing ...
% 7.44/1.79  Prover 11: Preprocessing ...
% 7.44/1.80  Prover 7: Warning: ignoring some quantifiers
% 7.44/1.82  Prover 7: Constructing countermodel ...
% 7.44/1.83  Prover 10: Warning: ignoring some quantifiers
% 7.44/1.84  Prover 10: Constructing countermodel ...
% 7.44/1.84  Prover 1: Found proof (size 31)
% 7.44/1.84  Prover 1: proved (1177ms)
% 7.44/1.85  Prover 10: stopped
% 7.44/1.85  Prover 11: stopped
% 7.44/1.86  Prover 7: stopped
% 7.44/1.87  Prover 8: Warning: ignoring some quantifiers
% 7.44/1.87  Prover 8: Constructing countermodel ...
% 7.44/1.88  Prover 8: stopped
% 9.17/2.05  Prover 4: Constructing countermodel ...
% 9.17/2.06  Prover 4: stopped
% 9.35/2.11  Prover 0: Proving ...
% 9.35/2.11  Prover 0: stopped
% 9.35/2.11  
% 9.35/2.11  % SZS status Theorem for /export/starexec/sandbox2/benchmark/theBenchmark.p
% 9.35/2.11  
% 9.35/2.11  % SZS output start Proof for theBenchmark
% 9.35/2.12  Assumptions after simplification:
% 9.35/2.12  ---------------------------------
% 9.35/2.12  
% 9.35/2.12    (qii)
% 9.60/2.15    $i(n) & $i(real_zero) & $i(real_one) & $i(int_one) & $i(int_zero) &  ! [v0:
% 9.60/2.15      $i] :  ! [v1: $i] : ( ~ (int_leq(v1, n) = 0) |  ~ (int_leq(v0, n) = 0) |  ~
% 9.60/2.15      $i(v1) |  ~ $i(v0) |  ? [v2: any] :  ? [v3: any] : (int_leq(int_one, v1) =
% 9.60/2.15        v3 & int_leq(int_one, v0) = v2 & ( ~ (v3 = 0) |  ~ (v2 = 0))) | ( ! [v2:
% 9.60/2.15          $i] : ( ~ (int_less(int_zero, v2) = 0) |  ~ $i(v2) |  ? [v3: $i] : ( ~
% 9.60/2.15            (v3 = v1) & plus(v0, v2) = v3 & $i(v3)) |  ! [v3: $i] :  ! [v4: $i] : 
% 9.60/2.15          ! [v5: $i] : (v5 = real_zero |  ~ (a(v3, v4) = v5) |  ~ (plus(v3, v2) =
% 9.60/2.15              v4) |  ~ $i(v3) |  ? [v6: any] :  ? [v7: any] : (int_leq(v3, v0) =
% 9.60/2.15              v7 & int_leq(int_one, v3) = v6 & ( ~ (v7 = 0) |  ~ (v6 = 0))))) &  !
% 9.60/2.15        [v2: $i] : ( ~ (int_less(int_zero, v2) = 0) |  ~ $i(v2) |  ? [v3: $i] : (
% 9.60/2.15            ~ (v3 = v0) & plus(v1, v2) = v3 & $i(v3)) |  ! [v3: $i] :  ! [v4: $i]
% 9.60/2.15          :  ! [v5: $i] : (v5 = real_zero |  ~ (a(v4, v3) = v5) |  ~ (plus(v3, v2)
% 9.60/2.15              = v4) |  ~ $i(v3) |  ? [v6: any] :  ? [v7: any] : (int_leq(v3, v1) =
% 9.60/2.15              v7 & int_leq(int_one, v3) = v6 & ( ~ (v7 = 0) |  ~ (v6 = 0))))) &  !
% 9.60/2.15        [v2: $i] : ( ~ (int_leq(int_one, v2) = 0) |  ~ $i(v2) |  ? [v3: any] :  ?
% 9.60/2.15          [v4: $i] : (a(v2, v2) = v4 & int_leq(v2, v1) = v3 & $i(v4) & ( ~ (v3 =
% 9.60/2.15                0) | v4 = real_one)))))
% 9.60/2.15  
% 9.60/2.15    (real_constants)
% 9.60/2.15     ~ (real_zero = real_one) & $i(real_zero) & $i(real_one)
% 9.60/2.15  
% 9.60/2.15    (uti)
% 9.60/2.15    $i(n) & $i(real_zero) & $i(int_one) &  ? [v0: $i] : (a(v0, v0) = real_zero &
% 9.60/2.15      int_leq(v0, v0) = 0 & int_leq(v0, n) = 0 & int_leq(int_one, v0) = 0 &
% 9.60/2.15      $i(v0))
% 9.60/2.15  
% 9.60/2.15    (function-axioms)
% 9.60/2.16     ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~ (a(v3,
% 9.60/2.16          v2) = v1) |  ~ (a(v3, v2) = v0)) &  ! [v0: $i] :  ! [v1: $i] :  ! [v2:
% 9.60/2.16      $i] :  ! [v3: $i] : (v1 = v0 |  ~ (plus(v3, v2) = v1) |  ~ (plus(v3, v2) =
% 9.60/2.16        v0)) &  ! [v0: MultipleValueBool] :  ! [v1: MultipleValueBool] :  ! [v2:
% 9.60/2.16      $i] :  ! [v3: $i] : (v1 = v0 |  ~ (int_less(v3, v2) = v1) |  ~ (int_less(v3,
% 9.60/2.16          v2) = v0)) &  ! [v0: MultipleValueBool] :  ! [v1: MultipleValueBool] : 
% 9.60/2.16    ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~ (int_leq(v3, v2) = v1) |  ~
% 9.60/2.16      (int_leq(v3, v2) = v0))
% 9.60/2.16  
% 9.60/2.16  Further assumptions not needed in the proof:
% 9.60/2.16  --------------------------------------------
% 9.60/2.16  int_leq, int_less_irreflexive, int_less_total, int_less_transitive,
% 9.60/2.16  int_zero_one, one_successor_of_zero, plus_and_inverse, plus_and_order1,
% 9.60/2.16  plus_commutative, plus_zero
% 9.60/2.16  
% 9.60/2.16  Those formulas are unsatisfiable:
% 9.60/2.16  ---------------------------------
% 9.60/2.16  
% 9.60/2.16  Begin of proof
% 9.60/2.16  | 
% 9.60/2.16  | ALPHA: (real_constants) implies:
% 9.60/2.16  |   (1)   ~ (real_zero = real_one)
% 9.60/2.16  | 
% 9.60/2.16  | ALPHA: (qii) implies:
% 9.60/2.17  |   (2)   ! [v0: $i] :  ! [v1: $i] : ( ~ (int_leq(v1, n) = 0) |  ~ (int_leq(v0,
% 9.60/2.17  |              n) = 0) |  ~ $i(v1) |  ~ $i(v0) |  ? [v2: any] :  ? [v3: any] :
% 9.60/2.17  |          (int_leq(int_one, v1) = v3 & int_leq(int_one, v0) = v2 & ( ~ (v3 = 0)
% 9.60/2.17  |              |  ~ (v2 = 0))) | ( ! [v2: $i] : ( ~ (int_less(int_zero, v2) = 0)
% 9.60/2.17  |              |  ~ $i(v2) |  ? [v3: $i] : ( ~ (v3 = v1) & plus(v0, v2) = v3 &
% 9.60/2.17  |                $i(v3)) |  ! [v3: $i] :  ! [v4: $i] :  ! [v5: $i] : (v5 =
% 9.60/2.17  |                real_zero |  ~ (a(v3, v4) = v5) |  ~ (plus(v3, v2) = v4) |  ~
% 9.60/2.17  |                $i(v3) |  ? [v6: any] :  ? [v7: any] : (int_leq(v3, v0) = v7 &
% 9.60/2.17  |                  int_leq(int_one, v3) = v6 & ( ~ (v7 = 0) |  ~ (v6 = 0))))) & 
% 9.60/2.17  |            ! [v2: $i] : ( ~ (int_less(int_zero, v2) = 0) |  ~ $i(v2) |  ? [v3:
% 9.60/2.17  |                $i] : ( ~ (v3 = v0) & plus(v1, v2) = v3 & $i(v3)) |  ! [v3: $i]
% 9.60/2.17  |              :  ! [v4: $i] :  ! [v5: $i] : (v5 = real_zero |  ~ (a(v4, v3) =
% 9.60/2.17  |                  v5) |  ~ (plus(v3, v2) = v4) |  ~ $i(v3) |  ? [v6: any] :  ?
% 9.60/2.17  |                [v7: any] : (int_leq(v3, v1) = v7 & int_leq(int_one, v3) = v6 &
% 9.60/2.17  |                  ( ~ (v7 = 0) |  ~ (v6 = 0))))) &  ! [v2: $i] : ( ~
% 9.60/2.17  |              (int_leq(int_one, v2) = 0) |  ~ $i(v2) |  ? [v3: any] :  ? [v4:
% 9.60/2.17  |                $i] : (a(v2, v2) = v4 & int_leq(v2, v1) = v3 & $i(v4) & ( ~ (v3
% 9.60/2.17  |                    = 0) | v4 = real_one)))))
% 9.60/2.17  | 
% 9.60/2.17  | ALPHA: (uti) implies:
% 9.60/2.17  |   (3)   ? [v0: $i] : (a(v0, v0) = real_zero & int_leq(v0, v0) = 0 &
% 9.60/2.17  |          int_leq(v0, n) = 0 & int_leq(int_one, v0) = 0 & $i(v0))
% 9.60/2.17  | 
% 9.60/2.17  | ALPHA: (function-axioms) implies:
% 9.60/2.17  |   (4)   ! [v0: MultipleValueBool] :  ! [v1: MultipleValueBool] :  ! [v2: $i] :
% 9.60/2.17  |         ! [v3: $i] : (v1 = v0 |  ~ (int_leq(v3, v2) = v1) |  ~ (int_leq(v3,
% 9.60/2.17  |              v2) = v0))
% 9.60/2.17  |   (5)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~
% 9.60/2.17  |          (a(v3, v2) = v1) |  ~ (a(v3, v2) = v0))
% 9.60/2.17  | 
% 9.60/2.17  | DELTA: instantiating (3) with fresh symbol all_14_0 gives:
% 9.60/2.17  |   (6)  a(all_14_0, all_14_0) = real_zero & int_leq(all_14_0, all_14_0) = 0 &
% 9.60/2.17  |        int_leq(all_14_0, n) = 0 & int_leq(int_one, all_14_0) = 0 &
% 9.60/2.17  |        $i(all_14_0)
% 9.60/2.17  | 
% 9.60/2.17  | ALPHA: (6) implies:
% 9.60/2.17  |   (7)  $i(all_14_0)
% 9.60/2.17  |   (8)  int_leq(int_one, all_14_0) = 0
% 9.60/2.17  |   (9)  int_leq(all_14_0, n) = 0
% 9.60/2.17  |   (10)  int_leq(all_14_0, all_14_0) = 0
% 9.60/2.17  |   (11)  a(all_14_0, all_14_0) = real_zero
% 9.60/2.17  | 
% 9.60/2.18  | GROUND_INST: instantiating (2) with all_14_0, all_14_0, simplifying with (7),
% 9.60/2.18  |              (9) gives:
% 9.60/2.18  |   (12)   ? [v0: any] :  ? [v1: any] : (int_leq(int_one, all_14_0) = v1 &
% 9.60/2.18  |           int_leq(int_one, all_14_0) = v0 & ( ~ (v1 = 0) |  ~ (v0 = 0))) | ( !
% 9.60/2.18  |           [v0: $i] : ( ~ (int_less(int_zero, v0) = 0) |  ~ $i(v0) |  ? [v1:
% 9.60/2.18  |               any] : ( ~ (v1 = all_14_0) & plus(all_14_0, v0) = v1 & $i(v1)) |
% 9.60/2.18  |              ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v3 = real_zero |  ~
% 9.60/2.18  |               (a(v2, v1) = v3) |  ~ (plus(v1, v0) = v2) |  ~ $i(v1) |  ? [v4:
% 9.60/2.18  |                 any] :  ? [v5: any] : (int_leq(v1, all_14_0) = v5 &
% 9.60/2.18  |                 int_leq(int_one, v1) = v4 & ( ~ (v5 = 0) |  ~ (v4 = 0))))) & 
% 9.60/2.18  |           ! [v0: $i] : ( ~ (int_less(int_zero, v0) = 0) |  ~ $i(v0) |  ? [v1:
% 9.60/2.18  |               any] : ( ~ (v1 = all_14_0) & plus(all_14_0, v0) = v1 & $i(v1)) |
% 9.60/2.18  |              ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v3 = real_zero |  ~
% 9.60/2.18  |               (a(v1, v2) = v3) |  ~ (plus(v1, v0) = v2) |  ~ $i(v1) |  ? [v4:
% 9.60/2.18  |                 any] :  ? [v5: any] : (int_leq(v1, all_14_0) = v5 &
% 9.60/2.18  |                 int_leq(int_one, v1) = v4 & ( ~ (v5 = 0) |  ~ (v4 = 0))))) & 
% 9.60/2.18  |           ! [v0: $i] : ( ~ (int_leq(int_one, v0) = 0) |  ~ $i(v0) |  ? [v1:
% 9.60/2.18  |               any] :  ? [v2: $i] : (a(v0, v0) = v2 & int_leq(v0, all_14_0) =
% 9.60/2.18  |               v1 & $i(v2) & ( ~ (v1 = 0) | v2 = real_one))))
% 9.60/2.18  | 
% 9.60/2.18  | BETA: splitting (12) gives:
% 9.60/2.18  | 
% 9.60/2.18  | Case 1:
% 9.60/2.18  | | 
% 9.60/2.18  | |   (13)   ? [v0: any] :  ? [v1: any] : (int_leq(int_one, all_14_0) = v1 &
% 9.60/2.18  | |           int_leq(int_one, all_14_0) = v0 & ( ~ (v1 = 0) |  ~ (v0 = 0)))
% 9.60/2.18  | | 
% 9.60/2.18  | | DELTA: instantiating (13) with fresh symbols all_27_0, all_27_1 gives:
% 9.60/2.18  | |   (14)  int_leq(int_one, all_14_0) = all_27_0 & int_leq(int_one, all_14_0) =
% 9.60/2.18  | |         all_27_1 & ( ~ (all_27_0 = 0) |  ~ (all_27_1 = 0))
% 9.60/2.18  | | 
% 9.60/2.18  | | ALPHA: (14) implies:
% 9.60/2.18  | |   (15)  int_leq(int_one, all_14_0) = all_27_1
% 9.60/2.18  | |   (16)  int_leq(int_one, all_14_0) = all_27_0
% 9.60/2.18  | |   (17)   ~ (all_27_0 = 0) |  ~ (all_27_1 = 0)
% 9.60/2.18  | | 
% 9.60/2.18  | | GROUND_INST: instantiating (4) with 0, all_27_0, all_14_0, int_one,
% 9.60/2.18  | |              simplifying with (8), (16) gives:
% 9.60/2.18  | |   (18)  all_27_0 = 0
% 9.60/2.18  | | 
% 9.60/2.18  | | GROUND_INST: instantiating (4) with all_27_1, all_27_0, all_14_0, int_one,
% 9.60/2.18  | |              simplifying with (15), (16) gives:
% 9.60/2.18  | |   (19)  all_27_0 = all_27_1
% 9.60/2.18  | | 
% 9.60/2.18  | | COMBINE_EQS: (18), (19) imply:
% 9.60/2.18  | |   (20)  all_27_1 = 0
% 9.60/2.18  | | 
% 9.60/2.18  | | BETA: splitting (17) gives:
% 9.60/2.18  | | 
% 9.60/2.18  | | Case 1:
% 9.60/2.18  | | | 
% 9.60/2.18  | | |   (21)   ~ (all_27_0 = 0)
% 9.60/2.18  | | | 
% 9.60/2.18  | | | REDUCE: (18), (21) imply:
% 9.60/2.18  | | |   (22)  $false
% 9.60/2.19  | | | 
% 9.60/2.19  | | | CLOSE: (22) is inconsistent.
% 9.60/2.19  | | | 
% 9.60/2.19  | | Case 2:
% 9.60/2.19  | | | 
% 9.60/2.19  | | |   (23)   ~ (all_27_1 = 0)
% 9.60/2.19  | | | 
% 9.60/2.19  | | | REDUCE: (20), (23) imply:
% 9.60/2.19  | | |   (24)  $false
% 9.60/2.19  | | | 
% 9.60/2.19  | | | CLOSE: (24) is inconsistent.
% 9.60/2.19  | | | 
% 9.60/2.19  | | End of split
% 9.60/2.19  | | 
% 9.60/2.19  | Case 2:
% 9.60/2.19  | | 
% 9.60/2.19  | |   (25)   ! [v0: $i] : ( ~ (int_less(int_zero, v0) = 0) |  ~ $i(v0) |  ? [v1:
% 9.60/2.19  | |             any] : ( ~ (v1 = all_14_0) & plus(all_14_0, v0) = v1 & $i(v1)) |
% 9.60/2.19  | |            ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v3 = real_zero |  ~
% 9.60/2.19  | |             (a(v2, v1) = v3) |  ~ (plus(v1, v0) = v2) |  ~ $i(v1) |  ? [v4:
% 9.60/2.19  | |               any] :  ? [v5: any] : (int_leq(v1, all_14_0) = v5 &
% 9.60/2.19  | |               int_leq(int_one, v1) = v4 & ( ~ (v5 = 0) |  ~ (v4 = 0))))) & 
% 9.60/2.19  | |         ! [v0: $i] : ( ~ (int_less(int_zero, v0) = 0) |  ~ $i(v0) |  ? [v1:
% 9.60/2.19  | |             any] : ( ~ (v1 = all_14_0) & plus(all_14_0, v0) = v1 & $i(v1)) |
% 9.60/2.19  | |            ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v3 = real_zero |  ~
% 9.60/2.19  | |             (a(v1, v2) = v3) |  ~ (plus(v1, v0) = v2) |  ~ $i(v1) |  ? [v4:
% 9.60/2.19  | |               any] :  ? [v5: any] : (int_leq(v1, all_14_0) = v5 &
% 9.60/2.19  | |               int_leq(int_one, v1) = v4 & ( ~ (v5 = 0) |  ~ (v4 = 0))))) & 
% 9.60/2.19  | |         ! [v0: $i] : ( ~ (int_leq(int_one, v0) = 0) |  ~ $i(v0) |  ? [v1:
% 9.60/2.19  | |             any] :  ? [v2: $i] : (a(v0, v0) = v2 & int_leq(v0, all_14_0) =
% 9.60/2.19  | |             v1 & $i(v2) & ( ~ (v1 = 0) | v2 = real_one)))
% 9.60/2.19  | | 
% 9.60/2.19  | | ALPHA: (25) implies:
% 9.60/2.19  | |   (26)   ! [v0: $i] : ( ~ (int_leq(int_one, v0) = 0) |  ~ $i(v0) |  ? [v1:
% 9.60/2.19  | |             any] :  ? [v2: $i] : (a(v0, v0) = v2 & int_leq(v0, all_14_0) =
% 9.60/2.19  | |             v1 & $i(v2) & ( ~ (v1 = 0) | v2 = real_one)))
% 9.60/2.19  | | 
% 9.60/2.19  | | GROUND_INST: instantiating (26) with all_14_0, simplifying with (7), (8)
% 9.60/2.19  | |              gives:
% 9.60/2.19  | |   (27)   ? [v0: any] :  ? [v1: $i] : (a(all_14_0, all_14_0) = v1 &
% 9.60/2.19  | |           int_leq(all_14_0, all_14_0) = v0 & $i(v1) & ( ~ (v0 = 0) | v1 =
% 9.60/2.19  | |             real_one))
% 9.60/2.19  | | 
% 9.60/2.19  | | DELTA: instantiating (27) with fresh symbols all_28_0, all_28_1 gives:
% 9.60/2.19  | |   (28)  a(all_14_0, all_14_0) = all_28_0 & int_leq(all_14_0, all_14_0) =
% 9.60/2.19  | |         all_28_1 & $i(all_28_0) & ( ~ (all_28_1 = 0) | all_28_0 = real_one)
% 9.60/2.19  | | 
% 9.60/2.19  | | ALPHA: (28) implies:
% 9.60/2.19  | |   (29)  int_leq(all_14_0, all_14_0) = all_28_1
% 9.60/2.19  | |   (30)  a(all_14_0, all_14_0) = all_28_0
% 9.60/2.19  | |   (31)   ~ (all_28_1 = 0) | all_28_0 = real_one
% 9.60/2.19  | | 
% 9.60/2.19  | | GROUND_INST: instantiating (4) with 0, all_28_1, all_14_0, all_14_0,
% 9.60/2.19  | |              simplifying with (10), (29) gives:
% 9.60/2.19  | |   (32)  all_28_1 = 0
% 9.60/2.19  | | 
% 9.60/2.19  | | GROUND_INST: instantiating (5) with real_zero, all_28_0, all_14_0, all_14_0,
% 9.60/2.19  | |              simplifying with (11), (30) gives:
% 9.60/2.19  | |   (33)  all_28_0 = real_zero
% 9.60/2.19  | | 
% 9.60/2.19  | | BETA: splitting (31) gives:
% 9.60/2.19  | | 
% 9.60/2.19  | | Case 1:
% 9.60/2.19  | | | 
% 9.60/2.20  | | |   (34)   ~ (all_28_1 = 0)
% 9.60/2.20  | | | 
% 9.60/2.20  | | | REDUCE: (32), (34) imply:
% 9.60/2.20  | | |   (35)  $false
% 9.60/2.20  | | | 
% 9.60/2.20  | | | CLOSE: (35) is inconsistent.
% 9.60/2.20  | | | 
% 9.60/2.20  | | Case 2:
% 9.60/2.20  | | | 
% 9.60/2.20  | | |   (36)  all_28_0 = real_one
% 9.60/2.20  | | | 
% 9.60/2.20  | | | COMBINE_EQS: (33), (36) imply:
% 9.60/2.20  | | |   (37)  real_zero = real_one
% 9.60/2.20  | | | 
% 9.60/2.20  | | | REDUCE: (1), (37) imply:
% 9.60/2.20  | | |   (38)  $false
% 9.60/2.20  | | | 
% 9.60/2.20  | | | CLOSE: (38) is inconsistent.
% 9.60/2.20  | | | 
% 9.60/2.20  | | End of split
% 9.60/2.20  | | 
% 9.60/2.20  | End of split
% 9.60/2.20  | 
% 9.60/2.20  End of proof
% 9.60/2.20  % SZS output end Proof for theBenchmark
% 9.60/2.20  
% 9.60/2.20  1561ms
%------------------------------------------------------------------------------