TSTP Solution File: SWV164+1 by SuperZenon---0.0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SuperZenon---0.0.1
% Problem  : SWV164+1 : TPTP v8.1.0. Bugfixed v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_super_zenon -p0 -itptp -om -max-time %d %s

% Computer : n003.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Wed Jul 20 21:50:13 EDT 2022

% Result   : Theorem 7.05s 7.23s
% Output   : Proof 7.05s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.04/0.13  % Problem  : SWV164+1 : TPTP v8.1.0. Bugfixed v3.3.0.
% 0.04/0.14  % Command  : run_super_zenon -p0 -itptp -om -max-time %d %s
% 0.14/0.35  % Computer : n003.cluster.edu
% 0.14/0.35  % Model    : x86_64 x86_64
% 0.14/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.35  % Memory   : 8042.1875MB
% 0.14/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.35  % CPULimit : 300
% 0.14/0.35  % WCLimit  : 600
% 0.14/0.35  % DateTime : Thu Jun 16 01:15:26 EDT 2022
% 0.14/0.35  % CPUTime  : 
% 7.05/7.23  % SZS status Theorem
% 7.05/7.23  (* PROOF-FOUND *)
% 7.05/7.23  (* BEGIN-PROOF *)
% 7.05/7.23  % SZS output start Proof
% 7.05/7.23  1. (gt (succ T_0) (n0)) (-. (gt (succ T_0) (n0)))   ### Axiom
% 7.05/7.23  2. (-. (leq (n0) T_0)) (gt (succ T_0) (n0))   ### Definition-Pseudo(leq) 1
% 7.05/7.23  3. ((succ (n0)) = (n1)) ((n1) != (succ (n0)))   ### Sym(=)
% 7.05/7.23  4. ((succ (n1)) != (succ (succ (n0)))) ((succ (n0)) = (n1))   ### NotEqual 3
% 7.05/7.23  5. ((n2) != (n2))   ### NotEqual
% 7.05/7.23  6. ((succ (tptp_minus_1)) = (n0)) ((n0) != (succ (tptp_minus_1)))   ### Sym(=)
% 7.05/7.23  7. (-. (gt (n2) (succ (tptp_minus_1)))) (gt (n2) (n0)) ((succ (tptp_minus_1)) = (n0))   ### Trans 5 6
% 7.05/7.23  8. (-. (gt (succ (n1)) (succ (tptp_minus_1)))) ((succ (succ (n0))) = (n2)) ((succ (tptp_minus_1)) = (n0)) (gt (n2) (n0)) ((succ (n0)) = (n1))   ### TransEq 4 7 7
% 7.05/7.23  9. (T_0 != T_0)   ### Refl(=)
% 7.05/7.23  10. (-. (gt (succ (n1)) T_0)) (gt (succ (tptp_minus_1)) T_0) ((succ (n0)) = (n1)) (gt (n2) (n0)) ((succ (tptp_minus_1)) = (n0)) ((succ (succ (n0))) = (n2))   ### Trans 8 9
% 7.05/7.23  11. (-. (leq T_0 (n1))) ((succ (succ (n0))) = (n2)) ((succ (tptp_minus_1)) = (n0)) (gt (n2) (n0)) ((succ (n0)) = (n1)) (gt (succ (tptp_minus_1)) T_0)   ### Definition-Pseudo(leq) 10
% 7.05/7.23  12. (T_0 != (n0)) (T_0 = (n0))   ### Axiom
% 7.05/7.23  13. (T_0 != (n1)) (T_0 = (n1))   ### Axiom
% 7.05/7.23  14. (((leq (n0) T_0) /\ (leq T_0 (n1))) => ((T_0 = (n0)) \/ (T_0 = (n1)))) (T_0 != (n1)) (T_0 != (n0)) (gt (succ (tptp_minus_1)) T_0) ((succ (n0)) = (n1)) (gt (n2) (n0)) ((succ (tptp_minus_1)) = (n0)) ((succ (succ (n0))) = (n2)) (gt (succ T_0) (n0))   ### DisjTree 2 11 12 13
% 7.05/7.23  15. (All X, (((leq (n0) X) /\ (leq X (n1))) => ((X = (n0)) \/ (X = (n1))))) (gt (succ T_0) (n0)) ((succ (succ (n0))) = (n2)) ((succ (tptp_minus_1)) = (n0)) (gt (n2) (n0)) ((succ (n0)) = (n1)) (gt (succ (tptp_minus_1)) T_0) (T_0 != (n0)) (T_0 != (n1))   ### All 14
% 7.05/7.23  16. ((succ (tptp_minus_1)) = (n0)) ((succ (tptp_minus_1)) != (n0))   ### Axiom
% 7.05/7.23  17. ((succ (tptp_minus_1)) != (succ (tptp_minus_1)))   ### Refl(=)
% 7.05/7.23  18. (-. (gt (succ (tptp_minus_1)) (n0))) (T_0 != (n1)) (gt (succ (tptp_minus_1)) T_0) ((succ (n0)) = (n1)) (gt (n2) (n0)) ((succ (tptp_minus_1)) = (n0)) ((succ (succ (n0))) = (n2)) (gt (succ T_0) (n0)) (All X, (((leq (n0) X) /\ (leq X (n1))) => ((X = (n0)) \/ (X = (n1)))))   ### Trans 17 15
% 7.05/7.23  19. ((succ (tptp_minus_1)) != (succ (tptp_minus_1)))   ### Refl(=)
% 7.05/7.23  20. (-. (gt (succ (tptp_minus_1)) (succ (tptp_minus_1)))) (All X, (((leq (n0) X) /\ (leq X (n1))) => ((X = (n0)) \/ (X = (n1))))) (gt (succ T_0) (n0)) ((succ (succ (n0))) = (n2)) (gt (n2) (n0)) ((succ (n0)) = (n1)) (gt (succ (tptp_minus_1)) T_0) (T_0 != (n1)) ((succ (tptp_minus_1)) = (n0))   ### TransEq2 16 18 19
% 7.05/7.23  21. ((succ (tptp_minus_1)) != (succ (tptp_minus_1)))   ### Refl(=)
% 7.05/7.23  22. (-. (gt T_0 (succ (tptp_minus_1)))) (T_0 != (n1)) (gt (succ (tptp_minus_1)) T_0) ((succ (n0)) = (n1)) (gt (n2) (n0)) ((succ (tptp_minus_1)) = (n0)) ((succ (succ (n0))) = (n2)) (gt (succ T_0) (n0)) (All X, (((leq (n0) X) /\ (leq X (n1))) => ((X = (n0)) \/ (X = (n1)))))   ### TransEq2 15 20 21
% 7.05/7.23  23. ((succ (n0)) != (succ (n0)))   ### Refl(=)
% 7.05/7.23  24. ((n1) != (n1))   ### NotEqual
% 7.05/7.23  25. ((succ (tptp_minus_1)) = (n0)) ((n0) != (succ (tptp_minus_1)))   ### Sym(=)
% 7.05/7.23  26. (-. (gt (n1) (succ (tptp_minus_1)))) (gt (n1) (n0)) ((succ (tptp_minus_1)) = (n0))   ### Trans 24 25
% 7.05/7.23  27. (-. (gt (succ (n0)) (succ (tptp_minus_1)))) ((succ (n0)) = (n1)) ((succ (tptp_minus_1)) = (n0)) (gt (n1) (n0))   ### TransEq 23 26 26
% 7.05/7.23  28. (gt (n1) (n0)) (All X, (((leq (n0) X) /\ (leq X (n1))) => ((X = (n0)) \/ (X = (n1))))) (gt (succ T_0) (n0)) ((succ (succ (n0))) = (n2)) ((succ (tptp_minus_1)) = (n0)) (gt (n2) (n0)) ((succ (n0)) = (n1)) (gt (succ (tptp_minus_1)) T_0) (-. (gt T_0 (succ (tptp_minus_1))))   ### TransEq2 22 27 27
% 7.05/7.23  29. (T_0 != T_0)   ### Refl(=)
% 7.05/7.23  30. (-. (gt T_0 T_0)) (gt (succ (tptp_minus_1)) T_0) ((succ (n0)) = (n1)) (gt (n2) (n0)) ((succ (tptp_minus_1)) = (n0)) ((succ (succ (n0))) = (n2)) (gt (succ T_0) (n0)) (All X, (((leq (n0) X) /\ (leq X (n1))) => ((X = (n0)) \/ (X = (n1))))) (gt (n1) (n0))   ### Trans 28 29
% 7.05/7.23  31. (All X, (-. (gt X X))) (gt (n1) (n0)) (All X, (((leq (n0) X) /\ (leq X (n1))) => ((X = (n0)) \/ (X = (n1))))) (gt (succ T_0) (n0)) ((succ (succ (n0))) = (n2)) ((succ (tptp_minus_1)) = (n0)) (gt (n2) (n0)) ((succ (n0)) = (n1)) (gt (succ (tptp_minus_1)) T_0)   ### All 30
% 7.05/7.23  32. (leq T_0 (tptp_minus_1)) ((succ (n0)) = (n1)) (gt (n2) (n0)) ((succ (tptp_minus_1)) = (n0)) ((succ (succ (n0))) = (n2)) (gt (succ T_0) (n0)) (All X, (((leq (n0) X) /\ (leq X (n1))) => ((X = (n0)) \/ (X = (n1))))) (gt (n1) (n0)) (All X, (-. (gt X X)))   ### Definition-Pseudo(leq) 31
% 7.05/7.23  33. (leq (n0) T_0) (All X, (-. (gt X X))) (gt (n1) (n0)) (All X, (((leq (n0) X) /\ (leq X (n1))) => ((X = (n0)) \/ (X = (n1))))) ((succ (succ (n0))) = (n2)) ((succ (tptp_minus_1)) = (n0)) (gt (n2) (n0)) ((succ (n0)) = (n1)) (leq T_0 (tptp_minus_1))   ### Definition-Pseudo(leq) 32
% 7.05/7.23  34. (-. (((leq (n0) T_0) /\ (leq T_0 (tptp_minus_1))) => ((a_select3 (q) (pv10) T_0) = (divide (divide (times (exp (divide (divide (times (minus (a_select2 (x) (pv10)) (a_select2 (mu) T_0)) (minus (a_select2 (x) (pv10)) (a_select2 (mu) T_0))) (tptp_minus_2)) (times (a_select2 (sigma) T_0) (a_select2 (sigma) T_0)))) (a_select2 (rho) T_0)) (times (sqrt (times (n2) (tptp_pi))) (a_select2 (sigma) T_0))) (sum (n0) (n4) (divide (times (exp (divide (divide (times (minus (a_select2 (x) (pv10)) (a_select2 (mu) (tptp_sum_index))) (minus (a_select2 (x) (pv10)) (a_select2 (mu) (tptp_sum_index)))) (tptp_minus_2)) (times (a_select2 (sigma) (tptp_sum_index)) (a_select2 (sigma) (tptp_sum_index))))) (a_select2 (rho) (tptp_sum_index))) (times (sqrt (times (n2) (tptp_pi))) (a_select2 (sigma) (tptp_sum_index))))))))) ((succ (n0)) = (n1)) (gt (n2) (n0)) ((succ (tptp_minus_1)) = (n0)) ((succ (succ (n0))) = (n2)) (All X, (((leq (n0) X) /\ (leq X (n1))) => ((X = (n0)) \/ (X = (n1))))) (gt (n1) (n0)) (All X, (-. (gt X X)))   ### ConjTree 33
% 7.05/7.23  35. (-. (All B, (((leq (n0) B) /\ (leq B (tptp_minus_1))) => ((a_select3 (q) (pv10) B) = (divide (divide (times (exp (divide (divide (times (minus (a_select2 (x) (pv10)) (a_select2 (mu) B)) (minus (a_select2 (x) (pv10)) (a_select2 (mu) B))) (tptp_minus_2)) (times (a_select2 (sigma) B) (a_select2 (sigma) B)))) (a_select2 (rho) B)) (times (sqrt (times (n2) (tptp_pi))) (a_select2 (sigma) B))) (sum (n0) (n4) (divide (times (exp (divide (divide (times (minus (a_select2 (x) (pv10)) (a_select2 (mu) (tptp_sum_index))) (minus (a_select2 (x) (pv10)) (a_select2 (mu) (tptp_sum_index)))) (tptp_minus_2)) (times (a_select2 (sigma) (tptp_sum_index)) (a_select2 (sigma) (tptp_sum_index))))) (a_select2 (rho) (tptp_sum_index))) (times (sqrt (times (n2) (tptp_pi))) (a_select2 (sigma) (tptp_sum_index)))))))))) (All X, (-. (gt X X))) (gt (n1) (n0)) (All X, (((leq (n0) X) /\ (leq X (n1))) => ((X = (n0)) \/ (X = (n1))))) ((succ (succ (n0))) = (n2)) ((succ (tptp_minus_1)) = (n0)) (gt (n2) (n0)) ((succ (n0)) = (n1))   ### NotAllEx 34
% 7.05/7.23  36. (-. (((leq (n0) (pv10)) /\ ((leq (pv10) (n135299)) /\ (All A, (((leq (n0) A) /\ (leq A (pred (pv10)))) => ((sum (n0) (n4) (a_select3 (q) A (tptp_sum_index))) = (n1)))))) => (All B, (((leq (n0) B) /\ (leq B (tptp_minus_1))) => ((a_select3 (q) (pv10) B) = (divide (divide (times (exp (divide (divide (times (minus (a_select2 (x) (pv10)) (a_select2 (mu) B)) (minus (a_select2 (x) (pv10)) (a_select2 (mu) B))) (tptp_minus_2)) (times (a_select2 (sigma) B) (a_select2 (sigma) B)))) (a_select2 (rho) B)) (times (sqrt (times (n2) (tptp_pi))) (a_select2 (sigma) B))) (sum (n0) (n4) (divide (times (exp (divide (divide (times (minus (a_select2 (x) (pv10)) (a_select2 (mu) (tptp_sum_index))) (minus (a_select2 (x) (pv10)) (a_select2 (mu) (tptp_sum_index)))) (tptp_minus_2)) (times (a_select2 (sigma) (tptp_sum_index)) (a_select2 (sigma) (tptp_sum_index))))) (a_select2 (rho) (tptp_sum_index))) (times (sqrt (times (n2) (tptp_pi))) (a_select2 (sigma) (tptp_sum_index))))))))))) ((succ (n0)) = (n1)) (gt (n2) (n0)) ((succ (tptp_minus_1)) = (n0)) ((succ (succ (n0))) = (n2)) (All X, (((leq (n0) X) /\ (leq X (n1))) => ((X = (n0)) \/ (X = (n1))))) (gt (n1) (n0)) (All X, (-. (gt X X)))   ### ConjTree 35
% 7.05/7.23  % SZS output end Proof
% 7.05/7.23  (* END-PROOF *)
%------------------------------------------------------------------------------