TSTP Solution File: SWV071+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : SWV071+1 : TPTP v8.1.2. Bugfixed v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n032.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 23:02:26 EDT 2023

% Result   : Theorem 0.12s 0.46s
% Output   : Proof 0.12s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.04/0.08  % Problem  : SWV071+1 : TPTP v8.1.2. Bugfixed v3.3.0.
% 0.04/0.09  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.08/0.28  % Computer : n032.cluster.edu
% 0.08/0.28  % Model    : x86_64 x86_64
% 0.08/0.28  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.08/0.28  % Memory   : 8042.1875MB
% 0.08/0.28  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.08/0.28  % CPULimit : 300
% 0.08/0.28  % WCLimit  : 300
% 0.08/0.28  % DateTime : Tue Aug 29 03:51:16 EDT 2023
% 0.08/0.28  % CPUTime  : 
% 0.12/0.46  Command-line arguments: --no-flatten-goal
% 0.12/0.46  
% 0.12/0.46  % SZS status Theorem
% 0.12/0.46  
% 0.12/0.46  % SZS output start Proof
% 0.12/0.46  Take the following subset of the input axioms:
% 0.12/0.47    fof(cl5_nebula_array_0012, conjecture, (leq(n0, pv21) & (leq(n0, pv23) & (leq(pv21, minus(n5, n1)) & leq(pv23, minus(n135300, n1))))) => (leq(n0, pv21) & (leq(n0, pv23) & (leq(pv21, minus(n5, n1)) & leq(pv23, minus(n135300, n1)))))).
% 0.12/0.47    fof(pred_minus_1, axiom, ![X]: minus(X, n1)=pred(X)).
% 0.12/0.47    fof(ttrue, axiom, true).
% 0.12/0.47  
% 0.12/0.47  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.12/0.47  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.12/0.47  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.12/0.47    fresh(y, y, x1...xn) = u
% 0.12/0.47    C => fresh(s, t, x1...xn) = v
% 0.12/0.47  where fresh is a fresh function symbol and x1..xn are the free
% 0.12/0.47  variables of u and v.
% 0.12/0.47  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.12/0.47  input problem has no model of domain size 1).
% 0.12/0.47  
% 0.12/0.47  The encoding turns the above axioms into the following unit equations and goals:
% 0.12/0.47  
% 0.12/0.47  Axiom 1 (ttrue): true = true3.
% 0.12/0.47  Axiom 2 (pred_minus_1): minus(X, n1) = pred(X).
% 0.12/0.47  Axiom 3 (cl5_nebula_array_0012): leq(n0, pv21) = true3.
% 0.12/0.47  Axiom 4 (cl5_nebula_array_0012_1): leq(n0, pv23) = true3.
% 0.12/0.47  Axiom 5 (cl5_nebula_array_0012_2): leq(pv21, minus(n5, n1)) = true3.
% 0.12/0.47  Axiom 6 (cl5_nebula_array_0012_3): leq(pv23, minus(n135300, n1)) = true3.
% 0.12/0.47  
% 0.12/0.47  Goal 1 (cl5_nebula_array_0012_4): tuple(leq(n0, pv21), leq(n0, pv23), leq(pv21, minus(n5, n1)), leq(pv23, minus(n135300, n1))) = tuple(true3, true3, true3, true3).
% 0.12/0.47  Proof:
% 0.12/0.47    tuple(leq(n0, pv21), leq(n0, pv23), leq(pv21, minus(n5, n1)), leq(pv23, minus(n135300, n1)))
% 0.12/0.47  = { by axiom 2 (pred_minus_1) }
% 0.12/0.47    tuple(leq(n0, pv21), leq(n0, pv23), leq(pv21, pred(n5)), leq(pv23, minus(n135300, n1)))
% 0.12/0.47  = { by axiom 2 (pred_minus_1) }
% 0.12/0.47    tuple(leq(n0, pv21), leq(n0, pv23), leq(pv21, pred(n5)), leq(pv23, pred(n135300)))
% 0.12/0.47  = { by axiom 3 (cl5_nebula_array_0012) }
% 0.12/0.47    tuple(true3, leq(n0, pv23), leq(pv21, pred(n5)), leq(pv23, pred(n135300)))
% 0.12/0.47  = { by axiom 1 (ttrue) R->L }
% 0.12/0.47    tuple(true, leq(n0, pv23), leq(pv21, pred(n5)), leq(pv23, pred(n135300)))
% 0.12/0.47  = { by axiom 4 (cl5_nebula_array_0012_1) }
% 0.12/0.47    tuple(true, true3, leq(pv21, pred(n5)), leq(pv23, pred(n135300)))
% 0.12/0.47  = { by axiom 1 (ttrue) R->L }
% 0.12/0.47    tuple(true, true, leq(pv21, pred(n5)), leq(pv23, pred(n135300)))
% 0.12/0.47  = { by axiom 2 (pred_minus_1) R->L }
% 0.12/0.47    tuple(true, true, leq(pv21, minus(n5, n1)), leq(pv23, pred(n135300)))
% 0.12/0.47  = { by axiom 5 (cl5_nebula_array_0012_2) }
% 0.12/0.47    tuple(true, true, true3, leq(pv23, pred(n135300)))
% 0.12/0.47  = { by axiom 1 (ttrue) R->L }
% 0.12/0.47    tuple(true, true, true, leq(pv23, pred(n135300)))
% 0.12/0.47  = { by axiom 2 (pred_minus_1) R->L }
% 0.12/0.47    tuple(true, true, true, leq(pv23, minus(n135300, n1)))
% 0.12/0.47  = { by axiom 6 (cl5_nebula_array_0012_3) }
% 0.12/0.47    tuple(true, true, true, true3)
% 0.12/0.47  = { by axiom 1 (ttrue) R->L }
% 0.12/0.47    tuple(true, true, true, true)
% 0.12/0.47  = { by axiom 1 (ttrue) }
% 0.12/0.47    tuple(true3, true, true, true)
% 0.12/0.47  = { by axiom 1 (ttrue) }
% 0.12/0.47    tuple(true3, true3, true, true)
% 0.12/0.47  = { by axiom 1 (ttrue) }
% 0.12/0.47    tuple(true3, true3, true3, true)
% 0.12/0.47  = { by axiom 1 (ttrue) }
% 0.12/0.47    tuple(true3, true3, true3, true3)
% 0.12/0.47  % SZS output end Proof
% 0.12/0.47  
% 0.12/0.47  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------