TSTP Solution File: SWV134+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : SWV134+1 : TPTP v8.1.2. Bugfixed v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n011.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 23:02:42 EDT 2023

% Result   : Theorem 0.19s 0.70s
% Output   : Proof 0.19s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.12/0.12  % Problem  : SWV134+1 : TPTP v8.1.2. Bugfixed v3.3.0.
% 0.12/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n011.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Tue Aug 29 09:50:11 EDT 2023
% 0.13/0.35  % CPUTime  : 
% 0.19/0.70  Command-line arguments: --flip-ordering --lhs-weight 1 --depth-weight 60 --distributivity-heuristic
% 0.19/0.70  
% 0.19/0.70  % SZS status Theorem
% 0.19/0.70  
% 0.19/0.70  % SZS output start Proof
% 0.19/0.70  Take the following subset of the input axioms:
% 0.19/0.70    fof(gauss_array_0004, conjecture, (~leq(a_select2(s_values7, pv1325), a_select2(s_values7, s_worst7)) & (leq(n0, s_best7) & (leq(n0, s_sworst7) & (leq(n0, s_worst7) & (leq(n2, pv1325) & (leq(s_best7, n3) & (leq(s_sworst7, n3) & (leq(s_worst7, n3) & (leq(pv1325, n3) & (leq(a_select2(s_values7, pv1325), a_select2(s_values7, s_best7)) & leq(a_select2(s_values7, pv1325), a_select2(s_values7, s_sworst7)))))))))))) => leq(n0, pv1325)).
% 0.19/0.70    fof(gt_2_0, axiom, gt(n2, n0)).
% 0.19/0.70    fof(leq_gt1, axiom, ![X, Y]: (gt(Y, X) => leq(X, Y))).
% 0.19/0.70    fof(transitivity_leq, axiom, ![Z, X2, Y2]: ((leq(X2, Y2) & leq(Y2, Z)) => leq(X2, Z))).
% 0.19/0.70  
% 0.19/0.70  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.19/0.70  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.19/0.70  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.19/0.70    fresh(y, y, x1...xn) = u
% 0.19/0.70    C => fresh(s, t, x1...xn) = v
% 0.19/0.70  where fresh is a fresh function symbol and x1..xn are the free
% 0.19/0.70  variables of u and v.
% 0.19/0.70  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.19/0.70  input problem has no model of domain size 1).
% 0.19/0.70  
% 0.19/0.70  The encoding turns the above axioms into the following unit equations and goals:
% 0.19/0.70  
% 0.19/0.70  Axiom 1 (gauss_array_0004_5): leq(n2, pv1325) = true3.
% 0.19/0.70  Axiom 2 (gt_2_0): gt(n2, n0) = true3.
% 0.19/0.70  Axiom 3 (leq_gt1): fresh36(X, X, Y, Z) = true3.
% 0.19/0.70  Axiom 4 (transitivity_leq): fresh7(X, X, Y, Z) = true3.
% 0.19/0.70  Axiom 5 (transitivity_leq): fresh8(X, X, Y, Z, W) = leq(Y, W).
% 0.19/0.70  Axiom 6 (leq_gt1): fresh36(gt(X, Y), true3, Y, X) = leq(Y, X).
% 0.19/0.70  Axiom 7 (transitivity_leq): fresh8(leq(X, Y), true3, Z, X, Y) = fresh7(leq(Z, X), true3, Z, Y).
% 0.19/0.70  
% 0.19/0.70  Goal 1 (gauss_array_0004_10): leq(n0, pv1325) = true3.
% 0.19/0.70  Proof:
% 0.19/0.70    leq(n0, pv1325)
% 0.19/0.70  = { by axiom 5 (transitivity_leq) R->L }
% 0.19/0.70    fresh8(true3, true3, n0, n2, pv1325)
% 0.19/0.70  = { by axiom 1 (gauss_array_0004_5) R->L }
% 0.19/0.70    fresh8(leq(n2, pv1325), true3, n0, n2, pv1325)
% 0.19/0.70  = { by axiom 7 (transitivity_leq) }
% 0.19/0.70    fresh7(leq(n0, n2), true3, n0, pv1325)
% 0.19/0.70  = { by axiom 6 (leq_gt1) R->L }
% 0.19/0.70    fresh7(fresh36(gt(n2, n0), true3, n0, n2), true3, n0, pv1325)
% 0.19/0.70  = { by axiom 2 (gt_2_0) }
% 0.19/0.70    fresh7(fresh36(true3, true3, n0, n2), true3, n0, pv1325)
% 0.19/0.70  = { by axiom 3 (leq_gt1) }
% 0.19/0.70    fresh7(true3, true3, n0, pv1325)
% 0.19/0.70  = { by axiom 4 (transitivity_leq) }
% 0.19/0.70    true3
% 0.19/0.70  % SZS output end Proof
% 0.19/0.70  
% 0.19/0.70  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------