TSTP Solution File: SWV234+1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : SWV234+1 : TPTP v8.1.2. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s

% Computer : n017.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 21:37:08 EDT 2023

% Result   : Theorem 35.38s 35.51s
% Output   : CNFRefutation 35.38s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   14
%            Number of leaves      :   33
% Syntax   : Number of formulae    :   82 (  40 unt;  15 typ;   0 def)
%            Number of atoms       :  136 (  20 equ)
%            Maximal formula atoms :    4 (   2 avg)
%            Number of connectives :  127 (  58   ~;  56   |;   8   &)
%                                         (   0 <=>;   5  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   3 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :    7 (   4   >;   3   *;   0   +;   0  <<)
%            Number of predicates  :    3 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :   14 (  14 usr;  11 con; 0-2 aty)
%            Number of variables   :  116 (   0 sgn;  48   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    xor: ( $i * $i ) > $i ).

tff(decl_23,type,
    crypt: ( $i * $i ) > $i ).

tff(decl_24,type,
    decrypt: ( $i * $i ) > $i ).

tff(decl_25,type,
    id: $i ).

tff(decl_26,type,
    p: $i > $o ).

tff(decl_27,type,
    km: $i ).

tff(decl_28,type,
    imp: $i ).

tff(decl_29,type,
    exp: $i ).

tff(decl_30,type,
    kp: $i ).

tff(decl_31,type,
    data: $i ).

tff(decl_32,type,
    pin: $i ).

tff(decl_33,type,
    kek: $i ).

tff(decl_34,type,
    pp: $i ).

tff(decl_35,type,
    a: $i ).

tff(decl_36,type,
    k3: $i ).

fof(xor_commutative,axiom,
    ! [X1,X2] : xor(X1,X2) = xor(X2,X1),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',xor_commutative) ).

fof(xor_associative,axiom,
    ! [X1,X2,X3] : xor(X1,xor(X2,X3)) = xor(xor(X1,X2),X3),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',xor_associative) ).

fof(xor_rules_2,axiom,
    ! [X1] : xor(X1,X1) = id,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',xor_rules_2) ).

fof(xor_rules_1,axiom,
    ! [X1] : xor(X1,id) = X1,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',xor_rules_1) ).

fof(key_part_import___part_2,axiom,
    ! [X6,X9,X11] :
      ( ( p(X6)
        & p(crypt(xor(km,xor(kp,X9)),X11))
        & p(X9) )
     => p(crypt(xor(km,xor(X9,kp)),xor(X6,X11))) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',key_part_import___part_2) ).

fof(encrypt_data,axiom,
    ! [X1,X6] :
      ( ( p(X1)
        & p(crypt(xor(km,data),X6)) )
     => p(crypt(X6,X1)) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',encrypt_data) ).

fof(key_import,axiom,
    ! [X4,X5,X6,X7,X8] :
      ( ( p(crypt(xor(X4,X5),X6))
        & p(X7)
        & p(crypt(xor(km,imp),X8)) )
     => p(crypt(xor(km,X7),decrypt(xor(X8,X7),crypt(xor(X4,X5),X6)))) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',key_import) ).

fof(key_part_import___part_3,axiom,
    ! [X6,X9,X11] :
      ( ( p(X6)
        & p(crypt(xor(km,xor(X9,kp)),X11))
        & p(X9) )
     => p(crypt(xor(km,X9),xor(X11,X6))) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',key_part_import___part_3) ).

fof(partially_completed_key,axiom,
    p(crypt(xor(km,xor(kp,imp)),xor(kek,k3))),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',partially_completed_key) ).

fof(inital_knowledge_of_intruder_3,axiom,
    p(data),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',inital_knowledge_of_intruder_3) ).

fof(inital_knowledge_of_intruder_2,axiom,
    p(imp),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',inital_knowledge_of_intruder_2) ).

fof(key_part,axiom,
    p(k3),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',key_part) ).

fof(encryption_decryption_cancellation,axiom,
    ! [X1,X2] : decrypt(X1,crypt(X1,X2)) = X2,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',encryption_decryption_cancellation) ).

fof(combine_with_XOR,axiom,
    ! [X1,X2] :
      ( ( p(X1)
        & p(X2) )
     => p(xor(X1,X2)) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',combine_with_XOR) ).

fof(find_pin,conjecture,
    p(crypt(pp,a)),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',find_pin) ).

fof(pin_key_encrypted_for_transfer,axiom,
    p(crypt(xor(kek,pin),pp)),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',pin_key_encrypted_for_transfer) ).

fof(inital_knowledge_of_intruder_5,axiom,
    p(pin),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',inital_knowledge_of_intruder_5) ).

fof(an_account_number,axiom,
    p(a),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',an_account_number) ).

fof(c_0_18,plain,
    ! [X12,X13] : xor(X12,X13) = xor(X13,X12),
    inference(variable_rename,[status(thm)],[xor_commutative]) ).

fof(c_0_19,plain,
    ! [X14,X15,X16] : xor(X14,xor(X15,X16)) = xor(xor(X14,X15),X16),
    inference(variable_rename,[status(thm)],[xor_associative]) ).

cnf(c_0_20,plain,
    xor(X1,X2) = xor(X2,X1),
    inference(split_conjunct,[status(thm)],[c_0_18]) ).

cnf(c_0_21,plain,
    xor(X1,xor(X2,X3)) = xor(xor(X1,X2),X3),
    inference(split_conjunct,[status(thm)],[c_0_19]) ).

fof(c_0_22,plain,
    ! [X20] : xor(X20,X20) = id,
    inference(variable_rename,[status(thm)],[xor_rules_2]) ).

fof(c_0_23,plain,
    ! [X19] : xor(X19,id) = X19,
    inference(variable_rename,[status(thm)],[xor_rules_1]) ).

fof(c_0_24,plain,
    ! [X31,X32,X33] :
      ( ~ p(X31)
      | ~ p(crypt(xor(km,xor(kp,X32)),X33))
      | ~ p(X32)
      | p(crypt(xor(km,xor(X32,kp)),xor(X31,X33))) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[key_part_import___part_2])]) ).

cnf(c_0_25,plain,
    xor(X1,xor(X2,X3)) = xor(X3,xor(X1,X2)),
    inference(spm,[status(thm)],[c_0_20,c_0_21]) ).

cnf(c_0_26,plain,
    xor(X1,X1) = id,
    inference(split_conjunct,[status(thm)],[c_0_22]) ).

cnf(c_0_27,plain,
    xor(X1,id) = X1,
    inference(split_conjunct,[status(thm)],[c_0_23]) ).

fof(c_0_28,plain,
    ! [X37,X38] :
      ( ~ p(X37)
      | ~ p(crypt(xor(km,data),X38))
      | p(crypt(X38,X37)) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[encrypt_data])]) ).

fof(c_0_29,plain,
    ! [X21,X22,X23,X24,X25] :
      ( ~ p(crypt(xor(X21,X22),X23))
      | ~ p(X24)
      | ~ p(crypt(xor(km,imp),X25))
      | p(crypt(xor(km,X24),decrypt(xor(X25,X24),crypt(xor(X21,X22),X23)))) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[key_import])]) ).

fof(c_0_30,plain,
    ! [X34,X35,X36] :
      ( ~ p(X34)
      | ~ p(crypt(xor(km,xor(X35,kp)),X36))
      | ~ p(X35)
      | p(crypt(xor(km,X35),xor(X36,X34))) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[key_part_import___part_3])]) ).

cnf(c_0_31,plain,
    ( p(crypt(xor(km,xor(X2,kp)),xor(X1,X3)))
    | ~ p(X1)
    | ~ p(crypt(xor(km,xor(kp,X2)),X3))
    | ~ p(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_24]) ).

cnf(c_0_32,plain,
    xor(X1,xor(X1,X2)) = X2,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_25,c_0_26]),c_0_27]) ).

cnf(c_0_33,plain,
    p(crypt(xor(km,xor(kp,imp)),xor(kek,k3))),
    inference(split_conjunct,[status(thm)],[partially_completed_key]) ).

cnf(c_0_34,plain,
    ( p(crypt(X2,X1))
    | ~ p(X1)
    | ~ p(crypt(xor(km,data),X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_28]) ).

cnf(c_0_35,plain,
    ( p(crypt(xor(km,X4),decrypt(xor(X5,X4),crypt(xor(X1,X2),X3))))
    | ~ p(crypt(xor(X1,X2),X3))
    | ~ p(X4)
    | ~ p(crypt(xor(km,imp),X5)) ),
    inference(split_conjunct,[status(thm)],[c_0_29]) ).

cnf(c_0_36,plain,
    p(data),
    inference(split_conjunct,[status(thm)],[inital_knowledge_of_intruder_3]) ).

cnf(c_0_37,plain,
    ( p(crypt(xor(km,X2),xor(X3,X1)))
    | ~ p(X1)
    | ~ p(crypt(xor(km,xor(X2,kp)),X3))
    | ~ p(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_30]) ).

cnf(c_0_38,plain,
    ( p(crypt(xor(km,xor(X1,kp)),X2))
    | ~ p(crypt(xor(km,xor(kp,X1)),xor(X3,X2)))
    | ~ p(X1)
    | ~ p(X3) ),
    inference(spm,[status(thm)],[c_0_31,c_0_32]) ).

cnf(c_0_39,plain,
    p(crypt(xor(km,xor(kp,imp)),xor(k3,kek))),
    inference(rw,[status(thm)],[c_0_33,c_0_20]) ).

cnf(c_0_40,plain,
    p(imp),
    inference(split_conjunct,[status(thm)],[inital_knowledge_of_intruder_2]) ).

cnf(c_0_41,plain,
    p(k3),
    inference(split_conjunct,[status(thm)],[key_part]) ).

cnf(c_0_42,plain,
    ( p(crypt(decrypt(xor(X1,data),crypt(xor(X2,X3),X4)),X5))
    | ~ p(crypt(xor(km,imp),X1))
    | ~ p(crypt(xor(X2,X3),X4))
    | ~ p(X5) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_34,c_0_35]),c_0_36])]) ).

cnf(c_0_43,plain,
    xor(id,X1) = X1,
    inference(spm,[status(thm)],[c_0_27,c_0_20]) ).

fof(c_0_44,plain,
    ! [X17,X18] : decrypt(X17,crypt(X17,X18)) = X18,
    inference(variable_rename,[status(thm)],[encryption_decryption_cancellation]) ).

cnf(c_0_45,plain,
    ( p(crypt(xor(km,X1),xor(X2,X3)))
    | ~ p(crypt(xor(km,xor(kp,X1)),X2))
    | ~ p(X1)
    | ~ p(X3) ),
    inference(spm,[status(thm)],[c_0_37,c_0_20]) ).

cnf(c_0_46,plain,
    p(crypt(xor(km,xor(kp,imp)),kek)),
    inference(rw,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38,c_0_39]),c_0_40]),c_0_41])]),c_0_20]) ).

cnf(c_0_47,plain,
    ( p(crypt(decrypt(xor(X1,data),crypt(X2,X3)),X4))
    | ~ p(crypt(xor(km,imp),X1))
    | ~ p(crypt(X2,X3))
    | ~ p(X4) ),
    inference(spm,[status(thm)],[c_0_42,c_0_43]) ).

cnf(c_0_48,plain,
    decrypt(X1,crypt(X1,X2)) = X2,
    inference(split_conjunct,[status(thm)],[c_0_44]) ).

cnf(c_0_49,plain,
    ( p(crypt(xor(km,imp),xor(kek,X1)))
    | ~ p(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_45,c_0_46]),c_0_40])]) ).

cnf(c_0_50,plain,
    ( p(crypt(X1,X2))
    | ~ p(crypt(xor(km,imp),X3))
    | ~ p(crypt(xor(X3,data),X1))
    | ~ p(X2) ),
    inference(spm,[status(thm)],[c_0_47,c_0_48]) ).

cnf(c_0_51,plain,
    ( p(crypt(xor(km,imp),X1))
    | ~ p(xor(kek,X1)) ),
    inference(spm,[status(thm)],[c_0_49,c_0_32]) ).

cnf(c_0_52,plain,
    ( p(crypt(X1,X2))
    | ~ p(crypt(xor(X3,data),X1))
    | ~ p(xor(kek,X3))
    | ~ p(X2) ),
    inference(spm,[status(thm)],[c_0_50,c_0_51]) ).

cnf(c_0_53,plain,
    ( p(crypt(X1,X2))
    | ~ p(crypt(xor(data,X3),X1))
    | ~ p(xor(kek,X3))
    | ~ p(X2) ),
    inference(spm,[status(thm)],[c_0_52,c_0_20]) ).

cnf(c_0_54,plain,
    xor(X1,xor(X2,X3)) = xor(X2,xor(X1,X3)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_21,c_0_20]),c_0_21]) ).

fof(c_0_55,plain,
    ! [X47,X48] :
      ( ~ p(X47)
      | ~ p(X48)
      | p(xor(X47,X48)) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[combine_with_XOR])]) ).

cnf(c_0_56,plain,
    ( p(crypt(X1,X2))
    | ~ p(xor(data,xor(kek,X3)))
    | ~ p(crypt(X3,X1))
    | ~ p(X2) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_53,c_0_32]),c_0_54]) ).

cnf(c_0_57,plain,
    ( p(xor(X1,X2))
    | ~ p(X1)
    | ~ p(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_55]) ).

fof(c_0_58,negated_conjecture,
    ~ p(crypt(pp,a)),
    inference(fof_simplification,[status(thm)],[inference(assume_negation,[status(cth)],[find_pin])]) ).

cnf(c_0_59,plain,
    ( p(crypt(X1,X2))
    | ~ p(xor(kek,X3))
    | ~ p(crypt(X3,X1))
    | ~ p(X2) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56,c_0_57]),c_0_36])]) ).

cnf(c_0_60,plain,
    p(crypt(xor(kek,pin),pp)),
    inference(split_conjunct,[status(thm)],[pin_key_encrypted_for_transfer]) ).

cnf(c_0_61,plain,
    xor(X1,xor(X2,X1)) = X2,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_25,c_0_26]),c_0_27]) ).

cnf(c_0_62,plain,
    p(pin),
    inference(split_conjunct,[status(thm)],[inital_knowledge_of_intruder_5]) ).

cnf(c_0_63,negated_conjecture,
    ~ p(crypt(pp,a)),
    inference(split_conjunct,[status(thm)],[c_0_58]) ).

cnf(c_0_64,plain,
    ( p(crypt(pp,X1))
    | ~ p(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_59,c_0_60]),c_0_20]),c_0_61]),c_0_62])]) ).

cnf(c_0_65,plain,
    p(a),
    inference(split_conjunct,[status(thm)],[an_account_number]) ).

cnf(c_0_66,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_63,c_0_64]),c_0_65])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.10/0.12  % Problem    : SWV234+1 : TPTP v8.1.2. Released v3.2.0.
% 0.10/0.13  % Command    : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s
% 0.12/0.33  % Computer : n017.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit   : 300
% 0.12/0.34  % WCLimit    : 300
% 0.12/0.34  % DateTime   : Tue Aug 29 04:47:58 EDT 2023
% 0.12/0.34  % CPUTime  : 
% 0.19/0.54  start to proof: theBenchmark
% 35.38/35.51  % Version  : CSE_E---1.5
% 35.38/35.51  % Problem  : theBenchmark.p
% 35.38/35.51  % Proof found
% 35.38/35.51  % SZS status Theorem for theBenchmark.p
% 35.38/35.51  % SZS output start Proof
% See solution above
% 35.38/35.51  % Total time : 34.942000 s
% 35.38/35.51  % SZS output end Proof
% 35.38/35.51  % Total time : 34.947000 s
%------------------------------------------------------------------------------