TSTP Solution File: SWV236+1 by SRASS---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SRASS---0.1
% Problem  : SWV236+1 : TPTP v5.0.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp
% Command  : SRASS -q2 -a 0 10 10 10 -i3 -n60 %s

% Computer : art03.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Thu Dec 30 08:47:17 EST 2010

% Result   : Theorem 0.96s
% Output   : Solution 0.96s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% Reading problem from /tmp/SystemOnTPTP23783/SWV236+1.tptp
% Adding relevance values
% Extracting the conjecture
% Sorting axioms by relevance
% Looking for THM       ... 
% found
% SZS status THM for /tmp/SystemOnTPTP23783/SWV236+1.tptp
% SZS output start Solution for /tmp/SystemOnTPTP23783/SWV236+1.tptp
% TreeLimitedRun: ----------------------------------------------------------
% TreeLimitedRun: /home/graph/tptp/Systems/EP---1.2/eproof --print-statistics -xAuto -tAuto --cpu-limit=60 --proof-time-unlimited --memory-limit=Auto --tstp-in --tstp-out /tmp/SRASS.s.p 
% TreeLimitedRun: CPU time limit is 60s
% TreeLimitedRun: WC  time limit is 120s
% TreeLimitedRun: PID is 23879
% TreeLimitedRun: ----------------------------------------------------------
% PrfWatch: 0.00 CPU 0.00 WC
% # Preprocessing time     : 0.012 s
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% fof(1, axiom,![X1]:![X2]:![X3]:(((p(crypt(xor(km,X1),X2))&p(X1))&p(crypt(xor(km,exp),X3)))=>p(crypt(xor(X3,X1),X2))),file('/tmp/SRASS.s.p', key_export)).
% fof(6, axiom,p(crypt(xor(km,exp),eurk)),file('/tmp/SRASS.s.p', initial_knowledge_of_intruder_7)).
% fof(12, axiom,![X4]:![X5]:(p(crypt(xor(X4,data),X5))=>p(crypt(X4,X5))),file('/tmp/SRASS.s.p', data_cv_is_known_to_be_zero)).
% fof(17, axiom,![X4]:![X2]:((p(X4)&p(crypt(xor(km,data),X2)))=>p(decrypt(X2,X4))),file('/tmp/SRASS.s.p', decrypt_data)).
% fof(20, axiom,p(crypt(xor(km,data),eurk)),file('/tmp/SRASS.s.p', initial_knowledge_of_intruder_8)).
% fof(21, axiom,![X4]:![X5]:xor(X4,X5)=xor(X5,X4),file('/tmp/SRASS.s.p', xor_commutative)).
% fof(23, axiom,![X4]:![X5]:decrypt(X4,crypt(X4,X5))=X5,file('/tmp/SRASS.s.p', encryption_decryption_cancellation)).
% fof(24, axiom,![X4]:xor(X4,id)=X4,file('/tmp/SRASS.s.p', xor_rules_1)).
% fof(26, axiom,p(id),file('/tmp/SRASS.s.p', initial_knowledge_of_intruder_4)).
% fof(28, conjecture,?[X12]:(p(crypt(xor(km,exp),X12))&p(X12)),file('/tmp/SRASS.s.p', find_known_exporter)).
% fof(29, negated_conjecture,~(?[X12]:(p(crypt(xor(km,exp),X12))&p(X12))),inference(assume_negation,[status(cth)],[28])).
% fof(30, plain,![X1]:![X2]:![X3]:(((~(p(crypt(xor(km,X1),X2)))|~(p(X1)))|~(p(crypt(xor(km,exp),X3))))|p(crypt(xor(X3,X1),X2))),inference(fof_nnf,[status(thm)],[1])).
% fof(31, plain,![X4]:![X5]:![X6]:(((~(p(crypt(xor(km,X4),X5)))|~(p(X4)))|~(p(crypt(xor(km,exp),X6))))|p(crypt(xor(X6,X4),X5))),inference(variable_rename,[status(thm)],[30])).
% cnf(32,plain,(p(crypt(xor(X1,X2),X3))|~p(crypt(xor(km,exp),X1))|~p(X2)|~p(crypt(xor(km,X2),X3))),inference(split_conjunct,[status(thm)],[31])).
% cnf(43,plain,(p(crypt(xor(km,exp),eurk))),inference(split_conjunct,[status(thm)],[6])).
% fof(59, plain,![X4]:![X5]:(~(p(crypt(xor(X4,data),X5)))|p(crypt(X4,X5))),inference(fof_nnf,[status(thm)],[12])).
% fof(60, plain,![X6]:![X7]:(~(p(crypt(xor(X6,data),X7)))|p(crypt(X6,X7))),inference(variable_rename,[status(thm)],[59])).
% cnf(61,plain,(p(crypt(X1,X2))|~p(crypt(xor(X1,data),X2))),inference(split_conjunct,[status(thm)],[60])).
% fof(66, plain,![X4]:![X2]:((~(p(X4))|~(p(crypt(xor(km,data),X2))))|p(decrypt(X2,X4))),inference(fof_nnf,[status(thm)],[17])).
% fof(67, plain,![X5]:![X6]:((~(p(X5))|~(p(crypt(xor(km,data),X6))))|p(decrypt(X6,X5))),inference(variable_rename,[status(thm)],[66])).
% cnf(68,plain,(p(decrypt(X1,X2))|~p(crypt(xor(km,data),X1))|~p(X2)),inference(split_conjunct,[status(thm)],[67])).
% cnf(73,plain,(p(crypt(xor(km,data),eurk))),inference(split_conjunct,[status(thm)],[20])).
% fof(74, plain,![X6]:![X7]:xor(X6,X7)=xor(X7,X6),inference(variable_rename,[status(thm)],[21])).
% cnf(75,plain,(xor(X1,X2)=xor(X2,X1)),inference(split_conjunct,[status(thm)],[74])).
% fof(78, plain,![X6]:![X7]:decrypt(X6,crypt(X6,X7))=X7,inference(variable_rename,[status(thm)],[23])).
% cnf(79,plain,(decrypt(X1,crypt(X1,X2))=X2),inference(split_conjunct,[status(thm)],[78])).
% fof(80, plain,![X5]:xor(X5,id)=X5,inference(variable_rename,[status(thm)],[24])).
% cnf(81,plain,(xor(X1,id)=X1),inference(split_conjunct,[status(thm)],[80])).
% cnf(84,plain,(p(id)),inference(split_conjunct,[status(thm)],[26])).
% fof(86, negated_conjecture,![X12]:(~(p(crypt(xor(km,exp),X12)))|~(p(X12))),inference(fof_nnf,[status(thm)],[29])).
% fof(87, negated_conjecture,![X13]:(~(p(crypt(xor(km,exp),X13)))|~(p(X13))),inference(variable_rename,[status(thm)],[86])).
% cnf(88,negated_conjecture,(~p(X1)|~p(crypt(xor(km,exp),X1))),inference(split_conjunct,[status(thm)],[87])).
% cnf(89,plain,(p(crypt(xor(data,km),eurk))),inference(rw,[status(thm)],[73,75,theory(equality)])).
% cnf(92,plain,(p(decrypt(X1,X2))|~p(X2)|~p(crypt(xor(data,km),X1))),inference(rw,[status(thm)],[68,75,theory(equality)])).
% cnf(124,negated_conjecture,(~p(eurk)),inference(spm,[status(thm)],[88,43,theory(equality)])).
% cnf(131,plain,(p(crypt(X1,X2))|~p(crypt(xor(data,X1),X2))),inference(spm,[status(thm)],[61,75,theory(equality)])).
% cnf(147,plain,(p(decrypt(eurk,X1))|~p(X1)),inference(spm,[status(thm)],[92,89,theory(equality)])).
% cnf(163,plain,(p(crypt(xor(eurk,X1),X2))|~p(crypt(xor(km,X1),X2))|~p(X1)),inference(spm,[status(thm)],[32,43,theory(equality)])).
% cnf(309,plain,(p(X1)|~p(crypt(eurk,X1))),inference(spm,[status(thm)],[147,79,theory(equality)])).
% cnf(1040,plain,(p(crypt(km,eurk))),inference(spm,[status(thm)],[131,89,theory(equality)])).
% cnf(1238,plain,(p(crypt(xor(eurk,id),X1))|~p(crypt(km,X1))|~p(id)),inference(spm,[status(thm)],[163,81,theory(equality)])).
% cnf(1254,plain,(p(crypt(eurk,X1))|~p(crypt(km,X1))|~p(id)),inference(rw,[status(thm)],[1238,81,theory(equality)])).
% cnf(1255,plain,(p(crypt(eurk,X1))|~p(crypt(km,X1))|$false),inference(rw,[status(thm)],[1254,84,theory(equality)])).
% cnf(1256,plain,(p(crypt(eurk,X1))|~p(crypt(km,X1))),inference(cn,[status(thm)],[1255,theory(equality)])).
% cnf(1266,plain,(p(crypt(eurk,eurk))),inference(spm,[status(thm)],[1256,1040,theory(equality)])).
% cnf(1310,plain,(p(eurk)),inference(spm,[status(thm)],[309,1266,theory(equality)])).
% cnf(1311,plain,($false),inference(sr,[status(thm)],[1310,124,theory(equality)])).
% cnf(1312,plain,($false),1311,['proof']).
% # SZS output end CNFRefutation
% # Processed clauses                  : 239
% # ...of these trivial                : 6
% # ...subsumed                        : 98
% # ...remaining for further processing: 135
% # Other redundant clauses eliminated : 0
% # Clauses deleted for lack of memory : 0
% # Backward-subsumed                  : 3
% # Backward-rewritten                 : 9
% # Generated clauses                  : 797
% # ...of the previous two non-trivial : 706
% # Contextual simplify-reflections    : 20
% # Paramodulations                    : 791
% # Factorizations                     : 0
% # Equation resolutions               : 0
% # Current number of processed clauses: 93
% #    Positive orientable unit clauses: 24
% #    Positive unorientable unit clauses: 3
% #    Negative unit clauses           : 9
% #    Non-unit-clauses                : 57
% # Current number of unprocessed clauses: 378
% # ...number of literals in the above : 1222
% # Clause-clause subsumption calls (NU) : 1593
% # Rec. Clause-clause subsumption calls : 1262
% # Unit Clause-clause subsumption calls : 110
% # Rewrite failures with RHS unbound  : 0
% # Indexed BW rewrite attempts        : 50
% # Indexed BW rewrite successes       : 34
% # Backwards rewriting index:   134 leaves,   1.47+/-1.835 terms/leaf
% # Paramod-from index:           34 leaves,   1.29+/-0.824 terms/leaf
% # Paramod-into index:          117 leaves,   1.35+/-1.263 terms/leaf
% # -------------------------------------------------
% # User time              : 0.040 s
% # System time            : 0.005 s
% # Total time             : 0.045 s
% # Maximum resident set size: 0 pages
% PrfWatch: 0.14 CPU 0.22 WC
% FINAL PrfWatch: 0.14 CPU 0.22 WC
% SZS output end Solution for /tmp/SystemOnTPTP23783/SWV236+1.tptp
% 
%------------------------------------------------------------------------------