TSTP Solution File: SWV254-2 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : SWV254-2 : TPTP v8.1.2. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 23:03:13 EDT 2023

% Result   : Unsatisfiable 0.21s 0.39s
% Output   : Proof 0.21s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.13  % Problem  : SWV254-2 : TPTP v8.1.2. Released v3.2.0.
% 0.07/0.14  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.14/0.36  % Computer : n020.cluster.edu
% 0.14/0.36  % Model    : x86_64 x86_64
% 0.14/0.36  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.36  % Memory   : 8042.1875MB
% 0.14/0.36  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.36  % CPULimit : 300
% 0.14/0.36  % WCLimit  : 300
% 0.14/0.36  % DateTime : Tue Aug 29 08:37:28 EDT 2023
% 0.14/0.36  % CPUTime  : 
% 0.21/0.39  Command-line arguments: --kbo-weight0 --lhs-weight 5 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10 --goal-heuristic
% 0.21/0.39  
% 0.21/0.39  % SZS status Unsatisfiable
% 0.21/0.39  
% 0.21/0.40  % SZS output start Proof
% 0.21/0.40  Take the following subset of the input axioms:
% 0.21/0.40    fof(cls_SetInterval_OatLeastLessThan__empty_0, axiom, ![T_a, V_n, V_m]: (~class_Orderings_Oorder(T_a) | (~c_lessequals(V_n, V_m, T_a) | c_SetInterval_OatLeastLessThan(V_m, V_n, T_a)=c_emptyset))).
% 0.21/0.40    fof(cls_SetInterval_OatLeastLessThan__singleton_0, axiom, ![V_m2]: c_SetInterval_OatLeastLessThan(V_m2, c_Suc(V_m2), tc_nat)=c_insert(V_m2, c_emptyset, tc_nat)).
% 0.21/0.40    fof(cls_Set_Oempty__not__insert_0, axiom, ![V_a, V_A, T_a2]: c_emptyset!=c_insert(V_a, V_A, T_a2)).
% 0.21/0.40    fof(cls_conjecture_0, negated_conjecture, ![V_U]: c_lessequals(V_U, v_x(V_U), tc_nat)).
% 0.21/0.40    fof(cls_conjecture_1, negated_conjecture, ![V_U2]: v_x(V_U2)=v_nat).
% 0.21/0.40    fof(clsarity_nat_3, axiom, class_Orderings_Oorder(tc_nat)).
% 0.21/0.40  
% 0.21/0.40  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.21/0.40  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.21/0.40  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.21/0.40    fresh(y, y, x1...xn) = u
% 0.21/0.40    C => fresh(s, t, x1...xn) = v
% 0.21/0.40  where fresh is a fresh function symbol and x1..xn are the free
% 0.21/0.40  variables of u and v.
% 0.21/0.40  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.21/0.40  input problem has no model of domain size 1).
% 0.21/0.40  
% 0.21/0.40  The encoding turns the above axioms into the following unit equations and goals:
% 0.21/0.40  
% 0.21/0.40  Axiom 1 (clsarity_nat_3): class_Orderings_Oorder(tc_nat) = true2.
% 0.21/0.40  Axiom 2 (cls_conjecture_1): v_x(X) = v_nat.
% 0.21/0.40  Axiom 3 (cls_conjecture_0): c_lessequals(X, v_x(X), tc_nat) = true2.
% 0.21/0.40  Axiom 4 (cls_SetInterval_OatLeastLessThan__singleton_0): c_SetInterval_OatLeastLessThan(X, c_Suc(X), tc_nat) = c_insert(X, c_emptyset, tc_nat).
% 0.21/0.40  Axiom 5 (cls_SetInterval_OatLeastLessThan__empty_0): fresh(X, X, Y, Z, W) = c_SetInterval_OatLeastLessThan(W, Z, Y).
% 0.21/0.40  Axiom 6 (cls_SetInterval_OatLeastLessThan__empty_0): fresh2(X, X, Y, Z, W) = c_emptyset.
% 0.21/0.40  Axiom 7 (cls_SetInterval_OatLeastLessThan__empty_0): fresh(c_lessequals(X, Y, Z), true2, Z, X, Y) = fresh2(class_Orderings_Oorder(Z), true2, Z, X, Y).
% 0.21/0.40  
% 0.21/0.40  Goal 1 (cls_Set_Oempty__not__insert_0): c_emptyset = c_insert(X, Y, Z).
% 0.21/0.40  The goal is true when:
% 0.21/0.40    X = v_nat
% 0.21/0.40    Y = c_emptyset
% 0.21/0.40    Z = tc_nat
% 0.21/0.40  
% 0.21/0.40  Proof:
% 0.21/0.40    c_emptyset
% 0.21/0.40  = { by axiom 6 (cls_SetInterval_OatLeastLessThan__empty_0) R->L }
% 0.21/0.40    fresh2(true2, true2, tc_nat, c_Suc(v_nat), v_nat)
% 0.21/0.40  = { by axiom 1 (clsarity_nat_3) R->L }
% 0.21/0.40    fresh2(class_Orderings_Oorder(tc_nat), true2, tc_nat, c_Suc(v_nat), v_nat)
% 0.21/0.40  = { by axiom 7 (cls_SetInterval_OatLeastLessThan__empty_0) R->L }
% 0.21/0.40    fresh(c_lessequals(c_Suc(v_nat), v_nat, tc_nat), true2, tc_nat, c_Suc(v_nat), v_nat)
% 0.21/0.40  = { by axiom 2 (cls_conjecture_1) R->L }
% 0.21/0.40    fresh(c_lessequals(c_Suc(v_nat), v_x(c_Suc(v_nat)), tc_nat), true2, tc_nat, c_Suc(v_nat), v_nat)
% 0.21/0.40  = { by axiom 3 (cls_conjecture_0) }
% 0.21/0.40    fresh(true2, true2, tc_nat, c_Suc(v_nat), v_nat)
% 0.21/0.40  = { by axiom 5 (cls_SetInterval_OatLeastLessThan__empty_0) }
% 0.21/0.40    c_SetInterval_OatLeastLessThan(v_nat, c_Suc(v_nat), tc_nat)
% 0.21/0.40  = { by axiom 4 (cls_SetInterval_OatLeastLessThan__singleton_0) }
% 0.21/0.40    c_insert(v_nat, c_emptyset, tc_nat)
% 0.21/0.40  % SZS output end Proof
% 0.21/0.40  
% 0.21/0.40  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------